×
20.05.2015
216.013.4dad

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ, РАБОТАЮЩИХ ПОД ВНЕШНИМ ДАВЛЕНИЕМ

Вид РИД

Изобретение

№ охранного документа
0002551399
Дата охранного документа
20.05.2015
Аннотация: Изобретение относится к области исследования устройств на герметичность и может быть использовано для определения герметичности работающих под внешним давлением изделий, в частности изделий космической техники. Сущность: вакуумируют внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему. Измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Подсоединяют к испытательной системе калиброванную течь. Измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи. Отсоединяют от испытательной системы калиброванную течь. Соединяют изделие с испытательной системой. Измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы. Отсоединяют изделие от испытательной системы. Измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы. Определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи и величин упомянутых давлений. При этом после вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема. Причем калиброванную течь подсоединяют к участку испытательной системы известного объема. Измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема. Отсоединяют калиброванную течь от участка испытательной системы известного объема. После этого подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования. При этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования. Причем температура охлаждаемой ловушки средств вакуумирования должна быть равной температуре на рабочем месте. Технический результат: повышение точности определения герметичности изделий, повышение долговечности изделий при эксплуатации. 1 ил.
Основные результаты: Способ определения герметичности изделий, работающих под внешним давлением, заключающийся в том, что вакуумируют средствами вакуумирования внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе, отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему средствами вакуумирования, измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, подсоединяют к испытательной системе калиброванную течь, измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи, отсоединяют от испытательной системы калиброванную течь, соединяют изделие с испытательной системой и измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы, отсоединяют изделие от испытательной системы и измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи, разности установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком газа от калиброванной течи, и первого установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, а также разности установившегося равновесного давления в испытательной системе, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком от негерметичности изделия, и второго установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, отличающийся тем, что после вакуумирования средствами вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы при температуре охлаждаемой ловушки средств вакуумирования, равной температуре на рабочем месте, отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема, причем калиброванную течь подсоединяют к участку испытательной системы известного объема, измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема, отсоединяют калиброванную течь от участка испытательной системы известного объема, после чего подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования, при этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования.

Изобретение относится к области испытательной техники, в частности к испытаниям изделий космической техники на герметичность, и может найти также применение в таких областях техники, как газовое, атомное машиностроение, авиационная промышленность, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, работающих под внешним избыточным давлением, например отсеков и пневмогидравлических систем космических аппаратов.

Известен способ определения герметичности изделий, работающих под внешним давлением, заключающийся в том, что вакуумируют внутреннюю полость изделия через испытательную систему до установившегося давления в изделии и испытательной системе, прекращают вакуумирование, а величину негерметичности изделия (газового потока, поступающего в изделие из окружающей атмосферы) определяют по повышению давления за определенный промежуток времени («Технология сборки и испытаний космических аппаратов». Под общей редакцией проф. И.Т. Белякова и проф. И.А. Зернова. - М.: Машиностроение, 1990 г., стр.167-168).

Недостатки способа заключаются в том, что при его использовании не учитывается собственная негерметичность испытательной системы, которая суммируется с негерметичностью изделия, ухудшая точность измерения негерметичности последнего.

Наиболее близким по технической сущности к предлагаемому способу является способ определения герметичности изделий, работающих под внешним давлением, заключающийся в том, что вакуумируют средствами вакуумирования внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе, отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему средствами вакуумирования, измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, подсоединяют к испытательной системе калиброванную течь, измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи, отсоединяют от испытательной системы калиброванную течь, соединяют изделие с испытательной системой и измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы, отсоединяют изделие от испытательной системы и измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи, разности установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком газа от калиброванной течи, и первого установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, а также разности установившегося равновесного давления в испытательной системе, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком от негерметичности изделия, и второго установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы (патент РФ №2457454, МПК G01M 3/00 (2006.01), 27.07.2012).

Данный способ определения герметичности изделий, работающих под внешним давлением, принят авторами за прототип.

Недостаток прототипа заключается в том, что он не позволяет учитывать влияние на результат определения герметичности изделия охлаждаемых вакуумных ловушек в случае их использования для вакуумирования внутренней полости изделия. Использование охлаждаемых вакуумных ловушек позволяет эффективно вымораживать и тем самым удалять пары масел, растворителей и воды, поступающие с поверхностей внутренних полостей изделий. При этом измеряемая величина газового потока, поступающего из внутренних полостей изделий, снижается и приближается к значению потока компонентов атмосферного воздуха - азота и кислорода, поступающего через сквозные дефекты изделия и характеризующего герметичность изделия, работающего под внешним давлением.

