×
20.05.2015
216.013.4c14

Результат интеллектуальной деятельности: СПОСОБ ОПТИЧЕСКОГО ЗАХВАТА ЧАСТИЦЫ В МЯГКОЙ БИОЛОГИЧЕСКОЙ ТКАНИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области изучения свойств частиц биологической ткани и предназначено для удерживания частиц или манипулирования ими путем создания оптической ловушки (лазерного пинцета). Способ оптического захвата частицы в мягкой биологической ткани основан на облучении поверхности ткани параллельным пучком когерентного лазерного излучения и определении глубины z нахождения захватываемой частицы в ткани. В зависимости от глубины z выбирают длину волны λ облучения - при z<0.1 мм λ=450 нм, при z≥0.1 мм λ=1250·[1-exp(-z/1.35)], где λ в нм, z в мм. Изобретение обеспечивает максимальную силу захвата частицы при минимальном нагреве ткани. 3 ил.
Основные результаты: Способ оптического захвата частицы в мягкой биологической ткани, основанный на облучении поверхности ткани лазерным светом, отличающийся тем, что формируют параллельный пучок когерентного лазерного излучения, определяют глубину z нахождения захватываемой частицы в ткани и в зависимости от глубины z выбирают длину волны λ облучения - при z<0.1 мм λ=450 нм, при z≥0.1 мм λ=1250·[1-exp(-z/1.35)], где λ в нм, z в мм.

Изобретение относится к созданию оптической ловушки (лазерного пинцета) для захвата частицы или агрегата частиц внутри мягких биологических тканей. Оно может быть использовано при изучении структурных, биофизических, морфологических и оптических свойств частиц биологической ткани в условиях in vivo и их взаимодействия с окружающей средой для удерживания частиц в определенном месте биоткани или манипулирования ими.

Известно [1], что при изменении плотности потока I светового поля вдоль произвольной оси x возникает сила Fgrad электромагнитной природы, которая действует на диэлектрическую частицу, попадающую в пространственную область указанного изменения. Абсолютная величина силы Fgrad зависит от градиента dI/dx в направлении оси x, а также от оптических и структурных параметров частицы и среды, в которой она находится. Силу Fgrad называют градиентной и используют в оптических ловушках (лазерных пинцетах) для захвата, перемещения и проведения иных бесконтактных операций с малыми частицами.

Известен [2] способ захвата диэлектрической частицы в оптическую ловушку, создаваемую силами FP давления света на частицу, формируемыми одним или несколькими лазерными источниками. Эти силы действуют в направлении распространения излучения, а их абсолютная величина есть

где A - коэффициент отражения света частицей.

Недостатками способа [2] являются формирование слабых сил (1) и его непригодность для захвата частиц внутри биоткани из-за необходимости использовать большую плотность мощности E0 облучения поверхности ткани, чтобы обеспечить требуемую силу FP.Увеличение Е0 вызывает избыточный нагрев ткани и может привести к ее повреждению или гибели.

Известен также способ [3], в котором градиент плотности светового потока создается путем интерференции двух пучков одномодового лазера с длиной волны λ=632.8 нм. Эти пучки направляются в кювету с частицами, которые вследствие действия градиентных сил захватываются вблизи максимумов (ярких участков) интерференционной картины.

Недостатком способа [3] является его неприменимость для биоткани в условиях in vivo, т.к. свет с длиной волны 632.8 нм не обеспечивает требуемой величины силы Fgrad в широком интервале глубин z ткани, где может находиться захватываемая частица. Кроме того, из-за рассеяния света в биоткани интерференционная картина, формируемая в глубине среды, обычно сильно размыта по пространству, что приводит к заметному уменьшению градиента плотности потока и, следовательно, силы Fgrad.

Наиболее близким к предлагаемому способу является способ [4] захвата биологической частицы в оптическую ловушку, создаваемую инфракрасным лазером, генерирующим свет с фиксированной длиной волны в интервале от 800 до 1800 нм. Лазерное излучение падает на собирающую линзу с малым фокусным расстояние и в области ее фокуса (перетяжки пучка) формируется большой градиент светового поля и соответствующая сила Fgrad. Сходящийся пучок лазера направляется в кювету, содержащую частицу, которая захватывается вблизи указанной фокальной точки собирающей линзы.

