×
27.06.2015
216.013.59b2

Результат интеллектуальной деятельности: СПОСОБ ИНКАПСУЛЯЦИИ АЛКАЛОИДОВ

Вид РИД

Изобретение

№ охранного документа
0002554503
Дата охранного документа
27.06.2015
Аннотация: Изобретение относится к способу инкапсуляции алкалоидов. Указанный способ характеризуется тем, что алкалоид растворяют в диоксане, диметилсульфоксиде или диметилформамиде, затем диспергируют в смесь натрий карбоксиметилцеллюлозы и ацетона в присутствии препарата Е472с, приливают дистиллированную воду, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношение ядро/полимер в микрокапсулах составляет 1:3. Изобретение обеспечивает упрощение и ускорение процесса получения микрокапсул алкалоидов, а также увеличение выхода по массе. 19 пр.
Основные результаты: Способ инкапсуляции алкалоидов, характеризующийся тем, что алкалоид растворяют в диоксане, диметилсульфоксиде или диметилформамиде, затем диспергируют в смесь натрий карбоксиметилцеллюлозы и ацетона в присутствии препарата Е472с, приливают дистиллированную воду, полученную суспензию микрокапсул отфильтровывают и сушат, при этом соотношение ядро/полимер в микрокапсулах составляет 1:3.

Изобретение относится к области инкапсуляции, в частности получения микрокапсул, содержащих алкалоиды.

Ранее были известны способы получения микрокапсул лекарственных препаратов. Так, в пат. РФ 2092155 МПК A61K 047/02, A61K 009/16, опубл. 10.10.1997 предложен метод микрокапсулирования лекарственных средств, основанный на использовании облучения ультрафиолетовыми лучами.

Недостатками данного способа являются длительность процесса и применение ультрафиолетового излучения, что может оказывать влияние на процесс образования микрокапсул.

В пат. РФ 2091071 МПК A61K 35/10, опубл. 27.09.1997 предложен способ получения препарата путем диспергирования в шаровой мельнице с получением микрокапсул.

Недостатком способа является применение шаровой мельницы и длительность процесса.

В пат. РФ 2101010 МПК A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, опубл. 10.01.1998 предложена жевательная форма лекарственного препарата со вкусовой маскировкой, обладающая свойствами контролируемого высвобождения лекарственного препарата, содержит микрокапсулы размером 100-800 мкм в диаметре и состоит из фармацевтического ядра с кристаллическим ибупрофеном и полимерного покрытия, включающего пластификатор, достаточно эластичного, чтобы противостоять жеванию. Полимерное покрытие представляет собой сополимер на основе метакриловой кислоты.

Недостатки изобретения: использование сополимера на основе метакриловой кислоты, так как данные полимерные покрытия способны вызывать раковые опухоли; сложность исполнения; длительность процесса.

В пат. РФ 2173140 МПК A61K 009/50, A61K 009/127, опубл. 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-квитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В пат. РФ 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубл. 27.06.2009 предложен способ получения микрокапсул с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°C, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°C, скорость вращения распыляющего барабана 10000 об/мин).

Наиболее близким методом является способ, предложенный в пат. РФ 2134967 МПК A01N 53/00, A01N 25/28, опубл. 27.08.1999. В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Техническая задача - упрощение и ускорение процесса получения микрокапсул, уменьшение потерь при получении микрокапсул (увеличение выхода по массе).

Решение технической задачи достигается способом инкапсуляции алкалоидов, отличающимся тем, что в качестве оболочки микрокапсул используется натрий карбоксиметилцеллюлоза при их получении физико-химическим методом осаждения нерастворителем с использованием ацетона в качестве осадителя, процесс получения осуществляется без специального оборудования.

В качестве алкалоидов использовались гигрин, атропин, гиосциамин, скополамин, кониин, пиперин, никотин, анабазин, кодеин, папаверин, хинин, иохимбин, резерпин, стрихнин, кофеин, эфедрин, норэфедрин, колхицин, капсаицин, которые широко применяются в фармацевтической промышленности и в сельском хозяйстве.

Отличительной особенностью предлагаемого метода является использование натрий карбоксиметилцеллюлозы в качестве оболочки микрокапсул алкалоидов - в качестве их ядра, а также использование ацетона в качестве осадителя.

Результатом предлагаемого метода является получение микрокапсул алкалоидов в натрий карбоксиметилцеллюлозе при 25°C в течение 20 минут. Выход микрокапсул составляет более 90%.

ПРИМЕР 1. Получение микрокапсул гигрина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг гигрина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,356 г белого с желтоватым оттенком порошка. Выход составил 89%.

ПРИМЕР 2. Получение микрокапсул атропина с растворением препарата в диметилсульфоксиде (ДМСО), соотношение ядро/полимер 1:3

100 мг атропина растворяют в 1 мл ДМСО и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,356 г белого с желтоватым оттенком порошка. Выход составил 89%.

ПРИМЕР 3. Получение микрокапсул гиосциамина с растворением препарата в диметилформамиде (ДМФА), соотношение ядро/полимер 1:3

100 мг гиосциамина растворяют в 1 мл ДМФА и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,356 г белого с желтоватым оттенком порошка. Выход составил 89%.

