×
10.05.2015
216.013.487d

Результат интеллектуальной деятельности: СПОСОБ ПЕРЕРАБОТКИ МЕДЕЭЛЕКТРОЛИТНОГО ШЛАМА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии цветных и благородных металлов, в частности к переработке шламов электролитического рафинирования меди. Способ переработки медеэлектролитного шлама включает обезмеживание, обогащение и выщелачивание селена из обезмеженного шлама или продуктов его обогащения в щелочном растворе. Выщелачивание селена проводят в растворе, содержащем восстановитель, в качестве которого используют водорастворимые органические или неорганические соединения, обеспечивающие нормальный окислительно-восстановительный потенциал системы в щелочной среде положительнее -0,3 В по отношению к водородному электроду. При этом выщелачивание осуществляют в растворе, содержащем 50-200 г/л сахара в качестве восстановителя и 20-100 г/л щелочи, при температуре 70-90°C. Техническим результатом является повышение скорости и предельной степени выщелачивания селена. 1 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к области металлургии цветных и благородных металлов, в частности к переработке шламов электролитического рафинирования меди.

Сложность состава шламов, многообразие химических соединений и фаз обусловливают наличие широкого спектра технологических схем переработки в целом и, в частности, приемов извлечения благородных металлов, селена и теллура в виде товарных продуктов. На большинстве предприятий проводят последовательное удаление из шлама меди и никеля, выделение селена и теллура с выпуском их в виде товарных продуктов. В некоторых случаях из шлама гидрометаллургическими методами выделяют свинец, но в любом случае основным компонентом предварительно обработанного шлама является селенид серебра Ag2Se.

Заключительная стадия переработки шлама - плавка, основной задачей которой является получить золото-серебряный сплав. Плавка сопровождается образованием большого количества пылегазовых продуктов и шлаков. Оборот драгметаллов в этих продуктах является существенным недостатком плавки (1. Металлургия благородных металлов: В 2-х кн. Кн. 1 / Ю.А. Котляр, М.А. Меретуков, Л.С. Стрижко. - М.: МИСИС, «Руда и металлы», 2005. г., - 432 с. 2. Масленицкий И.Н., Чугаев Л.Г. Металлургия благородных металлов. - М.: Металлургия, 1987. - 366 с. 3. Меретуков М.А., Орлов A.M. Металлургия благородных металлов. Зарубежный опыт. - М.: Металлургия, 1990. - 416).

Дополнением или альтернативой плавки могут рассматриваться различные гидрометаллургические технологии переработки шламов, основанные на применении сульфатизирующих, окислительных, автоклавных и электрохимических процессов. В частности, для извлечения из шламов селена и теллура используют азотнокислое выщелачивание, гидрохлорирование, автоклавное выщелачивание в щелочных растворах (4. Беленький A.M., Петров Г.В., Бодуэн А.Я., Куколевский А.С.Азотнокислое выщелачивание медеэлектролитных шламов // Записки Горного института: Новые технологии в металлургии, химии, обогащении и экологии. - СПб, 2006. -Т. 169. - С.53-56; 5. Пат. 2215801 РФ, МПК7 С22В 11/00. Способ получения селективных концентратов благородных металлов / Грейвер Т.Н., Волков Л.В., Шнеерсон Я.М. и др.; опубл. 10.11.2003). Отличительной особенностью перечисленных методов является окислительный характер воздействия используемых реагентов на халькогениды, при этом продуктами окисления являются селенит - и селенат, теллурит - и теллурат ионы, Указанные процессы сопряжены с использованием агрессивных реагентов и сложной аппаратуры, не обеспечивают селективность.

Известен способ, выбранный в качестве прототипа и включающий выщелачивание селена в щелочном растворе, при этом выщелачивание селена проводят в растворе, содержащем восстановитель, в качестве которого используют электроотрицательные металлы, например алюминий, цинк (6. SU 165309А, МПК С22В 61/00, от 23.11.1964).

Рассмотренный способ принципиально отличается восстановительным характером переработки сырья.

