×
27.06.2015
216.013.5b27

Результат интеллектуальной деятельности: СПОСОБ ЭКСПЛУАТАЦИИ ТВЕРДОПОЛИМЕРНОГО ЭЛЕКТРОЛИЗЕРА

Вид РИД

Изобретение

№ охранного документа
0002554876
Дата охранного документа
27.06.2015
Аннотация: Изобретение относится к способу эксплуатации твердополимерного электролизера, включающему подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, контроль текущих значений температуры, давления, тока электролиза, производительности в процессе нагрева твердополимерного электролизера, фиксирование рабочего давления и рабочей температуры, последующую работу электролизера в стационарном режиме при фиксированной рабочей температуре с заданной производительностью и давлением. Способ характеризуется тем, что ток электролиза фиксируют после достижения заданной производительности в процессе нагрева, а рабочую температуру - после достижения рабочего давления, при полученном фиксированном токе электролиза и минимальном напряжении питания. Использование способа позволяет достичь заданных показателей процесса электролиза (давления и производительности) при минимальных энергозатратах, т.е. при максимальном КПД электролизера. 2 ил.
Основные результаты: Способ эксплуатации твердополимерного электролизера, включающий подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, контроль текущих значений температуры, давления, тока электролиза, производительности в процессе нагрева твердополимерного электролизера, фиксирование рабочего давления и рабочей температуры, последующую работу электролизера в стационарном режиме при фиксированной рабочей температуре с заданной производительностью и давлением, отличающийся тем, что ток электролиза фиксируют после достижения заданной производительности в процессе нагрева, а рабочую температуру - после достижения рабочего давления, при полученном фиксированном токе электролиза и минимальном напряжении питания.

Изобретение относится к электрохимии и может использоваться при эксплуатации твердополимерных (ТП) электролизеров, а также электрохимических генераторов (ЭХГ), изготовленных на основе протонопроводящих мембран типа Нафион (отечественный вариант - МФ-4СК).

Прототипом данному предложению может служить общепринятая методика эксплуатации электрохимических установок с ЭВ, когда ЭВ вместе с реакционной водой разогревают до определенной рабочей температуры, а затем работают при данной температуре и фиксированном давлении на стационарном режиме. Напряжение на ячейках ЭВ и ток электролиза при этом постоянны. Такая методика работы ТП ЭВ поэтапно описывается, например, в «DEVELOPMENT OF A HIGH PRESSURE РЕМ ELECTROLYZER: ENABLING SEASONAL STORAGE OF RENEWABLE ENERGY», R.A. Engel, G.S. Chapman, C.E. Chamberlin and P.A. Lehman, 15th Annual U.S. Hydrogen Conference, Los Angeles, CA, April 26-30, 2004. Электропитание электролизера при этом может начинаться как после достижения рабочей температуры, так и раньше. Для запуска ТП электролизера с мембраной Нафион используются следующие операции:

- включение электропитания электролизера (постоянное напряжение);

- включение циркуляции воды через электролизер, ее нагрев до рабочей температуры (36-50°C) и соответствующего значения тока электролиза;

- контроль текущих значений тока электролиза и температуры;

- фиксация рабочего давления электролизера;

- фиксация рабочей температуры твердополимерного электролизера, обеспечивающей его заданную производительность, и соответствующее значение тока электролиза;

- разложение воды при данной температуре и токе электролиза (производительности) на водород и кислород (стационарный режим работы).

Недостатком прототипа является то, что на стационарном режиме электролизер работает с КПД, который ниже максимально возможного при данном давлении и производительности. Это связано с тем, что проводимость мембраны Нафион зависит от конкретных условий, в которых она работает, включая плотность тока, температуру и давление. Кроме того, на проводимость мембраны влияет срок ее службы, а также параметры образца пленки, из которой изготовлена мембрана. В связи с этим для оптимизации режима работы ТП электролизера надо учитывать его индивидуальные характеристики и конкретные условия работы его мембраны.

Задачей предлагаемого изобретения является разработка методики получения максимальной эффективности работы электролизера на заданном режиме (при фиксированных производительности и давлении) с учетом конкретных характеристик его мембраны.

Техническим результатом предложения является достижение заданных показателей процесса электролиза (давления и производительности) при минимальных энергозатратах, т.е. при максимальном КПД электролизера.