Недостатком способа [4] является его неприменимость для биоткани in vivo, т.к. инфракрасное излучение с указанными длинами волн не обеспечивает требуемой величины силы Fgrad в широком интервале глубин z ткани, где может находиться захватываемая частица. Кроме того, из-за сильного рассеяния света в биоткани область перетяжки пучка обычно сильно размыта по пространству, что приводит к заметному уменьшению градиента плотности потока и, следовательно, силы Fgrad. Отметим также, что способ [4] не дает ответа на вопрос, какая длина волны лазерного облучения оптимальна для улавливания частицы на заданной глубине z в биоткани с точки зрения обеспечения максимальной силы захвата частицы.

Задачей настоящего изобретения является обеспечение возможности захвата частицы или агрегата частиц в широком интервале глубин z биологической ткани путем оптимального выбора длины волны λ* облучения ее поверхности, формируя максимальную силу захвата частицы при минимальном нагреве ткани.

Решение поставленной задачи достигается тем, что в способе оптического захвата частицы в мягкой биологической ткани, основанном на облучении поверхности ткани лазерным светом, формируют параллельный пучок когерентного лазерного излучения, определяют глубину z нахождения захватываемой частицы в ткани и в зависимости от глубины z выбирают длину волны λ* облучения - при z<0.1 мм λ*=450 нм, при z≥0.1 мм λ*=1250[1-exp(-z/1.35)], где λ* в нм, z в мм.

Сущность предлагаемого изобретения поясняется чертежами.

На фиг.1 изображена радиальная структура плотности потока I(r) в мягкой биоткани на примере дермы кожи на длинах волн λ=600 нм (сплошные кривые) и 700 нм (штриховые) при степени оксигенации крови S=0.5 (а, в) и 0.97 (б, г), объемной концентрация крови Cb=0.04 (а, б) и 0.02 (в, г); объемной концентрации меланина Cm=0.08, z=1 мм, Е0=1 Вт/см2.

На фиг.2 показаны зависимости градиентной силы F, создаваемой лазерным пучком света на глубинах z=0.16 (кривые 7), 0.2 (2), 0.5 (3), 1 (4), 2 (5), 4 (6) и 8 мм (7) при облучении поверхности кожи на различных длинах волн λ=400-1800 нм.

На фиг.3 приведены расчетная (сплошная кривая) и аппроксимационная (штриховая) зависимости длины волны λ* облучения, обеспечивающей максимальную градиентную силу Fmax, от глубины z положения захватываемой частицы внутри дермы кожи.

Известно, что процессы рассеяния биологической тканью когерентного пучка излучения приводят к формированию внутри среды спекл-структуры светового поля. Спекл-структура есть результат интерференции излучения, рассеянного под небольшими углами относительно направления падения света [5]. В радиальной плоскости или плоскости, перпендикулярной этому направлению, она представляет собой чередующиеся яркие и темные участки, называемые спеклами. Это изменение плотности светового потока I обуславливает формирование градиентной силы Fgrad, которую можно рассчитать по формуле

где с=3·1010/n см/с - скорость света в среде,

n - абсолютное значение показателя преломления среды,

α=3(m2-1)/(m2+2) - удельная поляризуемость частицы,

m=np/n - относительный показатель преломления частицы,

np - абсолютное значение показателя преломления частицы,

R - радиус сферы такого же объема, как и частица,

dI/dx - градиент плотности светового потока (Вт/см3),

B - константа пропорциональности, зависящая от параметров частицы (np и R) и среды (n), в которой она находится.

Из (2) следует, что сила Fgrad направлена вдоль оси x в сторону увеличения (при m>1) или уменьшения (при m<1) плотности светового потока. Для частиц биоткани обычно m≈1.05.