В основе способа реакция, протекающая в объеме реакционной массы:

l,5Ag2Se+4NaOH+Al=3Ag+1.5Na2Se+NaAlO2+2H2O

l,5Ag2Se+4NaOH+Zn=3Ag+1.5Na2Se+Zn(OH)2+2H2O

в результате которой серебро восстанавливается до металла и остается в порошкообразном виде в составе твердого продукта, а селен переходит в раствор в форме селенида натрия Na2Se. Из щелочных растворов селен извлекают известными методами с получением товарного продукта.

Достоинствами рассмотренного способа являются «мягкость» режимов, достаточно высокая скорость и высокое извлечение селена из шлама. Основным недостатком прототипа является накопление алюминия (или цинка) в растворе и необходимость утилизации таких растворов. Кроме того, при взаимодействии щелочных растворов с цементирующими металлами велика вероятность выделения водорода:

NaOH+Al+H2O=NaA1O2+1,5Н2

Данная нежелательная реакция приводит к непродуктивному расходу металлов и выделению взрывоопасного газа.

Настоящее изобретение направлено на устранение указанных недостатков. Технический результат заключается при замене восстановителя.

Технический результат достигается при использовании способа, включающего обезмеживание, выщелачивание селена из обезмеженного шлама или продукта его обогащения в щелочном растворе, отличающегося тем, что выщелачивание селена проводят в растворе, содержащем восстановитель, в качестве которого используют водорастворимые органические или неорганические соединения, обеспечивающие нормальный окислительно-восстановительный потенциал системы в щелочной среде положительнее -0,3 В по отношению к водородному электроду. В частности, выщелачивание селена проводят в растворе, содержащем 50-200 г/л сахара, 20-100 г/л щелочи, при температуре 70-90°С.

Принципиальное отличие предлагаемого способа от прототипа сводится к восстановительной обработке шлама реагентами, при использовании которых не происходит выделение водорода и накопление нежелательных продуктов в условиях оборота растворов. Термодинамическим анализом установлено, что основной компонент обезмеженного шлама -серебро - может быть восстановлен непосредственно из твердой фазы селенида разнообразными восстановителями. С большей вероятностью процесс протекает в щелочной среде, в которой селен образует хорошо растворимый селенид натрия. Теоретически твердофазное восстановление реализуется при использовании гидразина:

2Ag2Se+N2H4+4NaOH=4Ag+4H2O+2Na2Se+N2; сульфита натрия:

Ag2Se+2NaOH+Na2SO3=2Ag+Na2Se+Na2SO4+H2O; и некоторых других реагентов.

Расчетами и лабораторными исследованиями показано, что указанный процесс требует некоторой энергии активации и на практике в щелочной среде реализуется при достижении окислительно-восстановительного потенциала системы, более положительного, чем -0,35 В. Данная характеристика определяется, прежде всего, произведением растворимости селенида серебра и зависит от характера образующихся продуктов реакции.

Расчетами и практикой установлено, что при использовании газообразных (пропан, водород) или твердых (уголь, мука) восстановителей процесс невозможен. Поэтому выбор ограничивается водорастворимыми реагентами.

При выборе восстановителя следует исходить из его восстанавливающей способности (потенциала), доступности (стоимости), возможности и сложности переработки образующихся продуктов, экологической чистоты и безопасности при использовании. С учетом данных соображений существенными преимуществами в качестве восстановителя в предлагаемом способе обладает сахар и его технические производные. Процесс в данном случае сопровождается образованием воды и диоксида углерода:

C12H22O11+24Ag2Se+48NaOH=48Ag+24Na2Se+12CO2(g)+35H2O

Стехиметрический и практический расход сахара на протекание данной реакции не превышает 1 г на 15 г селенида серебра.

Увеличение содержания сахара в растворе от 50 до 200 г/л ускоряет реакцию. При более высоких концентрациях вязкость растворов возрастает и процесс замедляется. Концентрация щелочи оказывает положительное влияние в диапазоне 20-100 г/л. Нагрев реакционной смеси благоприятен, но излишний нагрев приводит к выделению токсичных и агрессивных паров.

Примером реализации предложенного способа могут быть результаты следующих опытов.

