×
20.06.2015
216.013.56d9

Результат интеллектуальной деятельности: КОМПОЗИЦИОННЫЙ НАНОСТРУКТУРИРОВАННЫЙ ПОРОШОК ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления состоит из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующего слоя толщиной 4-8 мкм из порошка алюминия, диффузионного слоя из интерметаллидов толщиной 0,6-1,2 мкм, образованных на границе сердцевины и плакирующего слоя при отжиге, и армированного поверхностного слоя, полученного при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%. Покрытия, изготовленные из предлагаемого композиционного наноструктурированного порошка, обладают высокой адгезионной и когезионной прочностью, равномерным распределением твердости по сечению покрытия. 2 пр.
Основные результаты: Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления, состоящий из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующий слой толщиной 4-8 мкм из порошка алюминия, диффузионный слой из интерметаллидов толщиной 0,6-1,2 мкм, образованный на границе сердцевины и плакирующего слоя при отжиге, и армированный поверхностный слой, полученный при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%.

Изобретение относится к области порошковой металлургии, в частности к порошкам для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН).

Известен композиционный керамический материал (патент RU 2341494 от 05.02.2007, C04B 35/488, опубл. 20.12.2008), состоящий из матрицы и упрочнителя. Материал содержит в качестве матрицы ультрадисперсный порошок диоксида циркония (ZrO2), а в качестве упрочнителя - армирующие частицы, полученные плазмохимическим методом из диоксида циркония (ZrO2) и оксида алюминия (Al2O3), и имеет следующее соотношение матрицы и упрочнителя, об.%:

- армирующие частицы 15-55
- порошок диоксида циркония остальное

при этом армирующие частицы содержат 20-50 об.% оксида алюминия (Al2O3).

Известен способ получения композитных порошковых наноматериалов с металлической матрицей (патент RU 2434713 от 16.11.2009, B22F 3/06, С22С 1/05, опубл. 27.11.2011), армированной оксидными наполнителями, применяемых для создания износо- и коррозионно-стойких беспористых покрытий. Способ включает механическое легирование пластичных металлических порошков неметаллическими частицами высокой твердости, причем в качестве пластичных металлических порошков используют порошки системы Al-Zn-Sn, а в качестве неметаллических частиц высокой твердости используют порошок корунда наноразмерной фракции. Технический результат: получение композитного материала с металлической матрицей, армированной наноразмерным упрочнителем, для создания практически беспористого функционально-градиентного покрытия с повышенными эксплуатационными свойствами.

Известен композиционный конструкционный материал (патент RU 2434962 от 27.05.2010, C22C 1/05, опубл. 27.11.2011), который состоит из металлической матрицы, порошковой добавки, представляющей собой интерметаллид, сталь или сплав, и нанодисперсного порошка, представляющего собой термодинамически стабильные и устойчивые к компонентам конструкционного материала оксиды, карбиды, нитриды и бориды металлов и/или неметаллов.

Однако данные материалы предназначены для изготовления изделий, полученных с использованием гранульной металлургии и обладающих, в основном, высокими жаропрочными и жаростойкими характеристиками (лопатки газотурбинных двигателей, клапаны двигателей внутреннего сгорания).

Наиболее близким является способ получения наноструктурированных композиционных частиц с металлической матрицей (патент RU 2417136 от 13.10.2009, B22F 1/00, C22C 1/05, опубл. 27.04.2011), армированной наноразмерным оксидным наполнителем, которые могут применяться в качестве порошка для нанесения функционально-градиентных покрытий. Смесь порошка матричного металла дисперсностью 20-60 мкм и дисперсного оксидного порошка с размером частиц 3-100 нм подвергают сверхскоростному механосинтезу при ускорении частиц 450g±20g для получения агломерированных дисперсных частиц. Получены частицы со степенью армирования более 80% и высокими механическими характеристиками.

Однако для получения прочноплотных функциональных покрытий из исходных порошков с высокой микротвердостью (например, у материалов типа сталь Гадфильда) необходимо создание плакирующего слоя, имеющего высокую вязкость и выполняющего функции пластификатора при формировании покрытий.

Для того чтобы этот процесс эффективно реализовывался, необходим оптимальный подбор материалов сердцевины и покрытия. Весьма перспективным для базовой композиции является сталь Гадфильда (ГОСТ 977-88), имеющая следующий химический состав:

C Mn Si Cr Ni Cu S P
0,9-1,5 11,5-15 0,3-1,00 <1,00 <1,00 <0,30 <0,05 <0,12

Основным преимуществом стали Гадфильда является высокое сопротивление износу при одновременном воздействии высоких давлений или ударных нагрузок.

Получение покрытий из стали Гадфильда традиционными высокотемпературными методами не представляется возможным, прежде всего, из-за деградации химического и фазового состава и соответственно функциональных свойств используемого материала. При высоких температурах гетерофазного потока наблюдается интенсивное выгорание марганца.

