×
27.04.2015
216.013.46bd

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ РАСТВОРИТЕЛЕЙ В МАССИВНЫХ ИЗДЕЛИЯХ ИЗ ОРТОТРОПНЫХ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Использование: для исследования процессов массопереноса и для определения коэффициентов диффузии растворителей в изделиях из ортотропных капиллярно-пористых материалов в строительной, химической и других отраслях промышленности. Сущность изобретения заключается в том, что способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов заключается в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по заданной формуле. Технический результат: обеспечение возможности повышения точности контроля и определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала. 2 табл.
Основные результаты: Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов, заключающийся в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, отличающийся тем, что импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: где τ - время достижения максимума на кривой изменения ЭДС гальванического преобразователя;r - расстояние от линии импульсного воздействия до прямых расположения электродов гальванического преобразователя.

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии растворителей в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях промышленности. Ортотропные материалы характеризуются существенным различием свойств в перпендикулярных направлениях, например вдоль и поперек волокон.

Известен способ определения коэффициента диффузии влаги в массивных изделиях из капиллярно-пористых материалов (Современные энергосберегающие тепловые технологии (сушка и тепловые процессы) СЭТТ - 2005. - Мат-лы второй научн.-практ. конф. - М. - 2005, Т. 2, с. 315-318). В методе используется модель взаимодействия двух полубесконечных тел. Для реализации метода изготавливают три одинаковых образца в форме параллелепипедов, имеющих одну поверхность массообмена образцов друг с другом - плоскость контакта. Остальные поверхности образцов влагоизолируют. В одном из образцов (образец №2) делают отверстия для размещения двух электродов гальванического преобразователя локального влагосодержания в плоскости, отстоящей на заданном расстояния от поверхности массообмена данного образца с образцами №1 и №3. В образцах №2 и №3 перед началом эксперимента создают одинаковое, а в образце №1 несколько большее равномерное влагосодержание. В процессе эксперимента образец №2 приводят в соприкосновение по плоскости массообмена сначала с образцом №1, затем образец №1 меняют на образец №3, получая тем самым импульсное воздействие от плоского источника влаги в неограниченной среде.

Недостатками этого способа являются необходимость подготовки образцов заданной конфигурации, что связано с затратами времени и средств; осуществление разрушающего контроля при размещении электродов датчика во внутренних слоях образца; необходимость создания различных значений равномерного влагосодержания в образцах значительной толщины, влагоизолированных по всем поверхностям, кроме поверхности массообмена, что связано со значительными затратами времени.

Наиболее близким является способ определения коэффициента диффузии растворителей в массивных изделиях из капиллярно-пористых материалов (патент РФ 2492457, МПК11 G01N 27/26, G01N 13/00, 10.09.2013, Бюл. №25.). В массивном изделии из капиллярно-пористых материалов, имеющем по крайней мере одну плоскую поверхность (например, цементные или гипсовые плиты), создают равномерное начальное распределение растворителя. Затем производят импульсное точечное соприкосновение плоской поверхности исследуемого изделия с источником растворителя, после чего гидроизолируют эту поверхность, располагают электроды гальванического преобразователя на этой поверхности по концентрической окружности относительно точки подачи дозы растворителя, измеряют изменение во времени ЭДС гальванического преобразователя и рассчитывают искомый коэффициент диффузии по установленной зависимости.

Недостатками этого способа являются низкая точность определения коэффициента диффузии растворителей в изделиях из ортотропных материалов вследствие неадекватности используемого математического описания процесса массопереноса в массивном изделии при точечном импульсном воздействии из-за существенного различия свойств материала в различных направлениях; дополнительная погрешность в случае соизмеримости размеров пор с размерами электродов гальванического преобразователя, когда исследуемый материал не может считаться статистически однородным, выражающаяся, например, в том, что не обеспечивается достаточно надежный контакт электродов преобразователя с контролируемым изделием при попадании точечных электродов в поры исследуемого материала; отсутствие возможности определения коэффициента диффузии в различных направлениях ортотропного капиллярно-пористого материала, например древесины, вдоль и поперек волокон.

Техническая задача предлагаемого технического решения предполагает повышение точности контроля и обеспечение возможности определения коэффициента диффузии растворителя в различных направлениях ортотропного капиллярно-пористого материала.