Пример

Проводили выщелачивание селена из обезмеженного шлама электролиза меди (УГМК), содержащего 29% Pb; 19% Ag; 7,5% Se. В других опытах из обезмеженного шлама флотацией отделяли окисленную фазу (сульфат свинца) от халькогенидов и благородных металлов. Выщелачивание селена проводили из флотоконцентрата, содержащего более 80% селенида серебра Ag2Se.

В 100 мл раствора щелочи NaOH (50 г/л) добавляли 10 г шлама или флотоконцентрата и растворы, содержащие по 10 г различных восстановителей. Реакционную смесь нагревали до температуры 80°С и проводили выщелачивание с перемешиванием в течение 1 часа. В ходе процесса измеряли окислительно-восстановительный потенциал системы по стандартной методике с использованием платинового и х.с.э. сравнения. По окончании процесса раствор отделяли от нерастворенного остатка, определяли в нем содержание селена и рассчитывали степень выщелачивания. Результаты опытов представлены в таблице 1.

Во второй серии опытов проводили восстановительное выщелачивание шлама сахаром при различных параметрах в течение 15 минут; при этом сравнивали скорости процессов. При тех же условиях процесс вели в течение 1 часа, в нерастворенном остатке определяли содержание селена и оценивали степень выщелачивания селена. Результаты опытов приведены в таблице 2. Для сравнения был проведен опыт по способу-прототипу, при этом в качестве восстановителя использовали порошкообразный алюминий и гранулированный цинк.

Сопоставительный анализ известных технических решений, в т.ч. способа, выбранного в качестве прототипа, и предлагаемого изобретения позволяет сделать вывод, что именно совокупность заявленных признаков обеспечивает достижение усматриваемого технического результата. Реализация предложенного технического решения дает возможность исключить выделение водорода при выщелачивании селена и необходимость утилизации алюминий (цинк)содержащих растворов.

Источник поступления информации: Роспатент

Showing 31-33 of 33 items.
20.03.2019
№219.016.e49d

Способ грануляции меди

Изобретение относится к цветной металлургии, в частности, к способам получения медных гранул для производства медного купороса. В предложенном способе, включающем слив расплавленной меди струями в воду и диспергирование их под слоем воды, согласно изобретению диспергирование осуществляют двумя...
Тип: Изобретение
Номер охранного документа: 02237546
Дата охранного документа: 10.10.2004
29.03.2019
№219.016.eef6

Способ изготовления платинотитановых анодов

Изобретение относится к металлургии, химии, в частности к прикладной электрохимии - к разработке способа изготовления платинотитановых анодов. Способ включает гальваническое нанесение платинового покрытия на титановую основу из аммиачного электролита на основе соли [Pt(NH)(NO)]. При этом...
Тип: Изобретение
Номер охранного документа: 0002267564
Дата охранного документа: 10.01.2006
29.04.2019
№219.017.3f9d

Электролит для получения медного электролитического порошка

Изобретение относится к порошковой металлургии для получения порошка меди. Электролит содержит медный купорос безводный, серную кислоту и в качестве флокулянта сополимер акриламида с акриловой кислотой при следующем соотношении компонентов, г/л: медный купорос (безводный) - 55-69, серная...
Тип: Изобретение
Номер охранного документа: 0002254209
Дата охранного документа: 20.06.2005
Showing 31-40 of 42 items.
21.03.2019
№219.016.ebc7

Способ переработки сурьмусодержащего сырья

Изобретение относится к переработке сурьмусодержащего сырья. Способ включает приведение в контакт исходного сурьмусодержащего сырья и алюминиевой стружки с водным раствором щелочи в режиме перколяции с обеспечением цементации сурьмы из сурьмусодержащих соединений алюминием. Расход алюминия...
Тип: Изобретение
Номер охранного документа: 0002682365
Дата охранного документа: 19.03.2019
29.03.2019
№219.016.eef6

Способ изготовления платинотитановых анодов

Изобретение относится к металлургии, химии, в частности к прикладной электрохимии - к разработке способа изготовления платинотитановых анодов. Способ включает гальваническое нанесение платинового покрытия на титановую основу из аммиачного электролита на основе соли [Pt(NH)(NO)]. При этом...
Тип: Изобретение
Номер охранного документа: 0002267564
Дата охранного документа: 10.01.2006
19.04.2019
№219.017.1d71