Технический результат достигается за счет того, что в способе эксплуатации твердополимерного электролизера, включающем подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, контроль текущих значений температуры, давления, тока электролиза, производительности в процессе нагрева твердополимерного электролизера, фиксирование рабочего давления и рабочей температуры, последующую работу электролизера в стационарном режиме при фиксированной рабочей температуре с заданной производительностью и давлением, ток электролиза фиксируют после достижения заданной производительности в процессе нагрева, а рабочую температуру - после достижения рабочего давления, при полученном фиксированном токе электролиза и минимальном напряжении питания.

Сущность изобретения поясняется чертежами (фиг.1 и фиг.2).

На фиг.1 схематично изображена температурная характеристика (ТХ) мембраны Нафион, то есть зависимость ее проводимости (П) от температуры (Т). Температурная характеристика мембраны Нафион для P1~1 атм изображена сплошной линией для двух разных напряжений питания U1<U2. Для давления Р2>P1 и напряжений питания U1<U2 температурные характеристики показаны пунктиром. При давлениях, близких к атмосферному (Р1~1 атм), максимальная проводимость достигается при Т=Т=80÷85°C («Протонообменные мембраны для водородно-воздушных топливных элементов». Ю.А. Добровольский и др. Российский химический журнал, 2006 г., т.L, №6, стр.97). Если напряжение питания электролизера постоянно (U=const), в этой же точке Т достигается его максимальная производительность и КПД. Если же электролизер работает с более низкой производительностью (Пр0), при более низкой температуре (Т0), то его КПД будет меньше возможного для данного режима работы. В этом случае предлагается корректировать режим таким образом, чтобы, не меняя производительности и рабочего давления, получить максимальный КПД, снижая начальный уровень питающего напряжения.

При более высоких давлениях (Р2>P1) температурная характеристика смещается в сторону более высоких температур (Т∗∗) - последнее связано с тем, что при более высоких давлениях Нафион будет лучше сохранять воду и его проводимость будет выше.

Следует отметить, что смещение ТХ может быть связано не только с повышенным давлением, но также со старением материала мембраны. Кроме того, такой эффект наблюдается для мембраны Нафион, модифицированной различными гидрофильными добавками («Новые протонопроводящие мембраны для топливных элементов и газовых сенсоров» Ю.А. Добровольский и др. Международный журнал «Альтернативная энергетика и экология» АЭЭ (ISJAEE), №12(20), 2004 г., стр.36).

Фиг.2 иллюстрирует изменение тока электролиза (I) и напряжения (U) от температуры при реализации данного способа.

В начале процесса нагревания при (Т<Т0) электролизер работает с постоянным напряжением U0, при этом ток электролиза растет вместе с температурой согласно ТХ до значения I0, соответствующего заданной производительности Пр0. На графике (фиг.2) это соответствует перемещению рабочей точки из точки А в точку В. После установления рабочего давления Р2 при Т=Т0 и Пр=Пр0 ток фиксируется (I=I0) в точке В, однако проводимость мембраны П вместе с температурой продолжает расти, поэтому согласно закону Ома напряжение начинает падать (U<U0). На спадающих же участках любой ТХ проводимость начинает падать, поэтому, начиная с некоторой температуры Т∗∗, напряжение на мембране снова начнет увеличиваться. Для получения максимального КПД при заданных давлении и токе электролиза (т.е. производительности) рабочую температуру очевидно необходимо фиксировать именно в точке С при минимальном напряжении питания U1. Данная точка будет соответствовать максимуму некоторой ТХ мембраны Нафион, соответствующей давлению Р2 и напряжению питания U1 (на фиг.2 соответствующая ТХ обозначена пунктиром). При этом рабочая температура в точке С будет выше оптимальной рабочей температуры Т, соответствующей более высокому напряжению U2∗∗).

Способ осуществляют следующим образом.

В твердополимерный электролизер подают постоянное напряжение питания от источника питания и воду. Затем производят нагрев твердополимерного электролизера и воды до температуры Т0, обеспечивающей заданную производительность Пр0 электролизера и соответствующее значение тока электролиза I0. Нагрев производится с помощью системы терморегулирования электролизера, а также с использованием тепла, выделяющегося при электролизе.

Затем фиксируют рабочее давление электролизера Р2, например с помощью обратного клапана, установленного на входной магистрали электролизера.

