×
20.06.2015
216.013.576c

Результат интеллектуальной деятельности: СПОСОБ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХРОМА (III) В РАСТВОРАХ ЧИСТЫХ СОЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания хрома (III) в растворах чистых солей, содержащих хром (III) в малой концентрации. В способе фотометрического определения хрома (III) в растворах чистых солей, включающем переведение его в комплексное соединение с ксиленоловым оранжевым в слабокислой среде, к раствору хрома (III) с pH 3,0-3,8 добавляют 200-кратное количество ксиленолового оранжевого и 200-кратное количество комплексона III и 0,1-0,2 мл раствора поверхностно-активного вещества. Поверхностно-активное вещество получают путем добавления к 0,2 г желатина воды до 100 мл. Затем доводят объемы растворов до 10 мл водой с последующим нагреванием на водяной бане при температуре 60-80°C в течение 15 мин. Изобретение позволяет повысить чувствительность при фотометрическом определении хрома (III). 1 ил., 4 пр.
Основные результаты: Способ фотометрического определения хрома (III) в растворах чистых солей, включающий переведение его в комплексное соединение с ксиленоловым оранжевым в слабокислой среде, с последующим фотометрированием после нагревания, отличающийся тем, что к раствору хрома (III) с рН 3,0-3,8 добавляют 200-кратное количество ксиленолового оранжевого и 200-кратное количество комплексона III, 0,1-0,2 мл раствора поверхностно-активного вещества, полученного путем добавления к 0,2 г желатина воды до 100 мл, и доводят объемы растворов до 10 мл водой с последующим нагреванием на водяной бане при температуре 60-80°С в течение 15 мин.

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания хрома (III) в растворах чистых солей, содержащих хром (III) в малой концентрации.

Известны способы фотометрического определения хрома (III) в бинарных системах с помощью фталексонов: ксиленоловый оранжевый (εMR=19000), метилтимоловый синий (εMR=11500), глицинкрезоловый красный (εMR=15000), глицинтимоловый синий (εMR=15400) [Татаев О.А. Изучение условий спектрофотометрического определения хрома с ксиленоловым оранжевым / О.А. Татаев, P.P. Абдулаев // Зав. лаб. 1970. - №36. - С.1173-1175; Татаев О.А. Сравнительное изучение некоторых реагентов для фотометрического определения хрома (III) / О.А. Татаев, P.P. Абдулаев // Журнал аналитической химии. 1970. - №25. - С.930-933].

Наиболее близким по технической сущности к заявляемому изобретению является способ фотометрического определения хрома (III) в растворах чистых солей, включающий переведение его в комплексное соединение с ксиленоловым оранжевым в слабокислой среде (εMR=19000) [Татаев О.А. Изучение условий спектрофотометрического определения хрома с ксиленоловым оранжевым / О.А. Татаев, P.P. Абдулаев // Зав. лаб. 1970. - №36. - С.1173-1175].

Недостатком известного способа является невысокая чувствительность.

Технический результат заключается в повышении чувствительности при фотометрическом определении хрома (III).

Сущность изобретения заключается в том, что в способе фотометрического определения хрома (III) в растворах чистых солей, включающем переведение его в комплексное соединение с ксиленоловым оранжевым в слабокислой среде, к раствору хрома (III) с рН 3,0-3,8 добавляют 200-кратное количество ксиленолового оранжевого и 200-кратное количество комплексона III, 0,1-0,2 мл раствора поверхностно-активного вещества, полученного путем добавления к 0,2 г желатина воды до 100 мл, и доводят объемы растворов до 10 мл водой с последующим нагреванием на водяной бане при температуре 60-80°С в течение 15 мин и фотометрированием.

Желатин - белок, полимер, построенный из глицина (1), пролина (2) и оксипролина (3):

это коллаген костей, хрящей, соединительной ткани, образующий при нагревании с водой желатин (Каррер П. Курс органической химии. - М.: Госхимиздат, 1960. - С.399).

Если в качестве органического реагента для определения хрома (III) взять комплексон III:

Пример 1. В пробирки помещают по V мл 10-3 М раствора хрома (III) с рН, равным 2,5-5,0, по 1 мл 10-2 М раствора комплексона III и доводят объемы растворов до 5 мл водой с последующим нагреванием на водяной бане при температуре 80°С. Все растворы с такой концентрацией получились бесцветные, поэтому их не фотометрировали.