Характерный радиус L спекла, зависящий от длины волны λ облучения поверхности ткани и глубины z, определяется по формуле [5, 6]

где D(λ,z) - дисперсия углового распределения интенсивности света, распространяющегося под малыми углами относительно направления освещения поверхности.

Плотность полного светового потока на глубине z в радиальной плоскости можно рассчитать по формуле [6]

где E0 - освещенность поверхности ткани,

r - расстояние, отсчитываемое от оси пучка,

φ - случайная фаза,

Ec(λ,z) и Enc(λ,z) - нормированные значения освещенности, создаваемой соответственно когерентным и некогерентным рассеянным светом на глубине z в указанной плоскости при облучении поверхности на длине волны λ.

Отметим, что в правой части (4) первое слагаемое дает составляющую светового поля, зависящую от r, а второе - некогерентный фон, не зависящий от r. Поэтому в формирование градиентных сил в глубине среды вклад вносит только первое слагаемое.

На фиг.1 представлена радиальная структура плотности потока I(λ,z,r), рассчитанная авторами по формуле (4) при двух значениях λ=600 и 700 нм на глубине z=1 мм. В качестве примера биоткани взята кожа человека. Ее структурные и оптические параметры приведены в [7], а методика расчета характеристик E(λ,z) и L(λ,z) светового поля - в [5, 6, 8]. Выбраны типичные значения структурных и биофизических параметров кожи. Здесь степень оксигенации крови S=0.5 (а, в) и 0.97 (б, г), объемная концентрация крови Cb=0.04 (а, б) и 0.02 (в, г), объемная концентрация меланина Cm=0.08, толщины рогового слоя 20 мкм и эпидермиса 100 мкм. Авторами были выполнены расчеты при других значениях указанных параметров кожи. Они варьировались в пределах, характерных для этого типа ткани [7]. Оказалось, что переменная по г составляющая (первое слагаемое в правой части (4), слабо зависит от таких изменений и определяется, в основном, значениями λ и z.

Из формулы (4) находим градиент плотности светового потока dI/dr, создающий силу Fgrad, действующую на частицу, находящуюся на глубине z:

Знак «минус» указывает на направление силы - в сторону уменьшения или увеличения r. Как видно из (1) и (5), градиентная сила Fgrad в радиальной плоскости принимает по абсолютной величине наибольшие значения, соответствующие выполнению равенства . Из (1) и (5) также следует, что максимальная абсолютная величина силы Fgrad

зависит от λ и z через характеристики спеклов Ec(λ,z) и L(λ,z).

Сопоставим максимальные значения градиентной силы (6) и силы давления (2) при одинаковой плотности мощности облучения поверхности. Для этого на примере частицы с R=3 мкм рассмотрим отношение Fmax(λ,z)/FPmax={8παR[3(1+A)Imax(λ,z,r)]}(dI/dr)max, где индекс max означает максимальные значения соответствующих величин. Пусть для оценок A=1. Расчеты показали, что это отношение заключено в пределах 150-800 при z<2 см. Иными словами, максимум градиентной силы примерно на 2-3 порядка превышает наибольшую силу давления, так что последней можно с уверенностью пренебречь. Аналогичные вычисления показали, что можно из-за малости по сравнению с dlldr не учитывать градиент плотности светового потока dI/dz в направлении оси z, т.е. в направлении распространения света.

На фиг.2 представлены значения градиентной силы F(λ,z) (в Н), создаваемой параллельным лазерным пучком света с E0=1 Вт/см2 на глубинах z=0.16 (кривые 1), 0.2 (2), 0.5 (3), 1 (4), 2 (5), 4 (6) и 8 мм (7) при облучении поверхности ткани на различных длинах волн λ=400-1900 нм. При вычислениях использованы типичные для мягких тканей параметры n=1.33, m=1.05 и R=3 мкм. Как видно, по мере увеличения z максимальную силу Fmax обеспечивает облучение на возрастающей длине волны λ*. Так, в верхних слоях дермы при z=0.12 мм наибольшее значение Fmax имеет место при λ*≈450 нм, при z≈0.5 мм - λ*≈700 нм, при z≈1 мм - λ*≈850 нм и т.д. Особенности зависимости силы F от длины волны λ, показанные на фиг.2, и наличие максимума при λ=λ* обусловлены спектральным поведением характеристик поглощения и рассеяния света компонентами мягких тканей, прежде всего дериватов гемоглобина крови и воды.

