×
20.05.2015
216.013.4d5b

Результат интеллектуальной деятельности: СПОСОБ ИММОБИЛИЗАЦИИ ХИМОТРИПСИНА НА НАНОЧАСТИЦАХ СЕЛЕНА ИЛИ СЕРЕБРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области биотехнологии, биохимии и медицины. Предложен способ иммобилизации химотрипсина на наночастицах селена или серебра. К раствору химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра в интервале концентраций 1·10 - 1 мас.%. Затем в реакционную среду вводят аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%. Раствор перемешивают и оставляют для завершения реакции. Процесс ведут при температуре от 0 до 50°C. Способ позволяет получить устойчивый фермент-коллоидный комплекс и сохранить в нем более 90% активности химотрипсина в широком диапазоне рН, а в определенных интервалах рН повысить каталитическую активность нанокомплесов выше активности нативного химотрипсина в точке оптимума. 3 табл., 3 пр.
Основные результаты: Способ иммобилизации химотрипсина на наночастицах селена или серебра, характеризующийся тем, что ведут образование нанокомплексов окислительно-восстановительной реакцией в присутствии раствора фермента следующим образом: к раствору фермента - химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты (HSeO) в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра (AgNO) в интервале концентраций 1·10 - 1 мас.%; затем в реакционную среду вводят восстановители: аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%; процесс ведут при температуре от 0 до 50°C, раствор перемешивают и оставляют для завершения реакции.

Изобретение относится к области биоорганической химии, биотехнологии и нанохимии, конкретно к разработке способов иммобилизации ферментов, обеспечивающих сохранение стабильности их молекул, а также повышение специфической ферментативной активности.

Иммобилизованные ферменты обладают рядом преимуществ перед нативными: непрерывность проведения ферментативного процесса с возможностью регулирования скорости катализируемой реакции и выхода продукта; направленное изменение свойств фермента (специфичность, зависимость каталитической активности от рН и других параметров среды, стабильность к денатурирующим воздействиям); возможность регулирования каталитической активности иммобилизованных ферментов путем изменения свойств носителя.

В данной области известно большое число технических решений, среди которых наибольшее распространение получили химические и физические способы иммобилизации.

Химический способ иммобилизации заключатся в ковалентном связывании биомолекул с предварительно активированным носителем, модифицированным реакционно-способными функциональными группами (амино-, азидо-, карбоксильные, гидроксильные и др.).

Физический способ иммобилизации заключается в адсорбции фермента на твердом носителе (чаще всего полимерном) за счет физических сил (ион-ионных, гидрофобных, водородных связей и т.д).

Известен также способ получения иммобилизованного протеолитического фермента (RU №1041567, МПК C12N 11/10, 15.09.1983), предусматривающий растворение содержащего альдегидные группы носителя в буферном растворе и последующее присоединение протеолитического фермента. В качестве носителя используют ксилоуронид, растворенный в 0,1 М трисоксиметиламинометановом буфере (рН 8,5), а присоединение фермента осуществляют при соотношении носитель-фермент 1:1. К основным недостаткам данного способа относятся следующие: дефицитный и дорогостоящий носитель - ксилоуронид, низкая стабильность целевого продукта, необходимость хранения препарата при низкой температуре (0-4°C).

Известен также физический способ иммобилизации ферментов (RU 2167197, МПК C12N 11/14, С12Р 19/02, 20.05.2001), описывающий композит для осахаривания крахмала, включающий фермент глюкоамилазу и твердый носитель, на поверхности которого иммобилизована глюкоамилаза, носителем является зауглероженный алюмосиликат, который имеет удельную поверхность не менее 2 м2/г и выполнен в форме гранул, сотовых монолитов или пеноматериала. При этом носитель готовят способом, который позволяет усилить адсорбционные свойства зауглероженного алюмосиликата. При приготовлении носителя на исходный алюмосиликат с удельной поверхностью 0,1-24 м2/г наносят никель. Затем проводят пиролиз пропан-бутановой смеси в присутствии данного носителя, в результате чего получают зауглероженный алюмосиликат, удельная поверхность которого в несколько раз превышает удельную поверхность исходного алюмосиликата. Приготовленный таким образом носитель имеет структуру, содержащую большое количество мезопор, пригодных по размеру для сорбции в них молекул фермента. Иммобилизация глюкоамилазы заключается в проведении процесса ее физической адсорбции на поверхности полученного носителя. Физическая адсорбция осуществляется путем погружения носителя в водный раствор фермента и выдерживания его в течение 6 часов при периодическом перемешивании.

