×
20.05.2015
216.013.4b6d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НЕКАНЦЕРОГЕННОГО АРОМАТИЧЕСКОГО ТЕХНОЛОГИЧЕСКОГО МАСЛА

Вид РИД

Изобретение

№ охранного документа
0002550823
Дата охранного документа
20.05.2015
Аннотация: Изобретение относится к нефтехимической либо нефтеперерабатывающей промышленности. Изобретение касается способа получения неканцерогенного ароматического технологического масла, содержащего менее 3,0% экстракта ПЦА по методу IP-346, включающего очистку масляных фракций нефти селективными растворителями и выделение экстракта, дополнительную обработку экстракта полярным растворителем и получение рафината в качестве целевого продукта, в качестве полярного растворителя используют смесь циклического карбоната с сорастворителем, где сорастворителем является вещество или несколько веществ, выбранных из группы: фенолы, эфиры, нитрилы, амиды, лактамы. Технический результат - более эффективный способ получения неканцерогенного ароматического технологического масла с высоким содержанием ароматических углеводородов (более 75%) и низким содержанием канцерогенных, мутагенных, токсичных веществ. 2 з.п. ф-лы, 1 табл., 8 пр.

Настоящее изобретение относится к нефтехимической либо нефтеперерабатывающей промышленности и может найти применение при получении нефтяных пластификаторов синтетического каучука и шин.

В соответствии с Директивой 2005/69/ЕС Европейского парламента и совета европейского союза от 16 ноября 2005 г. нефтяные масла-пластификаторы не могут поступать в продажу и использоваться в производстве шин и их компонентов на территории ЕС с 01.01.2010 г., если они содержат более 3,0% ПЦА по методике IP-346:1998.

Технологические масла (пластификаторы) для бутадиенстирольных каучуков и шин с высоким содержанием ароматических углеводородов (содержание ароматического углерода более 25% по ASTM D 2140) получают методом очистки экстрактов масляных фракций нефти селективными растворителями.

В связи с возросшим потреблением таких пластификаторов необходимо увеличивать производительность установок, а также повышать экологическую безопасность и снижать потребление энергии и других ресурсов при их производстве.

Известен способ получения технологических масел методом двухступенчатой экстракции, описанный в патенте № DE 60013106 D.

В качестве селективного растворителя используется фурфурол, фенол, N-метилпирролидон.

Недостатками известного процесса являются сложность процесса и токсичность растворителей.

Наиболее близким к предлагаемому изобретению является способ получения пластификатора, защищенные патентом № ЕА 20060000425. В качестве селективного растворителя используется диметилсульфоксид.

Сущность изобретения заключается в том, что экстракт очистки масляных фракций нефти селективными растворителями предварительно смешивают с парафино-нафтеновым разбавителем и обрабатывают диметилсульфоксидом при объемном соотношении экстракт:разбавитель:диметилсульфоксид, равном 1:0,5:1, и при температуре 40-55°C, а полученный рафинат после отгонки разбавителя используют в качестве целевого продукта. Экстракт представляет собой дистиллятный экстракт селективной очистки базовых масел.

Изобретение позволяет получить неканцерогенное ароматическое технологическое масло за счет снижения содержания канцерогенных полициклических ароматических соединений.

Недостатком является сложность технологии из-за использования парафино-нафтенового разбавителя, низкий выход целевого продукта, а также низкие эксплуатационные характеристики диметилсульфоксида, такие как высокая коррозионная активность, низкая химическая стабильность, что приводит к образованию значительного количества дурнопахнущих сернистых соединений. Задачей настоящего изобретения является разработка нового более эффективного способа получения неканцерогенного ароматического технологического масла с высоким содержанием ароматических углеводородов (более 75%) и низким содержанием канцерогенных, мутагенных, токсичных веществ. Технический результат достигается повышением эффективности процесса за счет отказа от парафино-нафтенового разбавителя при получении неканцерогенного ароматического технологического масла из остаточных экстрактов, что существенно упрощает регенерацию экстрагента из рафинатного раствора, а также применением высокоселективного, химически стабильного, экологически безопасного некоррозионного растворителя.

Указанный результат достигается тем, что в способе получения неканцерогенного ароматического технологического масла, содержащего менее 3,0% экстракта ГИДА по методу IP-346, включающем очистку масляных фракций нефти селективными растворителями и выделение экстракта, дополнительную обработку экстракта полярным растворителем и получение рафината в качестве целевого продукта, в качестве полярного растворителя используют смесь циклического карбоната с сорастворителем, при этом циклический карбонат представляет собой этиленкарбонат или пропиленкарбонат или их смесь, а сорастворитель представляет собой одно или несколько из следующих веществ:

1) Фенолы (фенол, крезолы).

2) Эфиры (целлозольвы, карбитолы, диоксан).

3) Нитрилы (ацетонитрил, метоксипропионитрил).

4) Амиды (диметилформамид, диметилацетамид, N-формилморфолин).

5) Лактамы (N-метилпирролидон).

