×
20.06.2015
216.013.56d9

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ НАНОСТРУКТУРИРОВАННЫЙ ПОРОШОК ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления состоит из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующего слоя толщиной 4-8 мкм из порошка алюминия, диффузионного слоя из интерметаллидов толщиной 0,6-1,2 мкм, образованных на границе сердцевины и плакирующего слоя при отжиге, и армированного поверхностного слоя, полученного при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%. Покрытия, изготовленные из предлагаемого композиционного наноструктурированного порошка, обладают высокой адгезионной и когезионной прочностью, равномерным распределением твердости по сечению покрытия. 2 пр.
Основные результаты: Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления, состоящий из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующий слой толщиной 4-8 мкм из порошка алюминия, диффузионный слой из интерметаллидов толщиной 0,6-1,2 мкм, образованный на границе сердцевины и плакирующего слоя при отжиге, и армированный поверхностный слой, полученный при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%.

Изобретение относится к области порошковой металлургии, в частности к порошкам для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН).

Известен композиционный керамический материал (патент RU 2341494 от 05.02.2007, C04B 35/488, опубл. 20.12.2008), состоящий из матрицы и упрочнителя. Материал содержит в качестве матрицы ультрадисперсный порошок диоксида циркония (ZrO2), а в качестве упрочнителя - армирующие частицы, полученные плазмохимическим методом из диоксида циркония (ZrO2) и оксида алюминия (Al2O3), и имеет следующее соотношение матрицы и упрочнителя, об.%:

- армирующие частицы 15-55
- порошок диоксида циркония остальное

при этом армирующие частицы содержат 20-50 об.% оксида алюминия (Al2O3).

Известен способ получения композитных порошковых наноматериалов с металлической матрицей (патент RU 2434713 от 16.11.2009, B22F 3/06, С22С 1/05, опубл. 27.11.2011), армированной оксидными наполнителями, применяемых для создания износо- и коррозионно-стойких беспористых покрытий. Способ включает механическое легирование пластичных металлических порошков неметаллическими частицами высокой твердости, причем в качестве пластичных металлических порошков используют порошки системы Al-Zn-Sn, а в качестве неметаллических частиц высокой твердости используют порошок корунда наноразмерной фракции. Технический результат: получение композитного материала с металлической матрицей, армированной наноразмерным упрочнителем, для создания практически беспористого функционально-градиентного покрытия с повышенными эксплуатационными свойствами.

Известен композиционный конструкционный материал (патент RU 2434962 от 27.05.2010, C22C 1/05, опубл. 27.11.2011), который состоит из металлической матрицы, порошковой добавки, представляющей собой интерметаллид, сталь или сплав, и нанодисперсного порошка, представляющего собой термодинамически стабильные и устойчивые к компонентам конструкционного материала оксиды, карбиды, нитриды и бориды металлов и/или неметаллов.

Однако данные материалы предназначены для изготовления изделий, полученных с использованием гранульной металлургии и обладающих, в основном, высокими жаропрочными и жаростойкими характеристиками (лопатки газотурбинных двигателей, клапаны двигателей внутреннего сгорания).

Наиболее близким является способ получения наноструктурированных композиционных частиц с металлической матрицей (патент RU 2417136 от 13.10.2009, B22F 1/00, C22C 1/05, опубл. 27.04.2011), армированной наноразмерным оксидным наполнителем, которые могут применяться в качестве порошка для нанесения функционально-градиентных покрытий. Смесь порошка матричного металла дисперсностью 20-60 мкм и дисперсного оксидного порошка с размером частиц 3-100 нм подвергают сверхскоростному механосинтезу при ускорении частиц 450g±20g для получения агломерированных дисперсных частиц. Получены частицы со степенью армирования более 80% и высокими механическими характеристиками.

Однако для получения прочноплотных функциональных покрытий из исходных порошков с высокой микротвердостью (например, у материалов типа сталь Гадфильда) необходимо создание плакирующего слоя, имеющего высокую вязкость и выполняющего функции пластификатора при формировании покрытий.