Недостатки данного изобретения связаны с многостадийностью технологического процесса, с использованием пиролиза для нанесения слоя пористого углерода на поверхность носителя, что связано с высокими энергетическими затратами и большим расходом органических веществ (пропан-бутан). Кроме того, в результате сорбции иммобилизованный фермент имеет невысокую активность -50-80%(от активности свободного фермента).

Наиболее близким техническим решением является способ иммобилизации L-фенилалани-аммоний-лиазы на магнитных наночастицах (см. пат. РФ №RU 2460790, МПК С12Р 19/04, B01D 15/38, С07С 31/10, 10.09.2012), заключающийся в использования в качестве носителя для иммобилизации магнитных наночастиц, представляющих собой оксиды металлов. Иммобилизация фермента на наночастицах реализуется через предварительную модификацию их поверхности. На первом этапе осуществляется получение магнитных наночастиц, содержащих на поверхности электрофильные сложноэфирные группы, путем взаимодействия полиметилметакрилата, соответствующего хлорида металла и диэтиленгликоля. Вторая стадия заключается в формировании на поверхности наночастиц слоя аминопропилтриэтоксисисилана за счет протекания реакции аминолиза электрофильных фрагментов носителя. Полученные наночастицы служат для последующей иммобилизации ферментов с использованием 1-этил-3-(3-диметиламинопропил) карбодиимида.

Существенными и очевидными недостатками описанного способа являются многостадийность, необходимость в ресуспензировании наночастиц, полученных на первой стадии, проведение дополнительной модификации поверхности и последующей химической иммобилизации фермента на поверхность наночастиц, что подразумевает использование дополнительных реагентов и усложняет процесс. Кроме того, химическая иммобилизация существенно влияет на конформацию фермента, что понижает его каталитическую активность. Иммобилизованный фермент сохранял лишь от 64% до 75% от его активности в свободном состоянии в узком интервале рН от 7,5 до 9,0.

Технической задачей и положительным результатом заявляемого изобретения является разработка одностадийного способа иммобилизации различных ферментов на наночастицах различной природы, результатом которого является получение стабильного во времени коллоидного раствора нанокомплекса, ферментативная активность которого сравнима или превышает активность свободного фермента в широком диапазоне рН и не обладающего недостатками заявленного прототипа.

Сущность изобретения заключается в разработке способа иммобилизации ферментов (в частности, химотрипсина) на наночастицах биогенных элементов (например - селена и серебра).

Указанная задача и результат в изобретении достигается проведением окислительно-восстановительной реакции в присутствии раствора фермента, предназначенного для иммобилизации, например - химотрипсина, в ходе которой образуются наночастицы с адсорбированным ферментом. К раствору фермента, концентрация которого может варьироваться от 0,001 до 1 масс.% добавляют раствор окислителя, например, селенистой кислоты (H2SeO3) в интервале концентраций 1,3·10-4-1,5 масс.% или нитрата серебра (AgNO3) в интервале концентраций 1·10-4-1 масс.%. Затем в реакционную среду вводят восстановители, например, аскорбиновую кислоту (от 1·10-3-0,7 масс.%) или раствор борогидрида натрия (от 0,01 до 0,6 масс.%). Процесс ведут при температуре от 0 до 50°C. Растворы перемешивают и оставляют для завершения реакции. По окончанию реакции получаются стабильные растворы наночастиц с иммобилизованными на их поверхности ферментами за счет сил физической адсорбции.

Отличительными признаками предлагаемого способа являются указанные выше; предлагаемый способ иммобилизации ферментов имеет очевидные преимущества перед прототипом.

Анализ известного уровня техники не позволил найти опубликованные решения, в которых была бы использована вся совокупность существенных признаков заявленного способа. Это свидетельствует о соответствии способа изобретению по условиям патентоспособности как «новизна» и «изобретательский уровень».

При выявлении существенности новизны признаков было получено следующее.

Каталитическая активность фермент-коллоидного комплекса сохраняется практически на уровне свободного фермента или превышает таковую.

Иммобилизованный таким способом фермент проявляет более высокую каталитическую активность в более широком диапазоне рН, в том числе и в неоптимальных интервалах для нативного фермента, в отличие от прототипа.

Способ позволяет иммобилизовать фермент на наночастицах различной природы, совмещая в одном препарате как каталитические свойства фермента, так и собственную биологическую активность матрицы-носителя.