Техническая задача достигается тем, что в способе определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов, имеющих по крайней мере одну плоскую поверхность с существенным различием свойств материала в перпендикулярных направлениях (например, теплоизолирующих блоков с ориентированным расположением волокон, отформованных с использованием неорганического связующего), включающем создание в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя (в том числе и нулевого), приведение плоской поверхности образца в контакт с источником дозы растворителя, измерение изменения во времени сигнала гальванического преобразователя, определение времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчет коэффициента диффузии. В отличие от прототипа (патент РФ 2492457, МПК11 G01N 27/26, G01N 13/00, 10.09.2013, Бюл. №25) импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, рассчитывают коэффициент диффузии растворителя в исследуемом материале по установленной зависимости, что обеспечивает повышение точности контроля и возможность определения коэффициента диффузии растворителя в различных направлениях ортотропного капиллярно-пористого материала.

Сущность предлагаемого способа заключается в следующем: к плоской поверхности массивного изделия с равномерным начальным распределением растворителя (в том числе и нулевым) прижимается зонд с импульсным линейным источником массы и расположенными с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия, на одинаковом заданном расстоянии от нее электродами гальванического преобразователя в виде прямолинейных отрезков.

Зонд имеет прямолинейный паз, в котором размещают линейный импульсный источник растворителя. После подачи импульса дозой растворителя источник удаляется из зонда, прямолинейный паз герметизируется заглушкой, а сам зонд обеспечивает гидроизоляцию поверхности образца в зоне действия источника и прилегающей к ней области контроля распространения растворителя. После подачи импульса - дозы растворителя (мгновенного «увлажнения» линии поверхности изделия) фиксируют изменение ЭДС гальванического преобразователя во времени.

Для обеспечения контроля коэффициента диффузии растворителя в различных направлениях ортотропного материала линию импульсного воздействия ориентируют в заданном направлении материала (например, при исследовании волокнистого теплоизолятора - вдоль или поперек волокон). При этом обеспечивается однонаправленный массоперенос в нужном направлении, не искаженный массопереносом в перпендикулярном к исследуемому направлении. За счет этого повышается точность контроля и возможность определения коэффициента диффузии растворителей в различных направлениях массивного ортотропного капиллярно-пористого материала.

Размеры плоского участка изделия вдоль и поперек волокон ортотропного материала, а также длину линии, по которой наносится импульсное воздействие, выбирают из условия превышения величины (20 r0+r1), где r0 - расстояние от линии расположения электродов гальванического преобразователя до линии нанесения импульсного воздействия; r1 - размер прямолинейных отрезков электродов гальванического преобразователя, контактирующих с поверхностью изделия на линиях, параллельных линии импульсного воздействия. При толщине изделия больше 10 r0 процесс распространения растворителя в массивном изделии после нанесения такого импульса описывается краевой задачей массопереноса в неограниченной среде при нанесении импульсного воздействия от линейного источника массы:

где U (r,τ) - концентрация растворителя в исследуемом изделии на расстоянии r от линейного источника импульса массы в момент времени τ; D - коэффициент диффузии растворителя; δ(r, τ) - δ - функция Дирака; ρ0 - плотность абсолютно сухого исследуемого материала; W - мощность «мгновенного» источника массы, подействовавшего в начале координат r=0, вычисляемая как отношение дозы растворителя (подведенной к контролируемому изделию) к длине линии импульсного воздействия L; U0 - начальная концентрация растворителя в исследуемом материале в момент времени τ=0.

В этом случае изменение концентрации растворителя в зоне действия источника описывается функцией:

U(r,τ)-U0=Q/(4πτ exp[r2/4Dτ]).

Расчетная формула для определения коэффициента диффузии имеет вид:

где τmax - время, соответствующее максимуму на кривой U(r0, τ) изменения влагосодержания на расстоянии r0 от источника.