Используя данные фиг.2, сопоставим значения силы Fmax, действующей на частицу внутри ткани, при облучении поверхности среды по предлагаемому способу и по прототипу [4] (λ=800-1800 нм). Пусть для конкретности облучение осуществляют на длине волны λ=1000 нм. Как видно из фиг.2, в верхнем слое ткани при z≤0.5 мм (кривые 1-3) и в глубине при z≥4 мм (кривые 6 и 7) значения Fmax по предлагаемому способу примерно в 2-4 раза превышают максимальную силу согласно [4] при одинаковой плотности мощности E0. При z=1-2 мм (кривые 4 и 5) оба способа дают примерно одинаковую максимальную силу. Аналогичные выводы можно сделать и для других длин волн облучения поверхности ткани из диапазона 800-1800 нм, предложенного в [4]. Отметим, что результаты расчетов на фиг.2 представлены для случая облучения поверхности ткани параллельным пучком света. Если пучок сходящийся, как в [4], превышение силы Fmax по предлагаемому способу над [4] будет в широком интервале глубин z еще заметнее, т.к. в этом случае падающая на поверхность энергия лазера будет в глубине распределена на большей площади.

На фиг.3 проиллюстрировано, как найти длину волны λ*, обеспечивающую максимальную силу Fmax на заданной глубине z в биоткани. Здесь показаны расчетная зависимость λ*(z), полученная из графиков фиг.2 (сплошная кривая), и ее аппроксимация (штриховая кривая) формулой λ*=1250[1-exp(-z/1.35)], где λ* в нм, z в мм. Незначительные различия между этими кривыми приводят к небольшому отклонению силы Fmax от ее максимального значения. Однако такое отклонение не превышает 5%.

Таким образом, предлагаемый способ позволяет в широком интервале глубин z в ткани сформировать максимальную силу Fmax захвата частицы или агрегата частиц за счет оптимального выбора длины волны облучения поверхности ткани. Указанная сила в 2 и более раз превышает силу захвата частицы в соответствии с прототипом.

Источники информации

1. Б.М. Яворский, А.А. Детлаф. Справочник по физике. М.: Наука, 3-е издание. 1965. С.347-348.

2. A. Ashkin. Apparatuses for trapping and accelerating neutral particles. US Patent No.370279. H01S 3/06, 3/09. 09.01.1973.

3. А.А. Афанасьев, В.М. Катаркевич, А.Н. Рубинов, Т.Ш. Эфендиев. Модуляция концентрации частиц в интерференционном поле лазерного излучения // Журн. прикл. спектроск. 2002. Т.69. №5. С.675-679.

4. A. Ashkin. Non-destructive optical trap for biological particles and method of doing same. US Patent No.4893886. G02B 27/00. 16.01.1990.

5. Иванов А.П., Кацев И.Л. О спекл-структуре светового поля в дисперсной среде, освещенной лазерным пучком // Квантовая электроника. 2005. Т.35. №7. С.670-674.

6. Н.Д. Абрамович, В.В. Барун, С.К. Дик, А.С. Терех. Аналитическая методика оценки контраста спекл-структуры светового поля, рассеянного мягкими биотканями // 5-я Троицкая конференция «Медицинская физика и инновации в медицине». Сборник материалов. 2012. Т.1. С.212-214.

7. В.В. Барун, А.П. Иванов, А.В. Волотовская, В.С. Улащик. Спектры поглощения и глубина проникновения света в нормальную и патологически измененную кожу человека // Журнал прикладной спектроскопии. 2007. Т.74. №3. С.387-394.

8. В.В. Барун, А.П. Иванов. Поглощение света кровью при низкоинтенсивном лазерном облучении кожи // Квантовая электроника. 2010. Т.40. №4. С.371-376.