Наиболее предпочтительным циклическим карбонатом является пропиленкарбонат, а сорастворителем является N-метилпирролидон.

Указанным полярным растворителем обрабатывают сырье, при этом сырье представляет собой экстракт селективной очистки масел, поученный на стадии очистки масляных фракций. Полученный в результате дополнительной обработки рафинатный раствор направляют на стадию регенерации растворителя из рафинатного раствора. Экстрактный раствор направляют на стадию регенерации растворителя из экстрактного раствора.

Соотношение сырье:полярный растворитель зависит от подаваемого на очистку сырья и находится в интервале 1:1÷5. Соотношение циклический карбонат:сорастворитель зависит от подаваемого на очистку сырья и находится в интервале 1:0,05÷1.

Установка для получения неканцерогенного ароматического технологического масла состоит из экстрактора, представляющего собой (но не только) колонный аппарат, снабженный устройством для контакта фаз. В качестве контактного устройства могут использоваться тарелки, регулярная и нерегулярная насадка, устройство для механического перемешивания фаз. В нижней части колонны установлено устройство для регулирования уровня раздела фаз.

Способ получения неканцерогенного ароматического технологического масла осуществляют следующим образом. При очистке масляных фракций нефти и деасфальтизата полярными растворителями - фенолом, N-метилпирролидоном или фурфуролом известными способами выделяют экстракты - остаточный и дистиллятные.

Экстракт селективной очистки масляных фракций нефти направляют в нижнюю часть экстрактора для дополнительной обработки. Экстрактор содержит контактное устройство, выполненное известным способом (ротор с дисками, регулярную насадку, насыпную насадку или перфорированные тарелки) для обеспечения эффективного массообмена, и имеет отстойные зоны в нижней и верхней частях для разделения легкой (рафинатной) и тяжелой (экстрактной) фаз. Диаметр и высота экстрактора зависят от требуемой производительности и количества теоретических ступеней контакта для обеспечения наилучшего разделения компонентов исходного экстракта.

В верхнюю часть экстрактора подается полярный растворитель, представляющий собой смесь циклического карбоната с сорастворителем при температуре, обеспечивающей требуемую степень очистки, при этом температура низа экстрактора на 10-20°С ниже температуры верха. Соотношение сырьевой смеси и полярного растворителя на стадии дополнительной обработки находится в диапазоне 1:1÷5.

С низа экстрактора через устройство для регулирования уровня раздела фаз выводится экстрактный раствор, содержащий полярный растворитель, полициклические ароматические углеводороды, смолы и асфальтены. С верха экстрактора выходит рафинатный раствор, содержащий рафинат, полярный растворитель. Рафинат, выделенный из рафинатного раствора известными методами, применяют в качестве технологического масла (пластификатора). Экстракт, полученный отделением полярного растворителя от экстрактного раствора известными способами, может быть использован в качестве компонента котельного топлива, в производстве битума и для других целей.

Пример 1 (сравнительный по прототипу)

Для экстракции использовалась колонна, состоящая из двух стеклянных царг, заполненных металлической насадкой и имеющих рубашки для обогрева или охлаждения.

Температура в колонне поддерживалась с помощью двух термостатов, один из которых обогревал верхнюю царгу, другой - нижнюю царгу.

Экстракт, полученный в результате селективной очистки вакуумного газойля фенолом, содержащий 10% полициклических ароматических углеводородов (ПЦА) по методу IP-346 и 32,5% ароматического углерода Сa, после разбавления парафино-нафтеновым разбавителем дозировочным насосом подавался в нижнюю часть экстракционной колонны. Диметилсульфоксид дозировочным насосом подавался в верхнюю часть экстракционной колонны в массовом соотношении экстракт:парафино-нафтеновый растворитель:диметилсульфоксид - 1:0,5:1. Температура вверху колонны 55°C, внизу колонны - 40°C.

Сверху колонны выводился рафинатный раствор, содержащий рафинат, парафино-нафтеновый разбавитель и диметилсульфоксид. Снизу колонны через регулятор уровня раздела фаз выводился экстрактный раствор, содержащий диметилсульфоксид, экстракт ПЦА и смол. После отгонки разбавителя и диметилсульфоксида получают рафинат, использующийся в качестве неканцерогенного ароматического технологического масла, и экстракт, содержащий ПЦА с тремя и более ароматическими кольцами и смолы, который является побочным продуктом. Полученное неканцерогенное ароматическое технологическое масло анализировали на содержание экстракта ПЦА и содержание ароматического углерода Ca.

Содержание экстракта ПЦА определяли по методу IP-346. Содержание ароматического углерода Ca определяли по методу ASTM D 2140.