В предлагаемом техническом решении для фиксирования максимума концентрации растворителя на расстоянии r0 от источника применяются миниатюрные электроды гальванического преобразователя в виде прямолинейных отрезков, которые располагают с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия. Размер r1 прямолинейных отрезков электродов гальванического преобразователя, контактирующих с поверхностью изделия, выбирается из условия десятикратного превышения размеров пор материала, чтобы исследуемый материал мог считаться статистически однородным. В этом случае повышается точность измерения за счет исключения искажений выходного сигнала гальванического преобразователя при возможном попадании рабочей части электродов в поры. Расположение электродов с двух сторон от источника позволяет снизить случайную погрешность измерения за счет усреднения процесса массопереноса растворителя в разных направлениях от источника.

ЭДС гальванического преобразователя определяется энергией связи растворителя с материалом, контактирующим с поверхностями его электродов. Так как распространение растворителя при организации данного способа осуществляется симметрично относительно линии импульсного воздействия, а линии размещения каждого из электродов находятся на одинаковом заданном расстоянии от нее, то концентрация растворителя на каждой линии расположения электродов будет одинаковой и зависящей только от расстояния r0 до линии импульсного воздействия на плоский участок изделия. Только в этом случае наблюдается однозначная связь ЭДС гальванического преобразователя с концентрацией растворителя в материале на линии, отстоящей от линейного источника на расстоянии r0.

Так как статическая характеристика гальванического преобразователя монотонна, то в момент достижения концентрацией U(r0, τ) своего максимального значения ЭДС преобразователя также достигает своего максимума. Это позволяет не проводить градуировку гальванических преобразователей по каждому исследуемому материалу и растворителю, а определять время достижения максимума на кривой изменения концентрации по времени достижения максимума ЭДС гальванического преобразователя. За счет этого существенно повышается оперативность измерения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов без их разрушения.

В таблицах 1 и 2 представлены результаты 20-кратных измерений коэффициента диффузии этанола вдоль и поперек волокон теплоизолирующих блоков, отформованных с использованием неорганического связующего, толщиной 100 мм, плотностью в сухом состоянии 420 кг/м куб. Величина импульса этанола составляла 120 микролитров, длина линии импульсного воздействия 90 мм. Размеры прямолинейных отрезков электродов гальванического преобразователя, контактирующих с исследуемым материалом, - 5 мм, расстояние от линейного источника растворителя до линий расположения электродов - 4 мм.

Погрешность результата измерения равна половине доверительного интервала и определялась следующим образом:

где - математическое ожидание случайной величины; - среднеквадратическая погрешность отдельного измерения; tα,n - коэффициент Стьюдента при доверительной вероятности α и количестве измерений n.

Проведенные экспериментальные исследования показали, что случайная погрешность результата определения коэффициента диффузии этанола вдоль и поперек волокон теплоизолятора при двадцатикратных испытаниях (tα,n=2,1 при α=0,95) составляет 9,7 и 10,5% соответственно. Длительность единичного измерения не превышает соответственно 17 и 45 минут.

Способ определения коэффициента диффузии растворителей в массивных изделиях из ортотропных капиллярно-пористых материалов, заключающийся в создании в исследуемом образце равномерного начального содержания распределенного в твердой фазе растворителя, приведении плоской поверхности образца в контакт с источником дозы растворителя, измерении изменения во времени сигнала гальванического преобразователя, определении времени достижения максимума на кривой изменения ЭДС гальванического преобразователя и расчете коэффициента диффузии, отличающийся тем, что импульсное воздействие на плоскую поверхность исследуемого изделия дозой растворителя осуществляют по прямой линии в заданном направлении ортотропного материала, выполняют электроды гальванического преобразователя в виде прямолинейных отрезков и располагают их с обеих сторон линии импульсного воздействия на прямых, параллельных линии импульсного воздействия и расположенных на одинаковом заданном расстоянии от нее, и рассчитывают искомый коэффициент по формуле: где τ - время достижения максимума на кривой изменения ЭДС гальванического преобразователя;r - расстояние от линии импульсного воздействия до прямых расположения электродов гальванического преобразователя.
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ДИФФУЗИИ РАСТВОРИТЕЛЕЙ В МАССИВНЫХ ИЗДЕЛИЯХ ИЗ ОРТОТРОПНЫХ КАПИЛЛЯРНО-ПОРИСТЫХ МАТЕРИАЛОВ
Источник поступления информации: Роспатент