Способ изготовления коллекторных пластин

Изобретение относится к изготовлению коллекторных пластин из медного электролитического порошка. Способ включает приготовление шихты, прессование трапецеидального профиля пластин на скошенных пуансонах, последующие операции спекания и калибрования. Проводят двукратную калибровку пластин с...
Тип: Изобретение
Номер охранного документа: 0002684995
Дата охранного документа: 16.04.2019
20.06.2019
№219.017.8d32

Способ переработки концентрата сурьмяно-оловянного вакуумной дистилляцией

Изобретение относится к металлургии цветных металлов и может быть использовано при разделении компонентов Sb-Sn сплава (концентрат сурьмяно-оловянный). Проводят переработку концентрата сурьмяно-оловянного вакуумной дистилляцией. При этом осуществляют селективное разделение сурьмы от олова...
Тип: Изобретение
Номер охранного документа: 0002692008
Дата охранного документа: 19.06.2019
05.07.2019
№219.017.a57f

Способ переработки вакуумной дистилляцией шлака силикатного восстановленного, содержащего сурьму, свинец и серебро

Изобретение относится к металлургии цветных и драгоценных металлов и может быть использовано при разделении компонентов Sb-Pb-Ag сплава (шлак силикатный восстановленный). Проводят последовательные стадии вакуумной дистилляции при давлении 0,133-4,4 Па и времени процесса 10 ч. Сначала при...
Тип: Изобретение
Номер охранного документа: 0002693670
Дата охранного документа: 03.07.2019
05.07.2019
№219.017.a65c

Способ электролитического рафинирования меди

Изобретение относится к электролитическому рафинированию меди, содержащей примеси в количестве до 2 мас.%. Способ включает формирование из меди анода и электролитическое растворение анода в сернокислотном растворе с осаждением катодной меди. Формируют насыпной анод из гранул меди крупностью...
Тип: Изобретение
Номер охранного документа: 0002693576
Дата охранного документа: 03.07.2019
27.08.2019
№219.017.c3e9

Способ переработки серебристой пены вакуумной дистилляцией

Изобретение относится к металлургии цветных и драгоценных металлов и может быть использовано при разделении компонентов серебристой пены. В способе переработки серебристой пены вакуумной дистилляцией осуществляют последовательные стадии вакуумной возгонки свинца и цинка в течение 10 ч при...
Тип: Изобретение
Номер охранного документа: 0002698237
Дата охранного документа: 23.08.2019
16.01.2020
№220.017.f568

Способ восстановления меди из сульфидных соединений

Изобретение относится к металлургии меди и может быть использовано для восстановления меди из ее сульфидных природных соединений и соединений, присутствующих в технологических продуктах, например в штейнах и сульфидных шламах. Восстановление меди из сульфидных продуктов ведут при контакте...
Тип: Изобретение
Номер охранного документа: 0002710810
Дата охранного документа: 14.01.2020
23.02.2020
№220.018.050b

Ферроценилалкильные производные дипиразолилселенидов в качестве биологически активных соединений и способы их получения (варианты)

Изобретение относится к новым биологически активным ферроценилалкильным производным С,С'-дипиразолилселенидов общей формулы (I), где R представляет собой H или СН или СН, R представляет собой СН, CF, СН, R представляет собой СН, CF, СН. Кроме того, изобретение относится к вариантам способа их...
Тип: Изобретение
Номер охранного документа: 0002714891
Дата охранного документа: 20.02.2020
09.04.2020
№220.018.1381

Способ очистки оборотных цинковых растворов выщелачивания от лигносульфонатов

Изобретение относится к гидрометаллургии цинка, также предлагаемый способ может быть использован для очистки сточных вод. Способ очистки сульфатного цинкового раствора от примесей цементацией цинковой пылью заключается в предварительном контактировании раствора с твердым веществом,...
Тип: Изобретение
Номер охранного документа: 0002718440
Дата охранного документа: 06.04.2020
+ добавить свой РИД