Пример 2

Сырье, используемое в примере 1, подвергали обработке полярным растворителем на установке, описанной в примере 1. В качестве растворителя использовалась смесь пропиленкарбоната и фенола в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 3

Процесс дополнительной обработки экстракта проводили по примеру 2 описания. В качестве растворителя использовалась смесь пропиленкарбоната и этилцеллозольва в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 4

Процесс дополнительной обработки экстракта проводили по примеру 2 описания. В качестве растворителя использовалась смесь пропиленкарбоната и ацетонитрила в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 5

Процесс дополнительной обработки экстракта проводили по примеру 2 описания. В качестве растворителя использовалась смесь пропиленкарбоната и диметилформамида в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 6

Процесс дополнительной обработки экстракта проводили по примеру 2 описания. В качестве растворителя использовалась смесь пропиленкарбоната и N-метилпирролидона в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 7

Процесс дополнительной обработки экстракта проводили по примеру 6 описания. В качестве растворителя использовалась смесь этиленкарбоната и N-метилпирролидона в соотношении 1:0,1. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Пример 8

Процесс дополнительной обработки экстракта проводили по примеру 2 описания. В качестве растворителя использовалась смесь пропиленкарбоната, мета-крезола и пара-крезола в соотношении 1:0,07:0,03. Массовое соотношение экстракта и полярного растворителя на стадии дополнительной обработки 1:2,5. Температура вверху колонны 110°C, внизу колонны - 100°C.

Результаты очистки экстракта полярными растворителями приведены в таблице 1.

Таким образом, предложен новый более эффективный способ получения неканцерогенного ароматического технологического масла с содержанием экстракта ПЦА менее 3,0% по IP-346 и содержанием ароматического углерода по ASTM D 2140 не менее 25%.

Способ позволяет получать неканцерогенное ароматическое технологическое масло с высоким выходом, не применяя парафино-нафтеновый разбавитель, что существенно упрощает технологию и снижает капитальные затраты.

Для специалистов могут быть очевидны и иные варианты осуществления изобретения, не меняющие его сущности, как она раскрыта в настоящем описании. Соответственно, изобретение следует считать ограниченным по объему только нижеследующей формулой изобретения.

Источник поступления информации: Роспатент

Showing 21-25 of 25 items.
25.08.2017
№217.015.b1df

Электрохимический способ измерения концентрации метана в азоте

Использование: для получения возможности измерения содержания метана в азоте в широком диапазоне температур и концентраций при одновременном контроле работоспособности электрохимической ячейки в процессе измерений. Сущность изобретения заключается в том, что в поток анализируемого газа,...
Тип: Изобретение
Номер охранного документа: 0002613328
Дата охранного документа: 16.03.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
29.12.2017
№217.015.f8cd

Способ получения изопропилбензола

Изобретение относится к способу получения изопропилбензола алкилированием бензола пропиленом и переалкилированием полиалкилибензолов. Способ характеризуется тем, что реакции алкилирования и переалкилирования проводят раздельно, причем реакцию алкилирования проводят в жидкой фазе с применением...
Тип: Изобретение
Номер охранного документа: 0002639706
Дата охранного документа: 22.12.2017
19.01.2018
№218.016.0ad7

Пневматический ручной ударный инструмент для граверных работ

Изобретение относится к пневматическому ручному ударному инструменту для граверных работ. Инструмент содержит цилиндрический корпус с кольцевой перемычкой на внутренней поверхности корпуса и сквозными отверстиями для прохода воздуха. В корпусе расположен двухступенчатый поршень с продольным и...
Тип: Изобретение
Номер охранного документа: 0002632307
Дата охранного документа: 03.10.2017
20.01.2018
№218.016.1e75

Способ очистки отходящих газов окисления изопропилбензола

Изобретение относится к нефтехимической и нефтеперерабатывающей промышленности. Способ очистки отходящих газов окисления изопропилбензола заключается в извлечении изопропилбензола с помощью низкотемпературной конденсации, причем для создания низких температур используют энергию отходящих газов...
Тип: Изобретение
Номер охранного документа: 0002640781
Дата охранного документа: 11.01.2018
Showing 31-33 of 33 items.
14.05.2023
№223.018.552f

Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси

Изобретение относится к аналитической технике и может быть использовано для измерения содержания в газовых смесях предельных углеводородов, таких как метан и этан, а также содержание в них примеси водорода. Амперометрический датчик для измерения концентрации метана и примеси водорода в...
Тип: Изобретение
Номер охранного документа: 0002735628
Дата охранного документа: 05.11.2020
21.05.2023
№223.018.6b16

Сенсор для измерения концентрации кислорода в газовой смеси

Изобретение относится к аналитической технике, в частности к сенсорам для анализа газовых сред и может быть использовано для измерения концентрации кислорода в газовых смесях в широком диапазоне. Сенсор содержит три диска, крайние из которых выполнены из кислородопроводящего твердого...
Тип: Изобретение
Номер охранного документа: 0002795670
Дата охранного документа: 05.05.2023
05.06.2023
№223.018.7744

Способ активации электродов электрохимических устройств на твердых электролитах

Изобретение относится к области электрохимической энергетики и может быть использовано в производстве высокотемпературных электрохимических устройств на основе твердых электролитов, таких, например, как топливные элементы, электролизеры, электрохимические насосы, сенсоры и т.п., работающие при...
Тип: Изобретение
Номер охранного документа: 0002760430
Дата охранного документа: 25.11.2021
+ добавить свой РИД