Предложенный способ иммобилизации - одностадийный и легко реализуем в технологическом отношении.

Способ иммобилизации фермента по своей природе физический и не требует траты дополнительных химических агентов или предварительной модификации поверхности частицы.

Нанокомплексы проявляют стабильность до 1 года.

Выбранные интервалы концентраций прекурсоров и восстановителей обусловлены тем, что при больших значениях концентраций реагирующих веществ (более 1,5 масс.% H2SeO3 и 1 масс.% AgNO3) образуются агрегативно неустойчивые растворы нанокомплексов с низкой ферментативной активностью. При низких значениях концентрации (менее 1,3·10-4 масс.% H2SeO3 и 1·10-4 масс.%) AgNO3) остается большое количество свободного фермента и повышения ферментативной активности не наблюдается.

Изменением соотношения концентрации фермента и наночастиц можно регулировать их размер и ферментативную активность.

Изменяя количество восстановителя можно менять размеры получаемых нанокомплексов.

Полученный нанокомплекс позволяет комбинировать в одном препарате различные свойства, связанные как с природой наночастиц (антимикробные, антиоксидантные, противовоспалительные, антиканцерогенные, детоксицирующие), так и со свойствами ферментов (каталитическая активность, субстратная специфичность, сопряженные ферментативные реакции).

Иммобилизованный фермент показывает более высокую протеолитическую активность или во всем диапазоне рН или на отдельных участках рН профиля.

Для доказательства соответствия заявленного решения условию патентоспособности «промышленная применимость» и для лучшего понимания сущности заявленного изобретения приводятся примеры конкретного исполнения для химотрипсина на наночастицах селена и серебра.

Пример 1. Для иммобилизации химотрипсина на наночастицах селена

В плоскодонную колбу на 30 мл помещают 0,5 мл 0,2% раствора химотрипсина (XT), прибавляют 7,5 мл дистиллированной воды, затем при перемешивании на магнитной мешалке добавляют 1 мл 0,013М селенистой кислоты (H2SeO3) и после перемешивания в течение 10 мин добавляют в качестве восстановителя аскорбиновую кислоту (C6H8O6) 1 мл 0,025М. Продолжают перемешивать еще 5 мин и затем оставляют до завершения реакции (24 часа) при комнатной температуре. Полученный молекулярный раствор имеет характерный красновато-оранжевый цвет, рН раствора 3,2. Раствор устойчив до 1 года. Нанокомплекс селен-химотрипсин показывает более высокую протеолитическую активность по сравнению с чистым ферментом в широком диапазоне рН.

Пример 2. Для иммобилизации химотрипсина на наночастицах серебра

В плоскодонную колбу на 30 мл помещают навеску боргидрида натрия (NaBH4) 0,011 г, помещают колбу и добавляют 10 мл дистиллированной воды. Растворенный NaBH4 выдерживается 30-40 мин. Одновременно в колбу на 50 мл вводится 5 мл 0,1% раствора XT и 1 мл 0,02% раствора азотнокислого серебра (AgNO3). Смесь перемешивается круговыми движениями колбы в кристаллизаторе со льдом и остается в нем 30-40 минут. После выравнивания температуры в колбу с XT и азотнокислым серебром вводится 4 мл приготовленного раствора. Начинается бурная реакция, реакционная колба остается во льду в течении 1 часа, а затем помещается в холодильник на 18-24 часа. В результате реакции получается раствор черного цвета, рН которого 10,4. Раствор стабилен от 1 месяца до 1 года.

В результате применения способа получают препараты, позволяющие эффективно сохранить каталитические свойства фермента - более 90% или значительно их превысить по сравнению со свободным ферментом. Фермент-коллоидный комплекс проявляет высокую активность в широком диапазоне рН. Способ позволяет проводить иммобилизацию на наночастицах, обладающих собственной биологической активностью и различных по природе. Весь процесс одностадийный и легко реализуем в технологическом отношении.

Пример

Для иммобилизации химотрипсина на наночастицах селена при 50°C в плоскодонную колбу на 30 мл помещают 0,5 мл 0,2% раствора химотрипсина (XT), прибавляют 7,5 мл дистиллированной воды, затем при перемешивании на магнитной мешалке добавляют 1 мл 0,013М селенистой кислоты (H2SeO3) и после перемешивания в течении 10 мин колбу помещают в термостат, нагретый до 50°C, или на водяную баню при той же температуре. После выдерживания реакционной колбы в термостате в течение 30-45 мин (когда температура в ней станет равна 50°C) добавляют в качестве восстановителя аскорбиновую кислоту (C6H8O6) 1 мл 0,025М. Продолжают перемешивать еще 5 мин и затем оставляют до завершения реакции (24 часа) в термостате при температуре 50°C. Полученный молекулярный раствор имеет характерный красный цвет, рН раствора 3,2. Раствор устойчив до 1 года. Нанокомплекс селен-химотрипсин показывает более высокую протеолитическую активность по сравнению с чистым ферментом в широком диапазоне рН.

