×
20.05.2015
216.013.4c23

Результат интеллектуальной деятельности: ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям. Турбореактивный двигатель выполнен двухконтурным, двухвальным. Ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30° по часовой стрелке для правого двигателя и на угол не менее 30° против часовой стрелки для левого двигателя. Двигатель испытан по многоцикловой программе. При выполнении этапов испытания проводят чередование режимов, которые по длительности превышают программное время полета. Формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей. Исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный либо полный форсированный режим до полного останова двигателя и затем репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов, превышающем время полета не менее чем в 5-6 раз. Быстрый выход на максимальный или форсированный режим на части испытательного цикла осуществляют в темпе приемистости и сброса. Технический результат состоит в повышении достоверности результатов испытаний и расширении репрезентативности оценки ресурса и надежности работы турбореактивного двигателя в широком диапазоне региональных и сезонных условий последующей летной эксплуатации двигателей. 8 з.п. ф-лы, 1 ил.

Изобретение относится к области авиадвигателестроения, а именно к авиационным турбореактивным двигателям.

Известен двухконтурный, двухвальный турбореактивный двигатель (ТРД), включающий турбокомпрессорные комплексы, один из которых содержит установленные на одном валу компрессор и турбину низкого давления, а другой содержит аналогично объединенные на другом валу, соосном с первым, компрессор и турбину высокого давления, промежуточный разделительный корпус между упомянутыми компрессорами, наружный и внутренние контуры, основную и форсажную камеры сгорания, камеру смешения газовоздушных потоков рабочего тела и регулируемое сопло (Н.Н. Сиротин и др. Основы конструирования производства и эксплуатации авиационных газотурбинных двигателей и энергетических установок в системе CALS технологий. Книга 1. Москва, изд. «Наука», 2011 г., стр.41-46, рис.1.24).

Известен турбореактивный двигатель, который выполнен двухконтурным, содержит корпус, опертые на него компрессоры и турбины, охлаждаемую камеру сгорания, топливно-насосную группу, реактивные сопла, а также систему управления с командными и исполнительными органами (Шульгин В.А., Гайсинский С.Я. Двухконтурные турбореактивные двигатели малошумных самолетов. М., изд. Машиностроение, 1984, стр.17-120).

Известен способ испытания турбореактивного двигателя по определению ресурса и надежности работы, заключающийся в чередовании режимов при выполнении этапов длительностью, превышающей время полета. Двигатель испытывают поэтапно. Длительность безостановочной работы на стенде и чередование режимов устанавливают в зависимости от назначения двигателя (Л.С. Скубачевский. Испытание воздушно-реактивных двигателей. Москва, Машиностроение, 1972, с.13-15).

Известен способ испытаний авиационных двигателей типа турбореактивных, включающий отработку заданных режимов, контроль параметров и оценку по ним ресурса и надежности работы двигателя. С целью сокращения времени испытаний при доводке двигателей 10-20% испытания проводят с температурой газа перед турбиной, превышающей максимальную рабочую температуру на 45-65°C (SU 1151075 A1, опубл. 10.08.2004).

Общими недостатками указанных известных технических решений являются повышенная трудо- и энергоемкость испытаний и недостаточно высокая оценка ресурса и надежности работы двигателя в широком диапазоне полетных режимов и условий эксплуатации, вследствие неотработанности программы приведения конкретных результатов испытаний к результатам, отнесенным к стандартным условиям эксплуатации двигателя известными способами, которые не учитывают с достаточной корректностью изменение параметров и режимов работы двигателя. Это осложняет возможность приведения экспериментальных параметров испытаний к параметрам, максимально приближенным к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Задача изобретения состоит в разработке авиационного турбореактивного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации.