Showing 11-20 of 59 items.
10.10.2014
№216.012.fbc6

Способ повышения качества структурного изображения биообъекта в оптической когерентной томографии

Изобретение относится к технологиям кодирования изображений. Техническим результатом является повышение качества структурного изображения биообъекта в оптической когерентной томографии, а именно значения отношения сигнал/шум за счет растровых усреднений. Заявлен способ получения структурного...
Тип: Изобретение
Номер охранного документа: 0002530300
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0555

Способ определения коэффициента диффузии влаги

Изобретение относится к измерительной технике и может быть использовано при исследовании процессов массопереноса в капиллярно-пористых материалах для определения коэффициентов диффузии влаги в строительных материалах и конструкциях, а также в пищевой, химической и других отраслях...
Тип: Изобретение
Номер охранного документа: 0002532763
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0587

Электробаромембранный аппарат с плоскими фильтрующими элементами

Изобретение относится к области разделения, концентрирования и очистки растворов методами электрогиперфильтрации, электромикрофильтрации, электроультрафильтрации и электронанофильтрации и может быть использовано в химической, текстильной, целлюлозно-бумажной, микробиологической, пищевой и...
Тип: Изобретение
Номер охранного документа: 0002532813
Дата охранного документа: 10.11.2014
27.11.2014
№216.013.0b9b

Устройство контроля плотности

Изобретение относится к области измерительной техники, в частности к устройствам контроля плотности твердой фазы гетерогенных систем и тел неправильной формы, и может найти применение в различных отраслях промышленности. Устройство контроля плотности выполнено в виде измерительной емкости с...
Тип: Изобретение
Номер охранного документа: 0002534379
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0ba0

Частотно-импульсный измеритель скорости изменения температуры

Изобретение относится к области температурных измерений и может быть использовано для определения скорости изменения температуры среды. Частотно-импульсный измеритель скорости изменения температуры содержит дифференциальную термопару 1 из термопар 2 и 3 с различными постоянными времени,...
Тип: Изобретение
Номер охранного документа: 0002534384
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bc0

Устройство для измерения артериального давления в условиях двигательной активности человека

Изобретение относится к медицинской технике. Устройство для измерения артериального давления в условиях двигательной активности человека содержит измерительный датчик пульсовой волны под пневмоманжетой в месте прохождения плечевой артерии и компенсационный датчик пульсовой волны на диаметрально...
Тип: Изобретение
Номер охранного документа: 0002534416
Дата охранного документа: 27.11.2014
27.11.2014
№216.013.0bcb

Устройство для измерения разности температур

Изобретение относится к области температурных измерений и может быть использовано при наземных испытаниях элементов летательных аппаратов. Устройство для измерения разности температур содержит два встречно включенных термоприемника 1 и 2, находящихся при температурах t и t в контролируемой...
Тип: Изобретение
Номер охранного документа: 0002534427
Дата охранного документа: 27.11.2014
10.12.2014
№216.013.0d12

Сушилка периодического действия для гранулированных полимерных материалов с адаптивным объемом сушильной камеры

Сушилка относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. Сушилка периодического действия для гранулированных полимерных материалов с адаптивным объемом рабочей камеры содержит питающий бункер, верхний затвор,...
Тип: Изобретение
Номер охранного документа: 0002534763
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.19bd

Способ подготовки воды заданного качества

Изобретение относится к области водоподготовки. Артезианскую воду подают в конденсатор, нагревают до температуры от 21°C до 31°C, затем подают в систему предварительной очистки от нерастворенных примесей. Далее воду подают в установку обратного осмоса, откуда выходят пермеат и концентрат....
Тип: Изобретение
Номер охранного документа: 0002538017
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.225a

Способ измерения плотности

Изобретение относится к области измерительной техники, в частности к пневматическим способам измерения плотности твердой фазы гетерогенных систем, например сыпучие, волокнистые, тканые и нетканые материалы, пористая фильтрующая керамика, газонаполненные пластмассы (поропласты) и др., а также...
Тип: Изобретение
Номер охранного документа: 0002540247
Дата охранного документа: 10.02.2015
Showing 11-20 of 80 items.
10.05.2014
№216.012.c279