Способ иммобилизации химотрипсина на наночастицах селена или серебра, характеризующийся тем, что ведут образование нанокомплексов окислительно-восстановительной реакцией в присутствии раствора фермента следующим образом: к раствору фермента - химотрипсина с концентрацией от 1·10 до 1 мас.% добавляют раствор селенистой кислоты (HSeO) в интервале концентраций 1,3·10 - 1,5 мас.% или нитрата серебра (AgNO) в интервале концентраций 1·10 - 1 мас.%; затем в реакционную среду вводят восстановители: аскорбиновую кислоту в концентрации от 1·10 - 0,7 мас.% или раствор борогидрида натрия в концентрации от 0,01 до 0,6 мас.%; процесс ведут при температуре от 0 до 50°C, раствор перемешивают и оставляют для завершения реакции.
Источник поступления информации: Роспатент

Showing 41-50 of 50 items.
20.01.2018
№218.016.197f

Способ получения нанокомпозитных материалов на основе полимерных матриц и наноразмерных наполнителей - наночастиц

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002636084
Дата охранного документа: 20.11.2017
10.05.2018
№218.016.4055

Способ контроля эффективности поверхностной обработки углеродных наночастиц для их введения в полимерные материалы и устройство для его реализации

Изобретение относится к нанотехнологии и может быть использовано при изготовлении нанокомпозитов. Навеску анализируемых углеродных наночастиц: нанотрубок, нановолокон, астраленов, наноконусов/дисков, графена, оксида графена, после их поверхностной обработки диспергируют с помощью...
Тип: Изобретение
Номер охранного документа: 0002648889
Дата охранного документа: 28.03.2018
10.05.2018
№218.016.47fa

Мембрана для нанофильтрации в водных, спиртовых и водно-спиртовых средах

Изобретение относится к области биохимии. Предложена мембрана для нанофильтрации в водных, спиртовых и водно-спиртовых средах. Мембрана получена в результате обработки извлекаемой из водоемов мантии асцидии вида Halocynthia aurantium 0,5% водным раствором едкого натра в течение не менее 24...
Тип: Изобретение
Номер охранного документа: 0002650670
Дата охранного документа: 16.04.2018
26.10.2018
№218.016.968a

Устройство для доставки физически активного или лекарственного препарата на основе электроуправляемого композиционного полимерного материала

Изобретение относится к области устройств для дозирования лекарственных или физиологически активных препаратов. Устройство для доставки физиологически активного или лекарственного препарата выполнено в виде расположенных на подложке из физиологически инертного материала одной или более ячеек...
Тип: Изобретение
Номер охранного документа: 0002670653
Дата охранного документа: 24.10.2018
09.11.2018
№218.016.9c01

Способ получения сополимера перфтор-3-оксапентенсульфонилфторида и тетрафторэтилена в качестве прекурсора перфторированных протонопроводящих мембран

Изобретение относится к области химии высокомолекулярных соединений. Способ получения сополимера перфтор-3-оксапентенсульфонил фторида и тетрафторэтилена в качестве прекурсора перфторированных протонопроводящих мембран путем эмульсионной сополимеризации заключается в том, что предварительно...
Тип: Изобретение
Номер охранного документа: 0002671812
Дата охранного документа: 07.11.2018
17.03.2019
№219.016.e246

Способ проведения экзотермической каталитической реакции полимеризации в изотермическом режиме в газожидкофазном полунепрерывном реакторе смешения

Изобретение относится к области химии высокомолекулярных соединений. Описан способ проведения каталитической экзотермической реакции полимеризации в изотермическом режиме в газожидкостном полунепрерывном реакторе смешения с рубашкой и автоматическим регулированием температуры, изменением...
Тип: Изобретение
Номер охранного документа: 0002682173
Дата охранного документа: 15.03.2019
29.03.2019
№219.016.edbe