ПРИМЕР 4. Получение микрокапсул скополамина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг скополамина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,365 г белого порошка. Выход составил 91%.

ПРИМЕР 5. Получение микрокапсул кониина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг кониина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,372 г белого порошка. Выход составил 93%.

ПРИМЕР 6. Получение микрокапсул пиперина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг пиперина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,375 г белого порошка. Выход составил 93,8%.

ПРИМЕР 7. Получение микрокапсул никотина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг никотина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,37 г белого порошка. Выход составил 92,5%.

ПРИМЕР 8. Получение микрокапсул анабазина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг анабазина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,38 г белого порошка. Выход составил 95%.

ПРИМЕР 9. Получение микрокапсул кодеина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг кодеина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,383 г белого порошка. Выход составил 95,8%.

ПРИМЕР 10. Получение микрокапсул папаверина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг папаверина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,379 г белого порошка. Выход составил 94,8%.

ПРИМЕР 11. Получение микрокапсул хинина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг хинина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,39 г белого порошка. Выход составил 97,5%.

ПРИМЕР 12. Получение микрокапсул иохимбина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг иохимбина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,386 г белого порошка. Выход составил 96,5%.

ПРИМЕР 13. Получение микрокапсул резерпина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг резерпина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,392 г белого порошка. Выход составил 98%.

ПРИМЕР 14. Получение микрокапсул стрихнина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг стрихнина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,388 г белого порошка. Выход составил 97%.

ПРИМЕР 15. Получение микрокапсул кофеина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг кофеина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,394 г белого порошка. Выход составил 98,5%.

ПРИМЕР 16. Получение микрокапсул эфедрина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг эфедрина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,378 г белого порошка. Выход составил 94,5%.

ПРИМЕР 17. Получение микрокапсул норэфедрина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг норэфедрина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,386 г белого порошка. Выход составил 96,5%.

ПРИМЕР 18. Получение микрокапсул колхицина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг колхицина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,39 г белого порошка. Выход составил 97,5%.

ПРИМЕР 19. Получение микрокапсул капсаицина с растворением препарата в диоксане, соотношение ядро/полимер 1:3

100 мг капсаицина растворяют в 1 мл диоксана и диспергируют полученную смесь в раствор натрий карбоксиметилцеллюлозы в ацетоне, содержащий указанного 300 мг полимера в присутствии 0,01 г препарата E472c при перемешивании 1000 об/сек. Далее приливают 1 мл дистиллированной воды. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,396 г белого порошка. Выход составил 99%.

Получены микрокапсулы алкалоидов физико-химическим методом осаждения нерастворителем с использованием ацетона в качестве осадителя, что способствует увеличению выхода и ускоряет процесс микрокапсулирования. Процесс прост в исполнении и длится в течение 20 минут, не требует специального оборудования.

Предложенная методика пригодна для фармацевтической и ветеринарной промышленности, а также в агрохимии вследствие минимальных потерь, быстроты, простоты получения и выделения микрокапсул.

Источник поступления информации: Роспатент

Showing 531-540 of 672 items.
13.12.2018
№218.016.a69b

Способ получения нанокапсул сухого экстракта девясила

Изобретение относится в области нанотехнологии, медицины и пищевой промышленности. Технической задачей изобретения является упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. Отличительной особенностью предлагаемого способа является использование в качестве ядра...
Тип: Изобретение
Номер охранного документа: 0002674652
Дата охранного документа: 12.12.2018
13.12.2018
№218.016.a6ad

Способ получения нанокапсул флорфеникола в альгинате натрия

Изобретение относится к области нанотехнологии, медицины, фармакологии и ветеринарной медицины. Способ получения нанокапсул флорфеникола в альгинате натрия характеризуется тем, что в суспензию альгината натрия в петролейном эфире и 0,01 г препарата Е472с, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002674666
Дата охранного документа: 12.12.2018
19.12.2018
№218.016.a910

Способ получения нанокапсул спирулина в каппа-каррагинане

Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул спирулина в каппа-каррагинане характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - спирулину, при этом порошок спирулины медленно добавляют в...
Тип: Изобретение
Номер охранного документа: 0002675235
Дата охранного документа: 18.12.2018
26.12.2018
№218.016.ab49

Способ получения нанокапсул сухого экстракта копеечника

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта копеечника в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт копеечника добавляют в суспензию альгината натрия в...
Тип: Изобретение
Номер охранного документа: 0002675802
Дата охранного документа: 25.12.2018
26.12.2018
№218.016.ab50

Способ получения нанокапсул сухого экстракта крапивы

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта крапивы в оболочке из альгината натрия. Способ характеризуется тем, что сухой экстракт крапивы добавляют в суспензию альгината натрия в бутаноле...
Тип: Изобретение
Номер охранного документа: 0002675799
Дата охранного документа: 25.12.2018
26.12.2018
№218.016.ab96

Способ получения нанокапсул сухого экстракта хвоща

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию альгината натрия в бензоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002675795
Дата охранного документа: 25.12.2018
26.12.2018
№218.016.abc5