Задачей предлагаемого изобретения является повышение точности определения герметичности изделий, работающих под внешним давлением.

Техническим результатом изобретения является повышение качества испытаний за счет увеличения точности определения герметичности изделий, повышения надежности и долговечности изделий при эксплуатации.

Технический результат достигается тем, что в предлагаемом способе определения герметичности изделий, работающих под внешним давлением, вакуумируют средствами вакуумирования внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе, отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему средствами вакуумирования, измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, подсоединяют к испытательной системе калиброванную течь, измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи, отсоединяют от испытательной системы калиброванную течь, соединяют изделие с испытательной системой и измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы, отсоединяют изделие от испытательной системы и измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи, разности установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком газа от калиброванной течи, и первого установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, а также разности установившегося равновесного давления в испытательной системе, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком от негерметичности изделия, и второго установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, после вакуумирования средствами вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы, при температуре охлаждаемой ловушки средств вакуумирования, равной температуре на рабочем месте, отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема, причем калиброванную течь подсоединяют к участку испытательной системы известного объема, измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема, отсоединяют калиброванную течь от участка испытательной системы известного объема, после чего подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования, при этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования.

Сущность изобретения поясняется чертежом (фиг.1), на котором представлено устройство для осуществления предложенного способа.

На фиг.1 показаны: 1 - высоковакуумный турбомолекулярный насос, 2 - азотная ловушка, 3 - изделие, 4 - вакуумметр (высоковакуумный ионизационный вакуумметр), 5, 7, 8 - вакуумные клапаны, 6 - калиброванная течь.

Предлагаемый способ определения герметичности изделий, работающих под внешним давлением, осуществляется следующим образом.

Включают средства вакуумирования, в состав которых входит охлаждаемая ловушка (например, высоковакуумный турбомолекулярный насос 1 с подключенной к его входу азотной ловушкой 2), открывают вакуумный клапан 7 и вакуумируют высоковакуумным турбомолекулярным насосом 1 внутреннюю полость изделия 3 через испытательную систему до установившегося равновесного давления в изделии и испытательной системе. Давление (разрежение) измеряют при помощи вакуумметра 4, в качестве которого может быть использован, например, высоковакуумный ионизационный вакуумметр. Под установившимся равновесным давлением может пониматься, например, давление, которое в процессе вакуумирования не меняет свое значение в течение 10-15 мин более чем на 5%.

Закрывают вакуумный клапан 7 и отсоединяют, таким образом, изделие 3 от испытательной системы. При этом продолжает работать высоковакуумный турбомолекулярный насос 1, вакуумируя испытательную систему.

С целью измерения потока газа от калиброванной течи 6 закрывают вакуумный клапан 8 и тем самым отсоединяют от высоковакуумного турбомолекулярного насоса 1 сообщающийся с калиброванной течью 6 участок испытательной системы известного объема, а именно применительно к фиг.1, внутренний объем азотной ловушки 2. Температура азотной ловушки 2 равна при этом температуре на рабочем месте, т.е. температуре воздуха в производственном помещении (например, 22-24°C, т.е. оптимальной температуре воздуха в производственном помещении для работ категории 1a, к которым относятся работы с интенсивностью энергозатрат до 120 ккал/ч (до 139 Вт), производимые сидя и сопровождающиеся незначительным физическим напряжением, в том числе работы по испытаниям изделий на герметичность (см. «Санитарные правила и нормы. 2.2.4. Физические факторы производственной среды. Гигиенические требования к микроклимату производственных помещений. СанПиН 2.2.4.548-96»)). Необходимость в измерении потока газа от калиброванной течи 6 при температуре на рабочем месте вызвана тем, что требования к герметичности изделий задаются для комнатной температуры. Если же измерение потока газа от калиброванной течи 6 производится при захоложенной охлаждаемой ловушке средств вакуумирования (например, при азотной ловушке 2, залитой жидким азотом), то понижается температура газа, откачиваемого средствами вакуумирования, соответственно, понижается величина давления в испытательной системе, и, как следствие, занижается значение потока газа через калиброванную течь 6, что вносит систематическую ошибку в результаты определения герметичности изделий.

Открывая вакуумный клапан 5, подсоединяют калиброванную течь 6 к участку испытательной системы известного объема, т.е. к внутреннему объему азотной ловушки 2.

По показаниям вакуумметра 4 измеряют скорость нарастания давления в азотной ловушке 2. С учетом измеренной скорости нарастания давления вычисляют значение потока газа от калиброванной течи 6.