Предпочтительным является напыление покрытий методом ХГДН, при котором температура частиц не превышает 100-120°C при скоростях переноса равных скорости звука. При этом формирование плотной структуры покрытия с высокой адгезионной и когезионной прочностью происходит не за счет оплавления (или расплавления) порошкового материала, как при других газотермических методах, а за счет преобразования высокой кинетической энергии летящих частиц в пластическую деформацию поверхностных слоев.

Однако при использовании порошка с высокой твердостью пластическая деформация поверхностных слоев весьма затруднительна, т.к. твердые частицы упруго отскакивают от поверхности.

Техническим результатом изобретения является создание композиционного порошка с сердцевиной из стали, аналогичной по составу стали Гадфильда, с тонким покрытием из пластичного металла, обеспечивающего сцепление частиц с подложкой и между собой, обеспечивая высокую адгезионнную и когезионную прочность наносимого покрытия.

Технический результат достигается за счет того, что в композиционном наноструктурированном порошке для нанесения покрытий методом холодного газодинамического напыления, частицы которого содержат металлическую матрицу и оксидный упрочнитель, в соответствии с изобретением, между металлической матрицей и оксидным упрочнителем выполнен плакирующий слой из пластичного порошка алюминия с образованием при последующем отжиге диффузионного слоя из интерметаллидов на границе металлической матрицы и плакирующего слоя, а также армированного поверхностного слоя при взаимодействии плакирующего слоя и оксидного упрочнителя, причем в качестве металлической матрицы используют порошок из стали, аналогичной по составу стали Гадфильда.

Поверхностное плакирование твердой сердцевины порошков из стали Гадфильда пластичным порошком (пластификатором) происходит при их совместной обработке на дезинтеграторе или аттриторе с последующим поверхностным термодиффузионным отжигом и выдержке. Толщина плакирующего слоя составляет 4-8 мкм.

При отжиге происходит образование в композиционном порошке по границе пластификатор-сталь Гадфильда растворно-диффузионного слоя интерметаллидов за счет взаимодействия марганца из стали с металлом-пластификатором. Этот слой обеспечивает высокую прочность сцепления плакирующего металла со стальной сердцевиной и гарантирует получение высокопрочных, практически беспористых покрытий с высокой микротвердостью и соответственно износо- и коррозионной стойкостью.

Оптимальным с точки зрения достижения устойчивых параметров процессов напыления функциональных покрытий из композиционных порошков является температура термодиффузионного отжига, соответствующая образованию стабильного интерметаллида (например, Al6Mn) и равная 705±5°C. При такой температуре и изотермической выдержке в течение 1 часа образуется переходный диффузионный слой толщиной 0,6-1,2 мкм. При толщинах меньше 0,6 мкм не удается получить сплошного диффузионного слоя, обеспечивающего требуемую прочность. При толщинах больше 1,2 мкм диффузионный слой представляет собой самостоятельную фазу металл-стекло, что также приводит к разупрочнению.

Однако наличие большого количества свободного металла-пластификатора в плакирующем слое может привести к снижению интегральной прочности получаемых покрытий на основе композиционного порошка. Для исключения этого негативного явления производится дополнительное поверхностное армирование плакирующего слоя наночастицами оксидного упрочнителя (например, нанокорундом) фракции 10-100 нм с помощью их совместной обработки в дезинтеграторе или аттриторе.

При этом необходимо сохранить сочетание высоких пластичных свойств пластификатора и интегральной микротвердости армированного композита. Экспериментально установлено, что это возможно только в случае, если объемная доля оксидного упрочнителя в плакирующем слое будет находиться в пределах 30-40%.

ПРИМЕР 1

Для получения композиционного порошка в качестве твердой сердцевины использовался порошок из стали Гадфильда с фракционным составом 40 мкм (марка стали 110Г13Л) - твердый сплав на основе марганца (Mn), а в качестве плакирующего слоя - порошок алюминия (Al) с фракционным составом 4 мкм.

Опытная партия составляла 1000 г. Обработку проводили за один проход в дезинтеграторе ДЕЗИ-ЕХ с частотой вращения роторов 200 с-1.

Полученный порошок представляет собой частицы с твердым ядром из стали Гадфильда, равномерно покрытым оболочкой алюминия (Al). Толщина плакирующего слоя составляет 4 мкм.

Затем полученный плакированный порошок системы сталь Гадфильда - Al загружали в печь СНВЭ и проводили термодиффузионный отжиг при температуре, равной 705±5°C, и изотермической выдержке в течение 1 часа, вследствие чего в данном порошке образовывались стабильные интерметаллиды Al6Mn - переходный диффузионный слой толщиной 0,6 мкм.