Поставленная задача решается тем, что турбореактивный двигатель, согласно изобретению, выполнен двухконтурным, двухвальным и содержит не менее восьми модулей, включая компрессор низкого давления (КНД) со статором, имеющим входной направляющий аппарат (ВНА), не более трех промежуточных направляющих и выходной спрямляющий аппараты, а также с ротором, имеющим вал и систему наделенных лопатками, предпочтительно, четырех рабочих колес; промежуточный корпус; газогенератор, включающий сборочные единицы - компрессор высокого давления (КВД), имеющий статор, а также ротор с валом и системой оснащенных лопатками рабочих колес, число которых не менее чем в два раза превышает число упомянутых рабочих колес КНД; основную камеру сгорания и турбину высокого давления (ТВД); за газогенератором последовательно соосно установлены турбина низкого давления (ТНД), смеситель, фронтовое устройство, форсажная камера сгорания и поворотное реактивное сопло, включающее поворотное устройство, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере сгорания, и регулируемое реактивное сопло, прикрепленное к поворотному устройству с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги, причем ось вращения поворотного устройства относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке (вид по н.п.) для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки (вид по н.п.) для левого двигателя; кроме того, вокруг корпуса основной камеры сгорания во внешнем контуре установлен модуль - воздухо-воздушный теплообменник, собранный не менее чем из шестидесяти трубчатых блок-модулей; двигатель содержит также коробку приводов двигательных агрегатов; причем статоры КНД и КВД выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы, кроме того, в виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты турбин ТНД и ТВД; причем двигатель испытан по многоцикловой программе, включающей чередование режимов при выполнении этапов испытания длительностью работы турбореактивного двигателя, превышающей программное время полета, по программе до испытаний сформированы типовые полетные циклы и определена повреждаемость наиболее нагруженных деталей, исходя из этого определено необходимое количество циклов нагружения при испытании, а затем сформирован и произведен полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающем время полета в 5-6 раз, при этом различный размах диапазона изменения режимов работы двигателя реализован изменением уровня перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ», а в других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима, причем быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществлен в темпе приемистости с последующим сбросом.

При этом турбореактивный двигатель может содержать электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули.

Практически каждый модуль двигателя, преимущественно, может быть выполнен технологически автономным, оснащен элементами разъемного фланцевого соединения со смежными модулями и разъемными элементами крепления внутримодульных деталей, обеспечивающими возможность, в том числе ремонтной взаимозаменяемости модулей и при необходимости замены внутримодульных узлов и деталей.

КНД может быть объединен с ТНД по валу с возможностью передачи от указанной турбины крутящего момента, а КВД объединен с ТВД с возможностью получения последним крутящего момента от турбины высокого давления через автономный вал ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса, основой камеры сгорания и турбины низкого давления.

Статор КВД может содержать входной направляющий аппарат, не более восьми промежуточных направляющих и выходной спрямляющий аппараты.

Входной направляющий аппарат компрессора низкого давления может быть снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками, равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.

Ось поворотного реактивного сопла может быть выполнена отклоненной от оси двигателя вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).

Часть испытательных циклов может быть выполнена без прогрева на режиме «малый газ» после запуска.

Испытательный цикл может быть сформирован на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

Технический результат, обеспечиваемый приведенной совокупностью признаков, состоит в разработке авиационного турбореактивного двигателя с улучшенными эксплуатационными характеристиками и повышенной достоверностью экспериментально проверенного ресурса и надежности двигателя в условиях, максимально приближенных к реальной структуре и удельному соотношению режимов работы двигателя в процессе эксплуатации. Повышение достоверности результатов испытаний достигается за счет разработанного в изобретении чередования режимов при выполнении этапов испытания, которые по длительности превышают программное время полета. При этом предварительно формируют типовые полетные циклы, на основании которых по программе определяют повреждаемость наиболее загруженных деталей и исходя из этого определяют необходимое количество циклов нагружения при испытании. Формируют полный объем испытаний, включая быструю смену циклов в полном регистре от быстрого выхода на максимальный, либо полный форсированный режим до полного останова двигателя и затем формируют репрезентативный цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов. Это позволяет повысить корректность и расширить репрезентативность оценки ресурса и надежности работы двигателя на всех этапах создания, доводки, серийного промышленного производства и летной эксплуатации ТРД и обеспечивает повышенный ресурс двигателя в условиях, характерных для последующей реальной многорежимной работы ТРД в полетных условиях на высокоманевренных самолетах.

Сущность изобретения поясняется чертежом, на котором изображен турбореактивный двигатель, продольный разрез.

Турбореактивный двигатель выполнен двухконтурным, двухвальным. Турбореактивный двигатель содержит не менее восьми модулей, включая компрессор 1 низкого давления, промежуточный корпус 2 и газогенератор.