Если в качестве органического реагента для определения хрома (III) взять ксиленововый оранжевый:

Пример 2. В пробирки помещают по V мл 10-4 М раствора хрома (III) с рН равным 2,5-5,0, по 1 мл 10-2 М ксиленолового оранжевого и доводят объемы растворов до 5 мл водой с последующим нагреванием на водяной бане при температуре 80°С. Фотометрируют на КФК-2 с длиной волны λ=364 нм и толщиной кюветы l=0,1 см, относительно раствора сравнения холостого опыта. Молярный коэффициент светопоглощения полученного комплексного соединения равен: εMR≈46000.

Если в качестве органического реагента для определения хрома (III) взять ксиленоловый оранжевый и комплексон III:

Пример 3. В пробирки помещают по V мл 10-4 М раствора хрома (III) с рН, равным 2,5-5,0, по 1 мл 10-2 М ксиленолового оранжевого, по 1 мл 10-2 М раствора комплексона III и доводят объемы растворов до 5 мл водой с последующим нагреванием на водяной бане при температуре 80°С. Фотометрируют на КФК-2 с длиной волны λ=364 нм и толщиной кюветы l=0,1 см относительно раствора сравнения холостого опыта. Молярный коэффициент светопоглощения полученного комплексного соединения равен: εMR≈30000.

Если в качестве органического реагента для определения хрома (III) взять ксиленоловый оранжевый и комплексон III в присутствии ПАВ:

Пример 4. В пробирки помещают по V мл 10-4 М раствора хрома (III) с рН, равным 3,0-3,8, по 1 мл 10-2 М ксиленолового оранжевого, по 1 мл 10-2 М комплексона III, 0,1-0,2 мл раствора ПАВ, полученного путем добавления к 0,2 г желатина воды до 100 мл, и доводят объемы растворов до 10 мл водой. При введении ПАВ менее 0,1 мл - интенсивность окраски не достигает предельной, при введении ПАВ более 0,2 мл окрашенное соединение выпадает частично в осадок (раствор обесцвечивается). Нагревание осуществляют на водяной бане при температуре 60-80°С (при t<60°C - окрашенное соединение соответствующей чувствительности не образуется, без нагревания - окраски практически нет, при t>80°С - часть окрашенного соединения выпадает в осадок) в течение 15 мин. Фотометрируют на КФК-2 с длиной волны λ=364 нм и толщиной кюветы l=0,1 см относительно раствора сравнения холостого опыта. Линейность градуировочного графика при определении хрома (III) в виде четырехкомпонентной системы соблюдается в интервале концентраций (2-10)·10-6 М хрома (III). Молярный коэффициент светопоглощения полученного комплексного соединения равен:

Молярный коэффициент светопоглощения εMR комплексного соединения повышает свою величину до 380000, а это значит, что чем больше величина молярного коэффициента светопоглощения εMR, тем чувствительнее определение иона металла, то есть тем меньшую концентрацию его в анализируемом растворе можно определять данным способом.

Предлагаемый способ фотометрического определения хрома (III) с ксиленоловым оранжевым, комплексоном III в присутствии ПАВ увеличивает чувствительность определения в 20 раз: что также больше максимально известной величины молярного коэффициента поглощения (εMR=100000) для комплексов ионов металлов с фталексонами, а также другими органическими реагентами.

Предлагаемая структура комплекса (фиг. 1): так как комплексон III образует комплексы с ионами металлов в соотношении 1:1, подход хрома со стороны ксиленолового оранжевого затруднен и возможен, вероятно, в соотношении не более, чем 1:1.

Желатин обволакивает молекулу комплексного соединения, образуя устойчивые три пятичленных и один шестичленный циклы.

Преимущества предлагаемого способа фотометрического определения хрома (III) с ксиленоловым оранжевым, комплексоном III в присутствии ПАВ:

1) резко в 20 раз возрастает чувствительность определения хрома (III) по сравнению с известным способом;

2) реакция образования комплексного соединения идет в водной среде;

3) образующийся комплекс устойчив;

4) хорошая воспроизводимость анализа.