Способ оптического захвата частицы в мягкой биологической ткани, основанный на облучении поверхности ткани лазерным светом, отличающийся тем, что формируют параллельный пучок когерентного лазерного излучения, определяют глубину z нахождения захватываемой частицы в ткани и в зависимости от глубины z выбирают длину волны λ облучения - при z<0.1 мм λ=450 нм, при z≥0.1 мм λ=1250·[1-exp(-z/1.35)], где λ в нм, z в мм.
СПОСОБ ОПТИЧЕСКОГО ЗАХВАТА ЧАСТИЦЫ В МЯГКОЙ БИОЛОГИЧЕСКОЙ ТКАНИ
СПОСОБ ОПТИЧЕСКОГО ЗАХВАТА ЧАСТИЦЫ В МЯГКОЙ БИОЛОГИЧЕСКОЙ ТКАНИ
СПОСОБ ОПТИЧЕСКОГО ЗАХВАТА ЧАСТИЦЫ В МЯГКОЙ БИОЛОГИЧЕСКОЙ ТКАНИ
Источник поступления информации: Роспатент

Showing 1-10 of 20 items.
20.05.2013
№216.012.407d

Люминесцирующее кварцевое стекло

Изобретение относится к легированным стеклам, в частности к Yb-содержащему кварцевому стеклу, полученному по золь-гель процессу, которое может использоваться в качестве активного материала лазеров и усилителей инфракрасного диапазона. Техническим результатом изобретения является создание стекла...
Тип: Изобретение
Номер охранного документа: 0002482079
Дата охранного документа: 20.05.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b4f

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком...
Тип: Изобретение
Номер охранного документа: 0002484861
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5427

Способ получения поверхностно-привитого полимера на поверхности полимерной пленки

Изобретение относится к модификации поверхности полимерных пленок поверхностно-привитыми полимерами. Способ получения поверхностно-привитого полимера полиакриловой кислоты на поверхности полиэтиленовых или полипропиленовых пленок осуществляют фотоиндуцированной прививочной полимеризацией из...
Тип: Изобретение
Номер охранного документа: 0002487146
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.600d

Люминесцирующее стекло

Изобретение относится к легированным стеклам, которые могут использоваться в качестве антистоксовых визуализаторов ИК-излучения с λ≈0,89-0,99 мкм, активной среды усилителей и лазерных преобразователей, функционирующих в полосе антистоксовой люминесценции, а также для визуального контроля...
Тип: Изобретение
Номер охранного документа: 0002490221
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.65bc

Фотоэлемент

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов. Фотоэлемент состоит из двух или более монослоев полупроводниковых (ПП) сферических частиц, одна часть которых имеет один тип...
Тип: Изобретение
Номер охранного документа: 0002491681
Дата охранного документа: 27.08.2013
20.10.2013
№216.012.75e0

Люминесцирующее кварцевое стекло

Изобретение относится к оптическим материалам, в частности к составам активированных стекол, полученных золь-гель способом, которые могут использоваться в качестве активных элементов лазеров и суперлюминесцентных излучателей, функционирующих в области максимальной спектральной эффективности...
Тип: Изобретение
Номер охранного документа: 0002495836
Дата охранного документа: 20.10.2013
27.06.2014
№216.012.d544

Способ сокращения длительности импульса мощного свч излучения и устройство для его реализации

Группа изобретений относится к области СВЧ волноводной техники и может быть применена в радиолокационной технике. Достигаемый технический результат - сокращение длительности микросекундного импульса мощного СВЧ излучения до 10 нс и менее. Способ сокращения длительности импульса мощного СВЧ...
Тип: Изобретение
Номер охранного документа: 0002520374
Дата охранного документа: 27.06.2014
27.06.2014
№216.012.d778

Поляризационная пленка и способ ее получения

Поляризационная пленка состоит из ориентированных молекул блок-сополимера поливинилового спирта и поливинилена, полученного кислотно-катализированной термической дегидратацией ориентированных молекул поливинилового спирта, и дополнительно содержит фосфорно-вольфрамовую кислоту. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002520938
Дата охранного документа: 27.06.2014
20.10.2014
№216.013.00a7