КНД 1 выполнен со статором, имеющим входной направляющий аппарат 3, не более трех промежуточных направляющих аппаратов 4 и выходной спрямляющий аппарат 5, а также с ротором, имеющим вал 6 и систему предпочтительно, четырех рабочих колес 7, наделенных лопатками 8.

Газогенератор содержит сборочные единицы - компрессор 9 высокого давления со статором, основную камеру 10 сгорания и турбину 11 высокого давления.

КВД 9 включает статор, а также ротор с валом 12 и системой оснащенных лопатками 13 рабочих колес 14. При этом число рабочих колес 14 КВД 9 не менее чем в два раза превышает число рабочих колес 7 КНД 1.

За газогенератором последовательно соосно установлены турбина 15 низкого давления, смеситель 16, фронтовое устройство 17, форсажная камера 18 сгорания и поворотное реактивное сопло, включающее поворотное устройство 19, неподвижно, предпочтительно, разъемно прикрепленное к форсажной камере 18 сгорания, и регулируемое реактивное сопло 20, прикрепленное к поворотному устройству 19 с возможностью выполнения совместно с подвижным элементом последнего поворотов для изменения направления вектора тяги. Ось вращения поворотного устройства 19 относительно горизонтальной оси повернута на угол не менее 30°, предпочтительно, на (32÷34)° по часовой стрелке (вид по направлению полета) для правого двигателя и на угол не менее 30°, предпочтительно, на (32÷34)° против часовой стрелки (вид по направлению полета) для левого двигателя.

Вокруг корпуса основной камеры 10 сгорания во внешнем контуре 21 установлен воздухо-воздушный теплообменник 22, собранный не менее чем из шестидесяти трубчатых блок-модулей.

Также двигатель содержит коробку приводов двигательных агрегатов (на чертежах не показано).

Статоры КНД 1 и КВД 9 выполнены каждый в виде продольно-сегментных блоков в количестве не менее двух, объединенных, преимущественно, на разъемных соединениях с возможностью разборки для ремонта или замены деталей соответствующего модуля или сборочной единицы. В виде аналогичных продольно-сегментных блоков выполнены и объединены на разъемных соединениях сопловые аппараты 23 турбин 11 и 15 соответственно высокого и низкого давления.

Турбореактивный двигатель испытан по многоцикловой программе. Программа включает чередование режимов при выполнении этапов испытания длительностью работы двигателя, превышающей программное время полета. По программе до испытаний сформированы типовые полетные циклы и определена повреждаемость наиболее нагруженных деталей. Исходя из этого определено необходимое количество циклов нагружения при испытании. Затем сформирован и произведен полный объем испытаний, включающий выполнение последовательности испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим «малого газа», останов и цикл длительной работы с многократным чередованием режимов во всем рабочем спектре с различным размахом диапазона изменения режимов работы турбореактивного двигателя, в совокупности превышающем время полета в 5-6 раз. Различный размах диапазона изменения режимов работы двигателя реализован изменением уровня перепада газа в конкретных режимах испытания от начального до наибольшего - максимального или полного форсированного режима работы двигателя путем переноса начальной точки отсчета при выполнении соответствующего режима, принимая последнюю в одном из режимов в положении, соответствующем уровню «малый газ». В других режимах - в промежуточных или конечном положениях, соответствующих различным процентным долям или полному значению уровня газа максимального или полного форсированного режима. Быстрый выход на максимальный или форсированный режимы на части испытательного цикла осуществлен в темпе приемистости с последующим сбросом.

Турбореактивный двигатель содержит электрическую, пневматическую, гидравлическую - топливную и масляную системы, а также датчики, командные блоки, исполнительные механизмы и кабели систем диагностики и автоматического управления двигателем, объединяющие указанные сборочные единицы и модули (на чертежах не показано).

Практически каждый модуль двигателя, преимущественно, выполнен технологически автономным, оснащен элементами разъемного фланцевого соединения со смежными модулями и разъемными элементами крепления внутримодульных деталей, обеспечивающими возможность, в том числе ремонтной взаимозаменяемости модулей и при необходимости замены внутримодульных узлов и деталей.