Затем проводилось упрочнение плакирующего алюминиевого слоя нанокорундом с фракцией 10 нм.

Для этого проводилась обработка в дезинтеграторе ДЕЗИ-ЕХ за один проход с частотой вращения роторов 200 с-1.

Полученный композиционный порошок, пройдя разгрузочный канал и циклон, собирался в специальный приемный контейнер.

Полученный порошок контролировался рентгеноструктурным и металлографическим анализами.

Фазовый состав композиционного порошка определяли методом лазерной дифрактометрии на дифрактометре Malvern Mastersizer 2000, исследование микроструктуры проводили на электронном микроскопе Tescan.

Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую (например, стальную) поверхность методом сверхзвукового холодного газодинамического напыления (ХГДН). Толщина полученного покрытия составляла 120 мкм.

Микротвердость покрытий оценивали на шлифах в соответствии с ГОСТ 9450-76 на приборе ПМТ-3 вдавливанием четырехгранной алмазной пирамиды при нагрузке 100 г. Адгезивную прочность определяли на образцах на разрывной машине MP-100, плотность (пористость) покрытия исследовали на анализаторе удельной поверхности «TriStar-3020». Исследования на износостойкость проводили на машине трения УМТ-2168.

Покрытия из порошковых материалов, полученных предлагаемым способом, обладают высокой плотностью (0,7%), равномерным распределением твердости по сечению покрытия (800 HV).

ПРИМЕР 2

Для получения композиционного порошка в качестве твердой сердцевины использовался порошок из стали Гадфильда с фракционным составом 40 мкм (марка стали 110Г13Л) - твердый сплав на основе марганца (Mn), а в качестве плакирующего слоя - порошок алюминия (Al) с фракционным составом 8 мкм.

Опытная партия составляла 1000 г. Обработку проводили за один проход в аттриторе.

Полученный порошок представляет собой частицы с твердым ядром из сплава Гадфильда, равномерно покрытым оболочкой алюминия (Al). Толщина плакирующего слоя составляет 8 мкм.

Затем полученный плакированный порошок системы сталь Гадфильда - Al загружали в печь СНВЭ и проводили термодиффузионный отжиг при температуре, равной 705±5°C, и изотермической выдержке в течение 1 часа, вследствие чего в данном порошке образовывались стабильные интерметаллиды Al6Mn - переходный диффузионный слой толщиной 1,2 мкм.

Затем проводилось упрочнение плакирующего алюминиевого слоя нанокорундом с фракцией 100 нм.

Для этого проводилась обработка в аттриторе за один проход.

Фазовый состав композиционного порошка определяли методом лазерной дифрактометрии на дифрактометре Malvern Mastersizer 2000, исследование микроструктуры проводили на электронном микроскопе Tescan.

Полученный композиционный порошок использовался в качестве композиционного порошка для нанесения покрытий на металлическую (например, стальную) поверхность методом сверхзвукового холодного газодинамического напыления (ХГДН). Толщина полученного покрытия составляла 120 мкм.

Микротвердость покрытий оценивали на шлифах в соответствии с ГОСТ 9450-76 на приборе ПМТ-3 вдавливанием четырехгранной алмазной пирамиды при нагрузке 100 г. Адгезионную прочность определяли на образцах на разрывной машине MP-100, плотность (пористость) покрытия исследовали на анализаторе удельной поверхности «TriStar-3020». Исследования на износостойкость проводили на машине трения УМТ-2168.

Таким образом, видно, что предлагаемый способ позволяет получать композиционные порошки со степенью армирования от 30 до 40% методом сверхскоростного механосинтеза при соблюдении выбранных режимов обработки, которые применяются для создания для функциональных покрытий с высокими эксплуатационными свойствами.

Покрытия из порошковых материалов, полученных предлагаемым способом, обладают высокой плотностью (2,2%), равномерным распределением твердости по сечению покрытия (850 HV).

Композиционный наноструктурированный порошок для нанесения покрытий методом холодного газодинамического напыления, состоящий из частиц, содержащих металлическую сердцевину из стали Гадфильда, плакирующий слой толщиной 4-8 мкм из порошка алюминия, диффузионный слой из интерметаллидов толщиной 0,6-1,2 мкм, образованный на границе сердцевины и плакирующего слоя при отжиге, и армированный поверхностный слой, полученный при взаимодействии плакирующего слоя и оксидного упрочнителя, состоящего из наночастиц фракции 10-100 нм, при этом объемная доля оксидного упрочнителя в плакирующем слое составляет 30-40%.
Источник поступления информации: Роспатент

Showing 111-120 of 272 items.
10.03.2015
№216.013.2f55

Способ термической обработки полуфабрикатов из стали мартенситного класса

Изобретение относится к области черной металлургии, а именно к технологии термической обработки полуфабрикатов из стали мартенситного класса, предназначенных для изготовления деталей и узлов, работающих в условиях Крайнего Севера и Сибири, например контейнеров для перевозки отработавшего...
Тип: Изобретение
Номер охранного документа: 0002543585
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.2f57