Способ сокращения длительности импульса свч излучения и устройство для его реализации

Изобретение относится к области СВЧ волноводной техники и может быть применено в радиолокационной технике. Технический результат - сокращение длительности импульсов СВЧ от десятков микросекунд до десятков наносекунд. Способ сокращения длительности импульса СВЧ- излучения характеризуется тем,...
Тип: Изобретение
Номер охранного документа: 0002531559
Дата охранного документа: 20.10.2014
Showing 1-10 of 26 items.
10.03.2013
№216.012.2ec4

Полностью оптический модулятор лазерного излучения на основе многослойных гетероструктур (варианты)

Устройство относится к квантовой электронике, а именно к системам для модуляции излучения лазера в заданном спектральном диапазоне. Полностью оптический модулятор лазерного излучения на основе многослойных гетероструктур содержит подложку с выращенной периодической многослойной...
Тип: Изобретение
Номер охранного документа: 0002477503
Дата охранного документа: 10.03.2013
20.05.2013
№216.012.407d

Люминесцирующее кварцевое стекло

Изобретение относится к легированным стеклам, в частности к Yb-содержащему кварцевому стеклу, полученному по золь-гель процессу, которое может использоваться в качестве активного материала лазеров и усилителей инфракрасного диапазона. Техническим результатом изобретения является создание стекла...
Тип: Изобретение
Номер охранного документа: 0002482079
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49a8

Способ измерения импульсного давления и устройство для его осуществления

Устройство для осуществления способа измерения импульсного давления содержит источник, приемник света и приемный корпус. Приемный корпус выполнен в виде жесткого элемента с пропускающим регистрируемые возмущения окном, в котором зафиксированы выход источника и вход приемника света либо торцы...
Тип: Изобретение
Номер охранного документа: 0002484436
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b4f

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком...
Тип: Изобретение
Номер охранного документа: 0002484861
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.5427

Способ получения поверхностно-привитого полимера на поверхности полимерной пленки

Изобретение относится к модификации поверхности полимерных пленок поверхностно-привитыми полимерами. Способ получения поверхностно-привитого полимера полиакриловой кислоты на поверхности полиэтиленовых или полипропиленовых пленок осуществляют фотоиндуцированной прививочной полимеризацией из...
Тип: Изобретение
Номер охранного документа: 0002487146
Дата охранного документа: 10.07.2013
20.08.2013
№216.012.600d

Люминесцирующее стекло

Изобретение относится к легированным стеклам, которые могут использоваться в качестве антистоксовых визуализаторов ИК-излучения с λ≈0,89-0,99 мкм, активной среды усилителей и лазерных преобразователей, функционирующих в полосе антистоксовой люминесценции, а также для визуального контроля...
Тип: Изобретение
Номер охранного документа: 0002490221
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.65bc

Фотоэлемент

Изобретение относится к преобразователям энергии электромагнитного излучения в электрическую энергию и может быть использовано в производстве солнечных элементов. Фотоэлемент состоит из двух или более монослоев полупроводниковых (ПП) сферических частиц, одна часть которых имеет один тип...
Тип: Изобретение
Номер охранного документа: 0002491681
Дата охранного документа: 27.08.2013
20.10.2013
№216.012.75e0

Люминесцирующее кварцевое стекло

Изобретение относится к оптическим материалам, в частности к составам активированных стекол, полученных золь-гель способом, которые могут использоваться в качестве активных элементов лазеров и суперлюминесцентных излучателей, функционирующих в области максимальной спектральной эффективности...
Тип: Изобретение
Номер охранного документа: 0002495836
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.7ac4

Способ измерения импульсного давления среды и устройство для его осуществления (варианты)

Изобретение относится к области техники измерения импульсных давлений и может найти широкое применение при создании систем акустического мониторинга окружающей среды. В способе измерения импульсного давления для модуляции измерительного луча используют изменения оптической длины его пути в...
Тип: Изобретение
Номер охранного документа: 0002497090
Дата охранного документа: 27.10.2013
+ добавить свой РИД