Компрессор 1 низкого давления объединен с турбиной 15 низкого давления по валу 6 с возможностью передачи от турбины 15 крутящего момента. Компрессор 9 высокого давления объединен с турбиной 11 высокого давления с возможностью получения последним крутящего момента от турбины 11 через автономный вал 12 ротора КВД-ТВД, коаксиально с возможностью вращения охватывающий вал 6 ротора КНД-ТНД на части длины и выполненный короче последнего, по меньшей мере, на совокупную осевую длину промежуточного корпуса 2, основой камеры 10 сгорания и турбины 15 низкого давления.

Статор КВД 9 содержит входной направляющий аппарат 24, не более восьми промежуточных направляющих аппаратов 25 и выходной спрямляющий аппарат 26.

Входной направляющий аппарат 3 КНД 1 снабжен состоящими из неподвижного и управляемого подвижного элементов радиальными стойками (на чертеже не показано), равномерно разнесенными в плоскости входного сечения с угловой частотой в диапазоне (3,0÷4,0) ед/рад.

Ось поворотного реактивного сопла выполнена отклоненной от оси ТРД вниз на угол, составляющий в нейтральном положении двигателя (2°÷3°30′).

Часть испытательных циклов выполнена без прогрева на режиме «малый газ» после запуска.

Испытательный цикл сформирован на основе полетных циклов для боевого и учебного применения турбореактивного двигателя.

Пример реализации испытания турбореактивного двигателя.

Испытанию подвергают ТРД с проектным ресурсом 500 часов общей наработки до первого капитального ремонта. В указанном ресурсе задана наработка 20 час на максимальном режиме, из них 5 час на полном форсированном режиме. Формируют типовые полетные циклы (ТПЦ) и устанавливают заданное время работы двигателя 1 ч, эквивалентное полетному времени летательного аппарата (ЛА) по принятому ТПЦ. На основании ТПЦ расчетным путем определяют повреждаемость наиболее нагруженных деталей. Исходя из этого определяют необходимое эквивалентное по повреждаемости количество циклов при испытаниях. В данном варианте принимают следующий состав нагрузочных испытательных циклов - выполнение 700 (400+300) запусков с выходом соответственно на максимальный и форсированные режимы, а также 400 приемистостей от режима «малый газ» (МГ) до максимального (Макс.) и 300 с режима 0,8 Макс, до форсированного (Фор) режима.

Устанавливают коэффициент запаса на требуемое количество испытательных нагрузочных циклов и времени наработки K=1,2.

Формируют полный объем ресурсных испытаний и разрабатывают программу проведения испытаний:

1. Общую наработку при проведении ресурсных испытаний принимают 500*1,2=600 ч, из них наработку на максимальном режиме принимают (20-5)*1,2=18 ч, а на форсированном режиме 5*1,2=6 ч.

2. Принимают продолжительность этапа испытаний 5 ч и определяют количество пятичасовых этапов 600:5=120.

3. Устанавливают количество запусков с учетом коэффициента запаса 700*1,2=840, а также от МГ до Макс 400*1,2=480 и от 0,8 Макс до Фор 300*1,2=360.

4. Каждый пятичасовой этап включает 840:120=7, приемистостей от режима МГ до Макс 480:120=4 и приемистостей с режима 0,8 Макс до Фор 360:120=3, а также наработку на максимальном и форсированном режимах 18*60:120=9 мин; 360:120=3 мин.

5. Устанавливают последовательность испытательных циклов - быстрый выход на максимальный или полный форсированный режим, быстрый сброс на режим МГ и останов. Затем предусматривают цикл длительной работы с многократным чередованием нагрузочных циклов с размахом диапазонов изменения режимов от МГ до Макс и 0,8 Макс до Фор в пределах установленного выше объема испытательных этапов.

Выполняют испытания ТРД по указанной программе. Затем проводят дефектацию двигателя и анализ результатов испытаний, по которым принимают решение о признании двигателя выдержавшим испытания.

Изложенную выше последовательность испытания ТРД применяют на всех этапах от разработки и доводки до промышленного производства, эксплуатации и капитального ремонта авиационных двигателей.


ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Showing 311-320 of 337 items.
20.01.2018
№218.016.15d8

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635163
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15ec

Коробка двигательных агрегатов (кда) турбореактивного двигателя (трд), корпус кда, главная коническая передача (гкп) кда, ведущее колесо гкп кда, ведомое колесо гкп кда, входной вал кда

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны. Корпус КДА седлообразно размещен на промежуточном корпусе двигателя. Корпус...
Тип: Изобретение
Номер охранного документа: 0002635125
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1642

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635164
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1d99

Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического...
Тип: Изобретение
Номер охранного документа: 0002640972
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
Showing 311-320 of 446 items.
20.01.2018
№218.016.15d8

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635163
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15df

Коробка двигательных агрегатов (кда) турбореактивного двигателя, узел кда турбореактивного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку. Корпус КДА размещен на промежуточном корпусе двигателя. На корпусе КДА смонтированы центробежный топливоподкачивающий насос, суфлер центробежный и насос плунжерный. Со...
Тип: Изобретение
Номер охранного документа: 0002635227
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.15ec

Коробка двигательных агрегатов (кда) турбореактивного двигателя (трд), корпус кда, главная коническая передача (гкп) кда, ведущее колесо гкп кда, ведомое колесо гкп кда, входной вал кда

Группа изобретений относится к области авиадвигателестроения. Коробка двигательных агрегатов КДА ТРД содержит корпус и крышку, выполненных с уступообразным плоским дном и цилиндрическими стенками переменной кривизны. Корпус КДА седлообразно размещен на промежуточном корпусе двигателя. Корпус...
Тип: Изобретение
Номер охранного документа: 0002635125
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1642

Устройство для запуска газотурбинного двигателя

Изобретение относится к области авиационной техники, в частности к способам запуска авиационных турбореактивных двигателей. Устройство для запуска газотурбинного двигателя содержит ротор, образованный компрессором, турбиной и валом, соединяющим их, камеру сгорания, вспомогательную силовую...
Тип: Изобретение
Номер охранного документа: 0002635164
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.1b72

Механизм передачи крутящего момента агрегатам турбореактивного двигателя (трд), центральная коническая передача (цкп) трд, главная коническая шестерённая пара цкп трд, корпус цкп трд, ведущее зубчатое коническое колесо цкп, ведомое зубчатое коническое колесо цкп, узел цкп трд

Группа изобретений относится к области авиадвигателестроения. Единый механизм передачи крутящего момента агрегатам двухвального, двухконтурного авиационного ТРД, имеющего газодинамически связанные между собой соосные валы РВД и РНД, включает соединенные с РВД с возможностью передачи агрегатам...
Тип: Изобретение
Номер охранного документа: 0002636626
Дата охранного документа: 24.11.2017
20.01.2018
№218.016.1d99

Способ диагностики технического состояния двухконтурного газотурбинного двигателя при эксплуатации

Изобретение относится к области измерительной техники, к испытаниям, доводке, диагностике и эксплуатации реактивных двигателей, а конкретно к способам диагностики технического состояния двухконтурного газотурбинного двигателя по газодинамическим параметрам потока. Диагностику технического...
Тип: Изобретение
Номер охранного документа: 0002640972
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e3e

Маслосистема газотурбинного двигателя маневренного самолета

Изобретение относится к области авиационного двигателестроения и касается масляной системы газотурбинного двигателя маневренного самолета. Перепускной клапан установлен за топливомасляным теплообменником, а выход из перепускного клапана сообщен трубопроводом с внутренней полостью...
Тип: Изобретение
Номер охранного документа: 0002640900
Дата охранного документа: 12.01.2018
17.02.2018
№218.016.2a88

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы РВД и РНД модуля газогенератора и вал ротора...
Тип: Изобретение
Номер охранного документа: 0002642955
Дата охранного документа: 29.01.2018
04.04.2018
№218.016.2ead

Единый механизм передачи крутящего момента агрегатам газотурбинного двигателя (варианты)

Группа изобретений относится к области авиадвигателестроения, а именно к газотурбинным двигателям газоперекачивающего агрегата. Единый механизм передачи крутящего момента агрегатам двигателя включает газодинамически связанные между собой соосные валы роторов высокого давления (РВД) и роторов...
Тип: Изобретение
Номер охранного документа: 0002644497
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3176

Способ испытания авиационного турбореактивного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний турбореактивных двигателей (ТРД). Способ испытания ТРД включает подогрев и наддув воздуха на входе в двигатель. Для двигателя, содержащего топливно-масляный теплообменник, предварительно создают математическую...
Тип: Изобретение
Номер охранного документа: 0002645066
Дата охранного документа: 15.02.2018
+ добавить свой РИД