По завершении вышеописанного измерения потока газа от калиброванной течи 6 закрывают вакуумный клапан 5 и тем самым отсоединяют калиброванную течь 6 от азотной ловушки 2.

Открывают вакуумный клапан 8 и этим подсоединяют азотную ловушку 2 к высоковакуумному турбомолекулярному насосу 1.

Захолаживают охлаждаемую ловушку - заливают в азотную ловушку 2 жидкий азот (температура кипения 77,4 К (-195,75°C)).

Вакуумируют испытательную систему высоковакуумным турбомолекулярным насосом 1 до достижения первого установившегося равновесного давления в испытательной системе, измеряемого при помощи вакуумметра 4 и соответствующего поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы.

Открывают вакуумный клапан 5 и тем самым подсоединяют к испытательной системе калиброванную течь 6. При этом давление по вакуумметру 4 возрастает, поскольку в испытательную систему начинает дополнительно поступать поток газа от калиброванной течи 6.

Измеряют по вакуумметру 4 установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи 6.

Закрывают вакуумный клапан 5 и тем самым отсоединяют от испытательной системы калиброванную течь 6.

Открывая вакуумный клапан 7, соединяют изделие 3 с испытательной системой и измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия 3 и собственного потока газоотделения и натекания испытательной системы. При вакуумировании изделия 3 высоковакуумным турбомолекулярным насосом 1 с захоложенной азотной ловушкой 2 на обращенных в вакуум поверхностях азотной ловушки 2 вымораживаются пары масел, растворителей и воды, поступающие с поверхности внутренней полости изделия 3. При этом эти пары масел, растворителей и воды эффективно удаляются с поверхности внутренней полости изделия 3, за счет этого уменьшается величина потока, поступающего из внутренней полости изделия 3, а давление по вакуумметру 4 понижается и приближается к суммарному давлению низкокипящих газов - компонентов атмосферного воздуха - азота и кислорода, поступающих через течи изделия 3.

Закрывают вакуумный клапан 7 и тем самым отсоединяют изделие 3 от испытательной системы, и измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы,

Определяют величину негерметичности изделия 3 на основании значения потока газа от калиброванной течи 6, разности установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком газа от калиброванной течи 6, и первого установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, а также разности установившегося равновесного давления в испытательной системе, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком от негерметичности изделия 3, и второго установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы.

Изложенный подход к определению герметичности испытываемого изделия позволяет получить значение фактической герметичности изделия, соответствующей температуре на рабочем месте, т.е. температуре воздуха в производственном помещении.

В предлагаемом способе повышается точность определения герметичности изделий, работающих под внешним давлением, за счет устранения систематической ошибки, связанной с проведением калибровки течи при пониженной температуре охлаждаемой ловушки средств вакуумирования и выражающейся в занижении значения герметичности изделия.

Использование предлагаемого способа позволяет за счет увеличения точности определения герметичности изделий повысить качество испытаний и, как следствие, повысить надежность и долговечность изделий в эксплуатации.

Способ достаточно прост в реализации и не требует дополнительных средств на доработку существующего испытательного оборудования.

Способ определения герметичности изделий, работающих под внешним давлением, заключающийся в том, что вакуумируют средствами вакуумирования внутреннюю полость изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе, отсоединяют изделие от испытательной системы, продолжая вакуумировать испытательную систему средствами вакуумирования, измеряют первое установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, подсоединяют к испытательной системе калиброванную течь, измеряют установившееся равновесное давление в испытательной системе, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы и потока газа от калиброванной течи, отсоединяют от испытательной системы калиброванную течь, соединяют изделие с испытательной системой и измеряют установившееся равновесное давление, соответствующее поступлению в испытательную систему потока от негерметичности изделия и собственного потока газоотделения и натекания испытательной системы, отсоединяют изделие от испытательной системы и измеряют второе установившееся равновесное давление, соответствующее поступлению в испытательную систему собственного потока газоотделения и натекания испытательной системы, определяют величину негерметичности изделия на основании величины потока газа от калиброванной течи, разности установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком газа от калиброванной течи, и первого установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, а также разности установившегося равновесного давления в испытательной системе, соответствующего собственному потоку газоотделения и натекания испытательной системы совместно с потоком от негерметичности изделия, и второго установившегося равновесного давления, соответствующего собственному потоку газоотделения и натекания испытательной системы, отличающийся тем, что после вакуумирования средствами вакуумирования внутренней полости изделия через испытательную систему до установившегося равновесного давления в изделии и испытательной системе и отсоединения изделия от испытательной системы при температуре охлаждаемой ловушки средств вакуумирования, равной температуре на рабочем месте, отсоединяют от средств вакуумирования сообщающийся с калиброванной течью участок испытательной системы известного объема, причем калиброванную течь подсоединяют к участку испытательной системы известного объема, измеряют поток газа от калиброванной течи по создаваемой им скорости нарастания давления в участке испытательной системы известного объема, отсоединяют калиброванную течь от участка испытательной системы известного объема, после чего подсоединяют к средствам вакуумирования участок испытательной системы известного объема и захолаживают охлаждаемую ловушку средств вакуумирования, при этом измерения всех установившихся равновесных давлений, подсоединение и отсоединение калиброванной течи и изделия осуществляют после захолаживания охлаждаемой ловушки средств вакуумирования.
СПОСОБ ОПРЕДЕЛЕНИЯ ГЕРМЕТИЧНОСТИ ИЗДЕЛИЙ, РАБОТАЮЩИХ ПОД ВНЕШНИМ ДАВЛЕНИЕМ
Источник поступления информации: Роспатент