Для того чтобы этот процесс эффективно реализовывался, необходим оптимальный подбор материалов сердцевины и покрытия. Весьма перспективным для базовой композиции является сталь Гадфильда (ГОСТ 977-88), имеющая следующий химический состав:

C Mn Si Cr Ni Cu S P
0,9-1,5 11,5-15 0,3-1,00 <1,00 <1,00 <0,30 <0,05 <0,12

Основным преимуществом стали Гадфильда является высокое сопротивление износу при одновременном воздействии высоких давлений или ударных нагрузок.

Получение покрытий из стали Гадфильда традиционными высокотемпературными методами не представляется возможным, прежде всего, из-за деградации химического и фазового состава и соответственно функциональных свойств используемого материала. При высоких температурах гетерофазного потока наблюдается интенсивное выгорание марганца.

Предпочтительным является напыление покрытий методом ХГДН, при котором температура частиц не превышает 100-120°C при скоростях переноса равных скорости звука. При этом формирование плотной структуры покрытия с высокой адгезионной и когезионной прочностью происходит не за счет оплавления (или расплавления) порошкового материала, как при других газотермических методах, а за счет преобразования высокой кинетической энергии летящих частиц в пластическую деформацию поверхностных слоев.

Однако при использовании порошка с высокой твердостью пластическая деформация поверхностных слоев весьма затруднительна, т.к. твердые частицы упруго отскакивают от поверхности.

Техническим результатом изобретения является создание композиционного порошка с сердцевиной из стали, аналогичной по составу стали Гадфильда, с тонким покрытием из пластичного металла, обеспечивающего сцепление частиц с подложкой и между собой, обеспечивая высокую адгезионнную и когезионную прочность наносимого покрытия.

Технический результат достигается за счет того, что в композиционном наноструктурированном порошке для нанесения покрытий методом холодного газодинамического напыления, частицы которого содержат металлическую матрицу и оксидный упрочнитель, в соответствии с изобретением, между металлической матрицей и оксидным упрочнителем выполнен плакирующий слой из пластичного порошка алюминия с образованием при последующем отжиге диффузионного слоя из интерметаллидов на границе металлической матрицы и плакирующего слоя, а также армированного поверхностного слоя при взаимодействии плакирующего слоя и оксидного упрочнителя, причем в качестве металлической матрицы используют порошок из стали, аналогичной по составу стали Гадфильда.

Поверхностное плакирование твердой сердцевины порошков из стали Гадфильда пластичным порошком (пластификатором) происходит при их совместной обработке на дезинтеграторе или аттриторе с последующим поверхностным термодиффузионным отжигом и выдержке. Толщина плакирующего слоя составляет 4-8 мкм.

При отжиге происходит образование в композиционном порошке по границе пластификатор-сталь Гадфильда растворно-диффузионного слоя интерметаллидов за счет взаимодействия марганца из стали с металлом-пластификатором. Этот слой обеспечивает высокую прочность сцепления плакирующего металла со стальной сердцевиной и гарантирует получение высокопрочных, практически беспористых покрытий с высокой микротвердостью и соответственно износо- и коррозионной стойкостью.

Оптимальным с точки зрения достижения устойчивых параметров процессов напыления функциональных покрытий из композиционных порошков является температура термодиффузионного отжига, соответствующая образованию стабильного интерметаллида (например, Al6Mn) и равная 705±5°C. При такой температуре и изотермической выдержке в течение 1 часа образуется переходный диффузионный слой толщиной 0,6-1,2 мкм. При толщинах меньше 0,6 мкм не удается получить сплошного диффузионного слоя, обеспечивающего требуемую прочность. При толщинах больше 1,2 мкм диффузионный слой представляет собой самостоятельную фазу металл-стекло, что также приводит к разупрочнению.

Однако наличие большого количества свободного металла-пластификатора в плакирующем слое может привести к снижению интегральной прочности получаемых покрытий на основе композиционного порошка. Для исключения этого негативного явления производится дополнительное поверхностное армирование плакирующего слоя наночастицами оксидного упрочнителя (например, нанокорундом) фракции 10-100 нм с помощью их совместной обработки в дезинтеграторе или аттриторе.