Жаропрочный сплав на никелевой основе

Изобретение относится к области металлургии, а именно к жаропрочным сплавам, предназначенным для элементов, используемых в атомной энергетике, нефтехимической и нефтеперерабатывающей промышленности, работающих при высоких температурах. Жаропрочный сплав на никелевой основе содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002543587
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3111

Судовая электроэнергетическая установка

Изобретение относится к судостроению, в частности к судовым электроэнергетическим установкам. Судовая электроэнергетическая установка содержит главный двигатель, соединенный с главным генератором, дополнительный двигатель, соединенный с дополнительным генератором, гребной электродвигатель,...
Тип: Изобретение
Номер охранного документа: 0002544029
Дата охранного документа: 10.03.2015
10.04.2015
№216.013.3e08

Способ брикетирования металлической стружки

Изобретение относится к области брикетирования металлической стружки и может быть использовано при изготовлении брикетов для дальнейшей переработки, например, ковкой или электрошлаковым переплавом. Стружку измельчают, прессуют и осуществляют электроразрядное спекание с одновременным...
Тип: Изобретение
Номер охранного документа: 0002547368
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
Showing 111-120 of 247 items.
20.12.2014
№216.013.1381

Способ изготовления упругоподобных моделей летательных аппаратов на станках с чпу

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели...
Тип: Изобретение
Номер охранного документа: 0002536416
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.18ae

Способ градуировки гидрофонов методом сличения

Изобретение относится к области гидроакустики и может быть использовано при градуировке гидрофонов (Г) в измерительном бассейне методом сличения. Техническим результатом, получаемым от внедрения изобретения, является повышение точности градуировки Г методом сличения при использовании...
Тип: Изобретение
Номер охранного документа: 0002537746
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18b1

Гидрофонный тракт с бездемонтажной проверкой его работоспособности

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. Техническим результатом, получаемым от внедрения изобретения, является устранение необходимости...
Тип: Изобретение
Номер охранного документа: 0002537749
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fb0

Композиционный сплав на основе co-tib-bn

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9;...
Тип: Изобретение
Номер охранного документа: 0002539553
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.2081

Способ измерения параметров потока на выходе из протоков моделей ла

Заявленное изобретение относится к области экспериментальной аэродинамики, в частности к способу определения аэродинамических характеристик (АДХ) моделей летательных аппаратов (ЛА), и может быть использовано в аэродинамических трубах (АДТ) при определении параметров потока на выходе из протоков...
Тип: Изобретение
Номер охранного документа: 0002539769
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2225

Поршень форсированного дизельного двигателя

Изобретение может быть использовано в дизельных двигателях. Поршень форсированного дизельного двигателя состоит из двух стальных сваренных между собой нижнего и верхнего фрагментов (1) и (2), образующих периферийную и центральную полости (3) и (4) охлаждения головки поршня, сообщенные основными...
Тип: Изобретение
Номер охранного документа: 0002540194
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2258

Способ определения работоспособности гидроакустического тракта в натурных условиях

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. На вход проверяемого гидроакустического тракта подают тестовые сигналы в виде тепловых шумов Джонса с...
Тип: Изобретение
Номер охранного документа: 0002540245
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fc

Способ изготовления сотового заполнителя

Изобретение относится к способам изготовления сотовых заполнителей для трехслойных панелей и оболочек и касается способа изготовления сотового заполнителя (СЗ) из стеклоткани. На полотно стеклоткани в продольном направлении наносят с заданным шагом клеевые полосы, подсушивают их и разрезают...
Тип: Изобретение
Номер охранного документа: 0002540665
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29ed

Индуктор для магнитно-импульсной раздачи трубчатых заготовок

Изобретение относится к обработке металлов давлением, в частности к индукторам для магнитно-импульсной обработки. Используют токоподвод коаксильного типа, образованный торцовым токовыводом, выполненным в виде стальной трубы с фланцем, закрепленным на торце спирали индуктора, и изолированно...
Тип: Изобретение
Номер охранного документа: 0002542190
Дата охранного документа: 20.02.2015
10.03.2015
№216.013.2f4f

Сплав на основе кобальта для нанесения покрытий

Изобретение относится к металлургии сплавов на основе кобальта, предназначенных для получения износостойких покрытий с высокой микротвердостью, полученных методами гетерофазного переноса. Сплав на основе кобальта имеет следующий состав, мас.%: 20,0-30,0 Cr; 6,0-12,0 Si; 2,0-4,0 В; 0,2-0,8 Y;...
Тип: Изобретение
Номер охранного документа: 0002543579
Дата охранного документа: 10.03.2015
+ добавить свой РИД