Способ проведения каталитической экзотермической реакции полимеризации этилена

Изобретение относится к области химии высокомолекулярных соединений. Способ проведения каталитической экзотермической реакции полимеризации этилена в газожидкофазном вертикальном цилиндрическом реакторе смешения с механическим перемешиванием в изотермическом режиме, в котором процесс...
Тип: Изобретение
Номер охранного документа: 0002683105
Дата охранного документа: 26.03.2019
08.12.2019
№219.017.eac5

Способ получения нановолокон бактериальной целлюлозы

Изобретение относится к химии высокомолекулярных соединений. Способ получения нановолокон бактериальной целлюлозы заключается в том, что бактериальную целлюлозу измельчают до частиц размером 0,5-1 мм, помещают в предварительно подготовленную ионную жидкость - глубокий эвтектический растворитель...
Тип: Изобретение
Номер охранного документа: 0002708307
Дата охранного документа: 05.12.2019
10.12.2019
№219.017.eba6

Биосовместимый биоразлагаемый остеокондуктивный полимерный композиционный материал для регенерации костной ткани

Изобретение относится к области химии высокомолекулярных соединений, конкретно к биосовместимым биоразлагаемым остеокондуктивным композиционным материалам на основе сложных полиэфиров и химически модифицированной наноцеллюлозы. Композиционный материал для регенерации костной ткани...
Тип: Изобретение
Номер охранного документа: 0002708396
Дата охранного документа: 06.12.2019
15.07.2020
№220.018.3246

Способ получения полимерного нанокомпозита с наполнителем из асфальтенов

Изобретение относится к области химии высокомолекулярных соединений, к способу получения полимерных нанокомпозитов с наполнителем из асфальтенов, и предназначено для утилизации или переработки смолистых высокомолекулярных составляющих «тяжелых» нефтей - асфальтенов, в полимерные продукты с...
Тип: Изобретение
Номер охранного документа: 0002726356
Дата охранного документа: 13.07.2020
Showing 41-45 of 45 items.
20.01.2018
№218.016.1844

Сульфосодержащие полимеры с собственной противовирусной активностью

Изобретение относится к высокомолекулярным соединениям медицинского назначения, а именно к новым синтетическим сульфосодержащим гомо- и сополимерам 2-акриламидо-2-метилпропансульфокислоты с собственной биоактивностью, которые могут быть использованы в фармакологии в качестве перспективных...
Тип: Изобретение
Номер охранного документа: 0002635558
Дата охранного документа: 14.11.2017
20.01.2018
№218.016.1878

Полимерные водорастворимые производные 4-фенил-бутановой кислоты, обладающие противоопухолевой активностью

Изобретение относится к химии высокомолекулярных соединений и фармацевтике, а именно к полимерным водорастворимым производным 4-фенилбутановой кислоты, обладающим противоопухолевой активностью, на основе сополимеров N-винилпирролидона или N-метил-N-винилацетамида с...
Тип: Изобретение
Номер охранного документа: 0002635539
Дата охранного документа: 13.11.2017
20.01.2018
№218.016.197f

Способ получения нанокомпозитных материалов на основе полимерных матриц и наноразмерных наполнителей - наночастиц

Изобретение относится к области изготовления нанокомпозитных материалов на основе ароматического полиимида и смесей наночастиц различных типов, которые могут найти применение для изготовления композиционных материалов, а именно стеклопластиков, углепластиков, органопластиков. Описан способ...
Тип: Изобретение
Номер охранного документа: 0002636084
Дата охранного документа: 20.11.2017
29.03.2019
№219.016.f485

Способ синтеза сетчатого полимерного плазмосорбента, молекулярно импринтированного мочевой кислотой

Изобретение относится к получению сетчатого полимерного плазмосорбента на основе диметакрилата этиленгликоля, молекулярно импринтированного мочевой кислотой. Описан способ синтеза сетчатого полимерного плазмосорбента, молекулярно импринтированного мочевой кислотой, включающий суспензионную...
Тип: Изобретение
Номер охранного документа: 0002415155
Дата охранного документа: 27.03.2011
19.04.2019
№219.017.3318

Способ получения сетчатого полимерного сорбента для селективной сорбции эндотоксина из плазмы крови

Настоящее изобретение относится к получению сетчатого полимерного сорбента для селективной сорбции эндотоксина. Описан способ получения сетчатого полимерного сорбента для селективной сорбции эндотоксина из плазмы крови, включающий радикальную сополимеризацию функционального мономера и...
Тип: Изобретение
Номер охранного документа: 0002439089
Дата охранного документа: 10.01.2012
+ добавить свой РИД