При этом необходимо сохранить сочетание высоких пластичных свойств пластификатора и интегральной микротвердости армированного композита. Экспериментально установлено, что это возможно только в случае, если объемная доля оксидного упрочнителя в плакирующем слое будет находиться в пределах 30-40%.

ПРИМЕР 1

Для получения композиционного порошка в качестве твердой сердцевины использовался порошок из стали Гадфильда с фракционным составом 40 мкм (марка стали 110Г13Л) - твердый сплав на основе марганца (Mn), а в качестве плакирующего слоя - порошок алюминия (Al) с фракционным составом 4 мкм.

Опытная партия составляла 1000 г. Обработку проводили за один проход в дезинтеграторе ДЕЗИ-ЕХ с частотой вращения роторов 200 с-1.

Полученный порошок представляет собой частицы с твердым ядром из стали Гадфильда, равномерно покрытым оболочкой алюминия (Al). Толщина плакирующего слоя составляет 4 мкм.

Затем полученный плакированный порошок системы сталь Гадфильда - Al загружали в печь СНВЭ и проводили термодиффузионный отжиг при температуре, равной 705±5°C, и изотермической выдержке в течение 1 часа, вследствие чего в данном порошке образовывались стабильные интерметаллиды Al6Mn - переходный диффузионный слой толщиной 0,6 мкм.

Затем проводилось упрочнение плакирующего алюминиевого слоя нанокорундом с фракцией 10 нм.

Для этого проводилась обработка в дезинтеграторе ДЕЗИ-ЕХ за один проход с частотой вращения роторов 200 с-1.

Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер.

Полученный порошок контролировался рентгеноструктурным и металлографическим анализами.

Фазовый состав композиционного порошка определяли методом лазерной дифрактометрии на дифрактометре Malvern Mastersizer 2000, исследование микроструктуры проводили на электронном микроскопе Tescan.

Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую (например, стальную) поверхность методом сверхзвукового холодного газодинамического напыления (ХГДН). Толщина полученного покрытия составляла 120 мкм.

Микротвердость покрытий оценивали на шлифах в соответствии с ГОСТ 9450-76 на приборе ПМТ-3 вдавливанием четырехгранной алмазной пирамиды при нагрузке 100 г. Адгезивную прочность определяли на образцах на разрывной машине MP-100, плотность (пористость) покрытия исследовали на анализаторе удельной поверхности «TriStar-3020». Исследования на износостойкость проводили на машине трения УМТ-2168.

Покрытия из порошковых материалов, полученных предлагаемым способом, обладают высокой плотностью (0,7%), равномерным распределением твердости по сечению покрытия (800 HV).

ПРИМЕР 2

Для получения композиционного порошка в качестве твердой сердцевины использовался порошок из стали Гадфильда с фракционным составом 40 мкм (марка стали 110Г13Л) - твердый сплав на основе марганца (Mn), а в качестве плакирующего слоя - порошок алюминия (Al) с фракционным составом 8 мкм.

Опытная партия составляла 1000 г. Обработку проводили за один проход в аттриторе.

Полученный порошок представляет собой частицы с твердым ядром из сплава Гадфильда, равномерно покрытым оболочкой алюминия (Al). Толщина плакирующего слоя составляет 8 мкм.

Затем полученный плакированный порошок системы сталь Гадфильда - Al загружали в печь СНВЭ и проводили термодиффузионный отжиг при температуре, равной 705±5°C, и изотермической выдержке в течение 1 часа, вследствие чего в данном порошке образовывались стабильные интерметаллиды Al6Mn - переходный диффузионный слой толщиной 1,2 мкм.

Затем проводилось упрочнение плакирующего алюминиевого слоя нанокорундом с фракцией 100 нм.

Для этого проводилась обработка в аттриторе за один проход.

Фазовый состав композиционного порошка определяли методом лазерной дифрактометрии на дифрактометре Malvern Mastersizer 2000, исследование микроструктуры проводили на электронном микроскопе Tescan.

Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую (например, стальную) поверхность методом сверхзвукового холодного газодинамического напыления (ХГДН). Толщина полученного покрытия составляла 120 мкм.