Способ определения ударного объема сердца

Изобретение относится к медицине, а именно к кардиологии, кардиохирургии и функциональной диагностике. Осуществляют наложение двух токовых и двух измерительных электродов на определенные участки тела. Производят регистрацию реограммы и дифференциальной реограммы. Определяют площади между...
Тип: Изобретение
Номер охранного документа: 0002515534
Дата охранного документа: 10.05.2014
20.05.2014
№216.012.c7d3

Способ определения динамики изменения скорости оседания эритроцитов

Изобретение относится к области медицины, а именно к лабораторной клинической диагностике, и касается способа определения динамики изменения скорости оседания эритроцитов. Способ включает: смешивание исследуемой пробы крови с антикоагулянтом; забор полученного раствора крови с антикоагулянтом в...
Тип: Изобретение
Номер охранного документа: 0002516914
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8eb

Способ производства конфет функционального назначения с комбинированными корпусами

Изобретение относится к кондитерской отрасли и может быть использовано для производства конфет с комбинированными корпусами. Способ производства конфет с комбинированными желейно-сбивными корпусами включает приготовление сбивной и желейной конфетных масс, формование полученных масс поочередно...
Тип: Изобретение
Номер охранного документа: 0002517201
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cd63

Способ дифференциальной диагностики доброкачественных и злокачественных беспигментных новообразований кожи

Изобретение относится к медицине. При осуществлении способа через 3 ч после перорального введения препарата «Аласенс» в дозе 15 мг/кг массы тела получают трехканальное RGB флуоресцентное изображение зоны интереса. Оценивают долю участия красного канала в изображении опухоли. Оценивают значение...
Тип: Изобретение
Номер охранного документа: 0002518350
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d3ec

Способ производства зефира

Изобретение относится к пищевой промышленности, к ее кондитерской отрасли. Способ производства зефира включает приготовление яблочно-пектиновой смеси, сахаро-паточного сиропа и приготовление зефирной массы путем сбивания яблочно-пектиновой смеси, лактата натрия, сахара и белка с последующим...
Тип: Изобретение
Номер охранного документа: 0002520023
Дата охранного документа: 20.06.2014
20.07.2014
№216.012.df08

Электробаромембранный аппарат рулонного типа

Изобретение относится к конструкциям мембранных аппаратов рулонного типа. Электробаромембранный аппарат рулонного типа содержит корпус из диэлектрического материала, монополярных электродов анода и катода, выполненных из графитовой ткани, устройство для подвода электрического тока,...
Тип: Изобретение
Номер охранного документа: 0002522882
Дата охранного документа: 20.07.2014
20.07.2014
№216.012.e186

Способ энергосберегающей сушки гранулированных полимерных материалов

Способ относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. В способе энергосберегающей сушки гранулированных полимерных материалов, включающем раздельную подачу гидрофобных и гидрофильных материалов сверху вниз в...
Тип: Изобретение
Номер охранного документа: 0002523520
Дата охранного документа: 20.07.2014
10.09.2014
№216.012.f200

Поршневая задвижка

Поршневая задвижка относится к трубопроводной арматуре и может быть использована в нефтяной, химической и других отраслях промышленности. Поршневая задвижка содержит корпус с уплотняющей втулкой, два поршня-шибера, два штока, две крышки, две опорные вогнутые площадки. Корпус выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002527774
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f363

Газоанализатор

Изобретение относится к области метрологии и может быть использовано для определения концентрации газообразных веществ. Газоанализатор содержит излучающий диод, выполненный из двух p-n переходов, размещенных в едином корпусе и приемник излучения, расположенные в кювете, разделенной прозрачной...
Тип: Изобретение
Номер охранного документа: 0002528129
Дата охранного документа: 10.09.2014
10.10.2014
№216.012.fbc3

Способ оперативного динамического анализа нечеткого состояния многопараметрического объекта или процесса

Изобретение относится к способу оперативного динамического анализа нечеткого состояния систем отопления зданий и водоснабжения источниками СВЧ-излучения. Технический результат заключается в повышении энергетической эффективности систем отопления зданий и сооружений за счет возможности...
Тип: Изобретение
Номер охранного документа: 0002530297
Дата охранного документа: 10.10.2014
+ добавить свой РИД