Способ фотометрического определения хрома (III) в растворах чистых солей, включающий переведение его в комплексное соединение с ксиленоловым оранжевым в слабокислой среде, с последующим фотометрированием после нагревания, отличающийся тем, что к раствору хрома (III) с рН 3,0-3,8 добавляют 200-кратное количество ксиленолового оранжевого и 200-кратное количество комплексона III, 0,1-0,2 мл раствора поверхностно-активного вещества, полученного путем добавления к 0,2 г желатина воды до 100 мл, и доводят объемы растворов до 10 мл водой с последующим нагреванием на водяной бане при температуре 60-80°С в течение 15 мин.
СПОСОБ ФОТОМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ХРОМА (III) В РАСТВОРАХ ЧИСТЫХ СОЛЕЙ
Источник поступления информации: Роспатент

Showing 81-82 of 82 items.
25.08.2017
№217.015.d087

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительным материалам и может быть использовано при производстве конструкций и изделий из крупнопористого бетона гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая...
Тип: Изобретение
Номер охранного документа: 0002621327
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dffc

Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом

Изобретение относится к технологии переработки минерального сырья. Предложен способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом. Способ включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида...
Тип: Изобретение
Номер охранного документа: 0002625114
Дата охранного документа: 11.07.2017
Showing 81-89 of 89 items.
25.08.2017
№217.015.d087

Сырьевая смесь для изготовления крупнопористого бетона

Изобретение относится к строительным материалам и может быть использовано при производстве конструкций и изделий из крупнопористого бетона гражданского, промышленного, гидротехнического и мелиоративного назначения, а также для изготовления каркаса в каркасных бетонных конструкциях. Сырьевая...
Тип: Изобретение
Номер охранного документа: 0002621327
Дата охранного документа: 02.06.2017
26.08.2017
№217.015.dffc

Способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом

Изобретение относится к технологии переработки минерального сырья. Предложен способ получения тонкодисперсного аморфного микрокремнезема золь-гель методом. Способ включает предварительное просушивание и измельчение диатомита. В измельченный диатомит добавляют 10-30%-ный раствор гидроксида...
Тип: Изобретение
Номер охранного документа: 0002625114
Дата охранного документа: 11.07.2017
19.08.2018
№218.016.7d45

Способ фотометрического определения железа (iii)

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ фотометрического определения железа (III)...
Тип: Изобретение
Номер охранного документа: 0002664504
Дата охранного документа: 17.08.2018
14.12.2018
№218.016.a704

Способ фотометрического определения железа (iii) в растворах чистых солей в присутствии поверхностно-активного вещества

Изобретение относится к области аналитической химии, а именно к фотометрическому методу анализа, и может быть использовано для определения содержания железа (III) в растворах чистых солей, содержащих железо (III) в очень малой концентрации. Способ включает переведение железа (III) в...
Тип: Изобретение
Номер охранного документа: 0002674760
Дата охранного документа: 13.12.2018
29.04.2019
№219.017.4100

Интерфейсное устройство для микромеханического гироскопа

Изобретение относится к микромеханическим датчикам скорости вращения, в которых используется эффект Кориолиса, в частности к микромеханическим гироскопам вибрационного типа. Интерфейсное устройство содержит трансрезистивные усилители, входы которых соединены с противоположными электродами, два...
Тип: Изобретение
Номер охранного документа: 0002314495
Дата охранного документа: 10.01.2008
29.06.2019
№219.017.9c23

Микромеханический гироскоп

Изобретение относится к приборам, измеряющим угловую скорость, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. ММГ содержит основание из кремния с установленными на нем через изолирующие слои статорами и опорой, на которой с помощью торсионов подвешен ротор, и крышку из...
Тип: Изобретение
Номер охранного документа: 0002347190
Дата охранного документа: 20.02.2009
29.06.2019
№219.017.9dcd

Микромеханический гироскоп вибрационного типа

Изобретение относится к приборам, измеряющим угловую скорость, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. ММГ содержит опору на основании, к которой на резонансном подвесе подвешена проводящая подвижная масса. Две пары неподвижных электродов нанесены на крышку ММГ,...
Тип: Изобретение
Номер охранного документа: 0002370733
Дата охранного документа: 20.10.2009
23.02.2020
№220.018.04c2

Микромеханический гироскоп

Изобретение относится к области точного приборостроения, в частности к вибрационным микромеханическим гироскопам (ММГ), измеряющим угловую скорость. Сущность изобретения заключается в том, что в ММГ со встроенным датчиком температуры, квадратурными электродами и управляемыми источниками...
Тип: Изобретение
Номер охранного документа: 0002714870
Дата охранного документа: 19.02.2020
23.02.2020
№220.018.04df

Способ компенсации синфазной помехи в микромеханическом гироскопе

Изобретение относится к области микромеханики, в частности к микромеханическим гироскопам (ММГ) вибрационного типа. Сущность изобретения заключается в том, что предварительно экспериментально определяют зависимость амплитуды компенсирующего напряжения на синфазных электродах от выходного...
Тип: Изобретение
Номер охранного документа: 0002714955
Дата охранного документа: 21.02.2020
+ добавить свой РИД