Showing 231-240 of 370 items.
13.01.2017
№217.015.87c0

Способ поиска и обнаружения микроорганизмов в космическом пространстве

Изобретение относится к экспериментальным исследованиям в космическом пространстве. Способ включает взятие проб с помощью стерилизованного и гермоизолированного на Земле пробозаборника. Пробы берут с поверхности искусственного космического объекта, размещаемого в зонах эквидистантных точек...
Тип: Изобретение
Номер охранного документа: 0002603706
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a8e

Способ формирования управляющих воздействий на космический аппарат с фазированной антенной решёткой

Способ формирования управляющих воздействий на космический аппарат включает в себя определение силы, действующей на рабочую поверхность от давления поглощённого и отражённого света. Также способ включает в себя определение момента времени формирования управляющих воздействий значения силы. На...
Тип: Изобретение
Номер охранного документа: 0002604268
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e7f

Разъемное соединение

Изобретение относится к разъемным соединениям и предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей, и может быть использовано в машиностроении. В разъемном соединении, состоящем из бортового штуцера с...
Тип: Изобретение
Номер охранного документа: 0002605278
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e93

Способ управления транспортной космической системой

Изобретение относится к перелётам транспортного космического корабля (ТКК) между двумя орбитальными станциями (ОС), одна из которых находится на орбите планеты с атмосферой, а другая - либо на орбите другого небесного тела (напр., Луны), либо вблизи точек либрации (напр., L или L системы Земля...
Тип: Изобретение
Номер охранного документа: 0002605463
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ec0

Импульсная реактивная двигательная установка космического аппарата

Изобретение относится к космической технике и может использоваться для корректировки орбиты обитаемых космических аппаратов (КА). Импульсная реактивная двигательная установка космического аппарата включает твердополимерный электролизер воды, вход водородной полости которого гидравлически связан...
Тип: Изобретение
Номер охранного документа: 0002605163
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8ee2

Способ полуавтоматического управления причаливанием

Изобретение относится к управлению движением стыкуемых космических аппаратов (КА). Способ обеспечивает касание активного (АК) и пассивного (ПА) КА с требуемыми значениями скорости, для чего регулируют скорость причаливания в зависимости от дальности. По внешней команде автоматическую ориентацию...
Тип: Изобретение
Номер охранного документа: 0002605231
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f41

Способ определения момента времени схода наблюдаемого с космического аппарата ледника

Способ определения момента времени схода наблюдаемого с космического аппарата ледника основан на определении перемещения ледника за заданный промежуток времени, определении неподвижных характерных точек на склонах ледника. Осуществляют первую съемку ледника и неподвижных характерных точек с...
Тип: Изобретение
Номер охранного документа: 0002605528
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f42

Способ контроля готовности экипажа космического аппарата к нештатным ситуациям и система для его осуществления

Группа изобретений относится к способу и системе контроля готовности экипажа космического аппарата (КА) к внештатным ситуациям. Для контроля готовности экипажа к внештатным ситуациям моделируют внештатную ситуацию, определяют готовность космонавтов к внештатной ситуации путем сравнения...
Тип: Изобретение
Номер охранного документа: 0002605230
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8f8c

Способ испытаний на электромагнитную совместимость электроракетной двигательной установки с информационными бортовыми системами космического объекта, системы записи и воспроизведения характеристик тока разряда электроракетных двигателей электроракетной установки для реализации способа

Предлагаемое изобретение относится к области использования электроракетных двигательных установок в составе космического аппарата и предназначено для проведения испытаний ее на электромагнитную совместимость с информационными бортовыми системами, например на помехоустойчивость бортового...
Тип: Изобретение
Номер охранного документа: 0002605277
Дата охранного документа: 20.12.2016
Showing 231-240 of 301 items.
13.01.2017
№217.015.7cf4