Микротвердость покрытий оценивали на шлифах в соответствии с ГОСТ 9450-76 на приборе ПМТ-3 вдавливанием четырехгранной алмазной пирамиды при нагрузке 100 г. Адгезионную прочность определяли на образцах на разрывной машине MP-100, плотность (пористость) покрытия исследовали на анализаторе удельной поверхности «TriStar-3020». Исследования на износостойкость проводили на машине трения УМТ-2168.

Таким образом, видно, что предлагаемый способ позволяет получать композиционные порошки со степенью армирования от 30 до 40% методом сверхскоростного механосинтеза при соблюдении выбранных режимов обработки, которые применяются для создания для функциональных покрытий с высокими эксплуатационными свойствами.

Покрытия из порошковых материалов, полученных предлагаемым способом, обладают высокой плотностью (2,2%), равномерным распределением твердости по сечению покрытия (850 HV).

Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления, состоящий из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующий слой толщиной 4-8 мкм из порошка алюминия, диффузионный слой из интерметаллидов толщиной 0,6-1,2 мкм, образованный на границе сердцевины и плакирующего слоя при отжиге, и армированный поверхностный слой, полученный при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%.
Источник поступления информации: Роспатент

Showing 131-140 of 272 items.
10.08.2015
№216.013.6cec

Состав эпоксиполиуретанового компаунда и способ его получения

Изобретение относится к составу двухкомпонентного эпоксиполиуретанового заливочного электроизоляционного компаунда и способу его получения. Компонента «А» состоит из мономерно-олигомерной смеси полиэпоксидов, состоящей из диглицидилового эфира бисфенола А, моноглицидилового эфира бисфенола А и...
Тип: Изобретение
Номер охранного документа: 0002559442
Дата охранного документа: 10.08.2015
20.08.2015
№216.013.70e6

Способ получения многослойного материала

Изобретение может быть использовано для получения крупногабаритных многослойных материалов, используемых в атомной, нефтегазовой, химической отраслях промышленности, а также в судостроении. Для повышения прочности сцепления металлических плит из разнородных материалов применяют нанесение...
Тип: Изобретение
Номер охранного документа: 0002560472
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.7558

Способ получения композиционного плакированного порошка для нанесения покрытий

Изобретение относится к получению композиционных порошков для защитных износостойких покрытий. Готовят смесь неметаллической керамической компоненты и металлического порошка при массовом соотношении 1:(1-4). Неметаллическую компоненту используют с размером фракций, составляющим 1/100 размера...
Тип: Изобретение
Номер охранного документа: 0002561615
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7564

Сплав на основе системы никель-хром

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе системы никель-хром, работающих в широком диапазоне температур и предназначенных для реализации микрометаллургических процессов получения функциональных покрытий на основе порошковых материалов и литых...
Тип: Изобретение
Номер охранного документа: 0002561627
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.777c

Установка для сварки трением с перемешиванием

Установка может быть использована при сварке трением прессованных или катаных тонкостенных полуфабрикатов неограниченной длины из алюминиевых сплавов. Сварочный инструмент закреплен на корпусе, имеющем привод его поступательного перемещения вдоль линии сварки по горизонтальной поверхности...
Тип: Изобретение
Номер охранного документа: 0002562177
Дата охранного документа: 10.09.2015
10.09.2015
№216.013.7888

Стенд для измерения стато - динамических характеристик физических объектов

Изобретение относится к области измерительной техники и может быть использовано для измерения массы, координат центра масс и моментов инерции объектов машиностроения. Устройство состоит из динамометрической платформы для измерения массы изделия, пятикомпонентного динамометрического элемента,...
Тип: Изобретение
Номер охранного документа: 0002562445
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7d02

Устройство для контроля подводного плавсредства с самого плавсредства

Использование: изобретение относится к области гидроакустики и может быть использовано для оперативного контроля параметров подводного шума плавсредства с помощью гидроакустического рабочего средства измерений (РСИ) с самого плавсредства. Сущность: с самого плавсредства в режиме стабилизации...
Тип: Изобретение
Номер охранного документа: 0002563599
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d71