Способ получения нанокапсул сухого экстракта дикого ямса

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул сухого экстракта дикого ямса в оболочке из гуаровой камеди. Способ характеризуется тем, что сухой экстракт дикого ямса добавляют в суспензию гуаровой камеди в...
Тип: Изобретение
Номер охранного документа: 0002675803
Дата охранного документа: 25.12.2018
11.01.2019
№219.016.ae9a

Способ получения нанокапсул танина

Изобретение относится к области нанотехнологии, в частности к способу получения нанокапсул, и описывает способ получения нанокапсул танина в оболочке из гуаровой камеди. Способ характеризуется тем, что в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г Е472с при перемешивании 1000...
Тип: Изобретение
Номер охранного документа: 0002676677
Дата охранного документа: 10.01.2019
16.01.2019
№219.016.affd

Способ получения мармелада с наноструктурированным l-аргинином

Изобретение относится к кондитерской промышленности. Предложен способ получения мармелада с наноструктурированным L-аргинином, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут, затем добавляют 2 г агар-агара и варят еще 5 минут, наливают 50 г вишневого сиропа...
Тип: Изобретение
Номер охранного документа: 0002677125
Дата охранного документа: 15.01.2019
18.01.2019
№219.016.b0a4

Способ получения нанокапсул сухого экстракта эвкалипта

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эвкалипта характеризуется тем, что сухой экстракт эвкалипта добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002677248
Дата охранного документа: 16.01.2019
Showing 531-540 of 686 items.
01.03.2019
№219.016.c882

Способ получения нанокапсул сухого экстракта девясила

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта девясила характеризуется тем, что сухой экстракт девясила добавляют в суспензию гуаровой камеди в метаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002680803
Дата охранного документа: 27.02.2019
01.03.2019
№219.016.c8c0

Способ получения нанокапсул сухого экстракта розмарина

Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул сухого экстракта розмарина характеризуется тем, что сухой экстракт розмарина добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002680806
Дата охранного документа: 27.02.2019
01.03.2019
№219.016.c8c6

Способ получения нанокапсул сухого экстракта одуванчика

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта одуванчика характеризуется тем, что сухой экстракт одуванчика добавляют в суспензию гуаровой камеди в этаноле в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002680808
Дата охранного документа: 27.02.2019
02.03.2019
№219.016.d1bd

Способ производства кофейного мороженого с ликером и наноструктурированным экстрактом розмарина

Изобретение относится к пищевой промышленности. Способ производства кофейного мороженого с экстрактом розмарина и ликером предусматривает введение в процессе производства в получаемый продукт сублимированного кофе и наноструктурированного экстракта розмарина в альгинате натрия или...
Тип: Изобретение
Номер охранного документа: 0002680901
Дата охранного документа: 28.02.2019
02.03.2019
№219.016.d1df

Способ производства хлеба, содержащего наноструктурированный ресвератрол

Изобретение относится к пищевой промышленности. Способ получения хлеба включает замес теста из дрожжей хлебопекарных прессованных, соли поваренной пищевой, воды питьевой, муки пшеничной высшего сорта, его брожение, разделку, расстойку тестовых заготовок и их выпечку. В процессе приготовления...
Тип: Изобретение
Номер охранного документа: 0002680891
Дата охранного документа: 28.02.2019
02.03.2019
№219.016.d1fb

Способ получения мармелада, содержащего наноструктурированную спирулину

Изобретение относится в области кондитерской промышленности. Предложен способ получения мармелада с наноструктурированной спирулиной, в котором 100 г сахара растворяют в 200 г воды и смесь уваривают в течение 10 минут, затем добавляют 2 г агар-агара и варят еще 5 минут, наливают 50 г яблочного...
Тип: Изобретение
Номер охранного документа: 0002680892
Дата охранного документа: 28.02.2019
15.03.2019
№219.016.dfdb

Способ получения нанокапсул сухого экстракта подорожника

Изобретение относится к области нанотехнологии, медицины, косметической и пищевой промышленности. Способ получения нанокапсул сухого экстракта подорожника характеризуется тем, что сухой экстракт подорожника добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного...
Тип: Изобретение
Номер охранного документа: 0002681843
Дата охранного документа: 13.03.2019
15.03.2019
№219.016.dfdf

Способ получения нанокапсул сухого экстракта прополиса

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта прополиса характеризуется тем, что сухой экстракт прополиса добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002681837
Дата охранного документа: 13.03.2019
15.03.2019
№219.016.dfe3

Способ получения нанокапсул сухого экстракта полыни

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта полыни характеризуется тем, что сухой экстракт полыни добавляют в суспензию гуаровой камеди в изопропаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя...
Тип: Изобретение
Номер охранного документа: 0002681842
Дата охранного документа: 13.03.2019
15.03.2019
№219.016.dff8

Способ получения нанокапсул сухого экстракта можжевельника

Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта можжевельника характеризуется тем, что сухой экстракт можжевельника добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г сложного эфира глицерина с...
Тип: Изобретение
Номер охранного документа: 0002681841
Дата охранного документа: 13.03.2019
+ добавить свой РИД