Способ определения положения объекта преимущественно относительно космического аппарата и система для его осуществления

Группа изобретений относится к космической технике. В способе определения положения объекта преимущественно относительно КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, осуществляют формирование управляющих воздействий на излучатели, осуществляют...
Тип: Изобретение
Номер охранного документа: 0002600039
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f59

Теплоизоляция агрегатов двигательной установки космического объекта и способ ее монтажа

Группа изобретений относится к теплоизоляции агрегатов двигательной установки космического объекта (ДУ КО). Теплоизоляция агрегатов ДУ КО содержит теплоизоляцию из пакетов экранно-вакуумной теплоизоляции (ЭВТИ) криогенного бака и гермооболочку криогенного бака поверх них из мягкого...
Тип: Изобретение
Номер охранного документа: 0002600022
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5b

Водяная баллистическая установка космического назначения и способ подготовки её к работе

Группа изобретений относится к газодинамическим баллистическим установкам. Водяная баллистическая установка космического назначения включает газовую пушку, состоящую из секционированного ствола, соединенного герметизируемым мембранным узлом с отсеком высокого давления. Отсек высокого давления...
Тип: Изобретение
Номер охранного документа: 0002600013
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.85ee

Устройство и способ исследования воздействия факторов космического пространства на вещества и микроорганизмы

Группа изобретений относится к инструментам и технологиям исследования воздействия факторов космического пространства на вещества и микроорганизмы. Устройство состоит из корпуса (1), выполненного, например, из фторопласта. В полость (2) корпуса (одну или более) с резьбой (3) и конической...
Тип: Изобретение
Номер охранного документа: 0002603817
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.86a4

Способ моделирования процессов биокоррозионных поражений тонкостенных герметичных оболочек из алюминиево-магниевых сплавов при эксплуатации космических аппаратов и имитационный состав для его реализации (варианты)

Изобретение относится к технической микробиологии и биокоррозионным испытаниям, а именно к способам моделирования процессов биокоррозионных поражений алюминиево-магниевых сплавов, применяемых в авиа-космической технике. Описан способ моделирования процессов биокоррозионных поражений...
Тип: Изобретение
Номер охранного документа: 0002603797
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.870e

Способ контроля нештатных ситуаций на пилотируемом космическом аппарате и система для его осуществления

Группа изобретений относится к космической технике. В способе контроля нештатных ситуаций на пилотируемом КА определяют параметры относительного положения излучателей инфракрасных импульсных сигналов, размещенных на подвижных частях космонавтов, осуществляют измерение параметров, определяют...
Тип: Изобретение
Номер охранного документа: 0002603814
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.87c0

Способ поиска и обнаружения микроорганизмов в космическом пространстве

Изобретение относится к экспериментальным исследованиям в космическом пространстве. Способ включает взятие проб с помощью стерилизованного и гермоизолированного на Земле пробозаборника. Пробы берут с поверхности искусственного космического объекта, размещаемого в зонах эквидистантных точек...
Тип: Изобретение
Номер охранного документа: 0002603706
Дата охранного документа: 27.11.2016
13.01.2017
№217.015.8a8e

Способ формирования управляющих воздействий на космический аппарат с фазированной антенной решёткой

Способ формирования управляющих воздействий на космический аппарат включает в себя определение силы, действующей на рабочую поверхность от давления поглощённого и отражённого света. Также способ включает в себя определение момента времени формирования управляющих воздействий значения силы. На...
Тип: Изобретение
Номер охранного документа: 0002604268
Дата охранного документа: 10.12.2016
13.01.2017
№217.015.8cc1

Способ контроля передвижения космонавта относительно космического аппарата и система для его осуществления

Изобретение относится к области авиационно-космического приборостроения и может быть использовано в системах контроля передвижения космонавта относительно космического аппарата (КА). Технический результат - расширение функциональных возможностей. Для этого обеспечивают измерение, сбор и...
Тип: Изобретение
Номер охранного документа: 0002604892
Дата охранного документа: 20.12.2016
13.01.2017
№217.015.8e7f

Разъемное соединение

Изобретение относится к разъемным соединениям и предназначено для использования в области ракетно-космической техники, в частности в устройствах разделения криогенных заправочных магистралей, и может быть использовано в машиностроении. В разъемном соединении, состоящем из бортового штуцера с...
Тип: Изобретение
Номер охранного документа: 0002605278
Дата охранного документа: 20.12.2016
+ добавить свой РИД