Способ контроля обледенения жалюзи воздухоприемной решетки

Изобретение предназначено для определения начала обледенения жалюзи воздухоприемной решетки при исследовании тепловых процессов, осуществляемых в целях защиты от обледенения. Обледенение решетки жалюзи определяют по образованию инея на влажном марлевом бинте, который предварительно укладывают...
Тип: Изобретение
Номер охранного документа: 0002563710
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d75

Крупногабаритная воздухоприемная решетка с обогреваемыми жалюзи

Изобретение относится к области защиты судовых устройств от обледенения. Решетка с обогреваемыми жалюзи выполнена из модулей-ршеток, заполненных теплопроводным компаундом и объединенных общей рамой. Греющие кабели проложены в разных модулях, объедены в общую электрическую сеть и запитаны от...
Тип: Изобретение
Номер охранного документа: 0002563714
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7d76

Способ защиты воздухозаборных решеток с жалюзи от обледенения и устройство для его осуществления

Изобретение относится к устройствам для защиты вентиляционных решеток с жалюзи от обледенения. Устройство содержит полые жалюзи для прокладки внутри них греющего кабеля и заполнения теплопроводящим веществом частей полости жалюзи. Торцы элементов ребер жесткости выполнены вогнутыми...
Тип: Изобретение
Номер охранного документа: 0002563715
Дата охранного документа: 20.09.2015
Showing 131-140 of 247 items.
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56df

Способ импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов

Изобретение относится к способу импульсно-дуговой сварки плавящимся электродом алюминиевых сплавов. Изобретение может быть использовано в судостроении, авиастроении, ракетостроении и других отраслях машиностроения. Формируют X-образный профиль свариваемых кромок и выполняют многопроходную...
Тип: Изобретение
Номер охранного документа: 0002553769
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56fd

Износо-коррозионностойкий медно-никелевый сплав

Изобретение относится к разработке прецизионных сплавов для микрометаллургических процессов, в том числе для получения функциональных покрытий, пленок, микропроводов, порошковых материалов, конструкционно-функциональные элементы из которых эффективно работают в жестких условиях эксплуатации,...
Тип: Изобретение
Номер охранного документа: 0002553799
Дата охранного документа: 20.06.2015
27.06.2015
№216.013.59b5

Движительно-рулевая колонка

Изобретение относится к области судостроения и может быть использовано в конструкциях судовых движителей. Движительно-рулевая колонка содержит основание колонки, баллер, приводной вал, который расположен внутри баллера, механизм поворота колонки, угловой редуктор, обтекаемую гондолу,...
Тип: Изобретение
Номер охранного документа: 0002554506
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.63e0

Способ термической обработки поковок из высокопрочной коррозионно-стойкой стали мартенситного класса

Изобретение относится к области термообработки поковок из легированных сталей и предназначено для использования в судовом машиностроении при изготовлении гребных валов. Для получения требуемой категории прочности металла с пределом текучести не менее 800 МПа и повышения коррозионной стойкости...
Тип: Изобретение
Номер охранного документа: 0002557115
Дата охранного документа: 20.07.2015
10.08.2015
№216.013.695b

Способ индикации летчику о положении летательного аппарата относительно заданной глиссады при заходе на посадку на корабль

Изобретение относится к способам индикации летчику положения летательного аппарата (ЛА) при посадке на корабль. Определяют взаимное положение ЛА и корабля с помощью глобальной или корабельной системы позиционирования и бортовой цифровой вычислительной машины. Формируют и отображают на...
Тип: Изобретение
Номер охранного документа: 0002558524
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.695c

Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового бпла

Изобретение относится к авиационной и ракетной технике, в частности к активной тепловой защите теплонапряженных передних кромок гиперзвукового беспилотного летательного аппарата (БПЛА). Устройство активной теплозащиты и модуляции аэродинамического сопротивления гиперзвукового БПЛА содержит...
Тип: Изобретение
Номер охранного документа: 0002558525
Дата охранного документа: 10.08.2015
+ добавить свой РИД