После того как в процессе нагрева производительность электролизера достигнет заданного значения Пр0, фиксируют ток электролиза I0 (т.е. производительность электролизера). Для этого можно использовать стандартный стабилизатор тока. При этом из-за того что температура и проводимость мембраны продолжают расти, напряжение питания начнет падать согласно закона Ома, однако, начиная с некоторой температуры Т∗∗, оно вновь станет увеличиваться. С помощью системы терморегулирования фиксируют эту новую рабочую температуру электролизера Т∗∗, соответствующую минимальному напряжению питания U1. Для заданных рабочих параметров (давление Р2 и производительность Пр0) это соответствует максимальному КПД работы электролизера. В последующем электролизер работает в таком стационарном режиме при полученных таким образом электрических параметрах питания (ток I0, напряжение U1) и температуре Т∗∗.

Способ эксплуатации твердополимерного электролизера, включающий подачу в него постоянного напряжения питания и воды, нагрев твердополимерного электролизера и воды до температуры, обеспечивающей заданную производительность и соответствующее значение тока электролиза, контроль текущих значений температуры, давления, тока электролиза, производительности в процессе нагрева твердополимерного электролизера, фиксирование рабочего давления и рабочей температуры, последующую работу электролизера в стационарном режиме при фиксированной рабочей температуре с заданной производительностью и давлением, отличающийся тем, что ток электролиза фиксируют после достижения заданной производительности в процессе нагрева, а рабочую температуру - после достижения рабочего давления, при полученном фиксированном токе электролиза и минимальном напряжении питания.
СПОСОБ ЭКСПЛУАТАЦИИ ТВЕРДОПОЛИМЕРНОГО ЭЛЕКТРОЛИЗЕРА
СПОСОБ ЭКСПЛУАТАЦИИ ТВЕРДОПОЛИМЕРНОГО ЭЛЕКТРОЛИЗЕРА
Источник поступления информации: Роспатент

Showing 171-180 of 370 items.
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bdc2

Многослойная трансформируемая герметичная оболочка

Изобретение относится к трансформируемым космическим структурам. Многослойная трансформируемая герметичная оболочка (МТГО) включает ЭВТИ с защитой от атомарного кислорода, противометеороидную защиту в виде защитных противометеороидных экранов с межэкранными разделителями, армирующий слой,...
Тип: Изобретение
Номер охранного документа: 0002573684
Дата охранного документа: 27.01.2016
20.06.2016
№217.015.042a

Устройство для определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а именно к измерению электрических параметров двухполюсников. Устройство содержит первый блок задания схемы замещения, преобразователь ток-напряжение, масштабный усилитель, аналогово-цифровой преобразователь, блок управления измерением,...
Тип: Изобретение
Номер охранного документа: 0002587647
Дата охранного документа: 20.06.2016
20.06.2016
№217.015.0500

Способ определения тензора инерции космического аппарата

Изобретение относится к определению массово-инерционных характеристик космических аппаратов (КА). Способ включает измерение острого угла между направлением на Солнце и плоскостью орбиты КА. При достижении этим углом максимального значения выставляют строительную ось КА, отвечающую максимальному...
Тип: Изобретение
Номер охранного документа: 0002587663
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.2b0c

Способ тарировки датчика микроускорений в космическом полете

Изобретение относится к космической технике и может быть использовано при определении погрешности датчика микроускорений на космическом аппарате (КА). Технический результат - обеспечение тарировки датчика микроускорений в космическом полете. Способ тарировки датчика микроускорений в космическом...
Тип: Изобретение
Номер охранного документа: 0002583882
Дата охранного документа: 10.05.2016
10.05.2016
№216.015.2b0d

Способ определения параметров двухполюсника

Изобретение относится к электроизмерительной технике, а конкретно к измерению электрических параметров двухполюсников, используемых в качестве датчиков физических процессов (температуры, давления, уровня жидких и сыпучих сред и др.) на промышленных объектах и транспортных средствах. Техническим...
Тип: Изобретение
Номер охранного документа: 0002583879
Дата охранного документа: 10.05.2016
20.07.2016
№216.015.2b21

Космическая двухрежимная ядерно-энергетическая установка транспортно-энергетического модуля

Изобретение относится к космической технике и может быть использовано при создании энергетических и двигательных установок для решения двух задач: для доставки космических аппаратов (КА) на орбиту и последующего длительного энергообеспечения аппаратуры КА. Космическая двухрежимная...
Тип: Изобретение
Номер охранного документа: 0002592071
Дата охранного документа: 20.07.2016
Showing 171-180 of 295 items.
27.10.2015
№216.013.87cf

Космический приемник-преобразователь лазерного излучения

Изобретение относится к области создания приемников-преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения...
Тип: Изобретение
Номер охранного документа: 0002566370
Дата охранного документа: 27.10.2015
27.10.2015
№216.013.87d8

Способ определения величины атмосферной рефракции в условиях космического полета

Заявляемое изобретение относится к навигационной технике, а именно к способу навигации космического аппарата (КА). Способ основан на измерении отклонения истинного и измеренного положения звезды, наблюдаемой сквозь земную атмосферу. Отклонение связано с атмосферной рефракцией. Для этого с...
Тип: Изобретение
Номер охранного документа: 0002566379
Дата охранного документа: 27.10.2015
10.11.2015
№216.013.8e25

Способ зондирования верхней атмосферы

Изобретение относится к космической технике и может быть использовано для зондирования верхней атмосферы. Способ зондирования верхней атмосферы основан на измерении и прогнозировании орбиты космического аппарата (КА) и измерении физических параметров атмосферы. Прогнозируется время...
Тип: Изобретение
Номер охранного документа: 0002567998
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8e49

Способ электролиза воды под давлением в электролизной системе

Изобретение относится к способу электролиза воды под давлением в электролизной системе, входящей в состав накопителей электроэнергии, работающих с замкнутым по воде рабочим циклом. Способ включает подачу постоянного напряжения от источника питания и воды, частичное разложение воды током в...
Тип: Изобретение
Номер охранного документа: 0002568034
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8ebf

Способ определения скорости движения фронтальной части ледника с космического аппарата

Изобретение относится к области дистанционного мониторинга опасных природных процессов и может быть использовано для определения скорости движения фронтальной части ледника. Сущность: определяют неподвижные характерные точки на склонах ледника. Осуществляют с космического аппарата съемку...
Тип: Изобретение
Номер охранного документа: 0002568152
Дата охранного документа: 10.11.2015
10.11.2015
№216.013.8f12

Способ управления движением космического объекта после отделения от другого космического объекта

Изобретение относится к управлению движением космического объекта (КО), например пилотируемого КО, после его отделения от другого КО, например ракеты-носителя (РН). Разворот КО в требуемую ориентацию начинают в момент Δt, отсчитываемый от момента его отделения от другого КО (далее - РН)....
Тип: Изобретение
Номер охранного документа: 0002568235
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.8f53

Коммутатор напряжения с защитой от перегрузки по току

Использование: в области электротехники. Технический результат - повышение точности коммутации в условиях изменения температуры при снижении массы и габаритов коммутатора. Коммутатор напряжения с защитой от перегрузки по току содержит элемент И, последовательно соединенные электронный...
Тип: Изобретение
Номер охранного документа: 0002568307
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f6f

Способ измерения дальности до объектов по их изображениям преимущественно в космосе

Изобретение относится к способам измерения дальности и линейных размеров объектов по их изображениям. Согласно способу измеряют размеры и координаты центра изображения объекта до и после перемещения средства наблюдения под углом к оптической оси. Определение дальности производят в зависимости...
Тип: Изобретение
Номер охранного документа: 0002568335
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.8f86

Центробежное рабочее колесо

Изобретение может быть использовано в малорасходных насосах изделий ракетно-космической техники. Центробежное рабочее колесо содержит выполненный заодно со ступицей (1) ведущий диск (2) с лопатками (3) и покрывной диск (4) с центральным входным отверстием (5). Диск (4) контактирует с торцовыми...
Тип: Изобретение
Номер охранного документа: 0002568358
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a3cd

Способ эксплуатации электролизной системы, работающей при высоком давлении

Изобретение относится к «водородной» энергетике и может быть использовано на станциях заправки перспективного автотранспорта на топливных элементах. Способ эксплуатации электролизной системы, работающей при высоком давлении, включает процесс разложения воды электрическим током с раздельным...
Тип: Изобретение
Номер охранного документа: 0002573575
Дата охранного документа: 20.01.2016
+ добавить свой РИД