×
27.04.2015
216.013.45f6

Результат интеллектуальной деятельности: КОНДЕНСАЦИОННАЯ КАМЕРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности. Конденсационная камера для установки для очистки газового потока содержит трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара, холодильник, выполненный в виде рубашки, соосной с корпусом, и кольцевой сборник для конденсата, расположенные внутри упомянутого корпуса. Средство для вдувания пара выполнено в виде центрального тела, установленного внутри канала для входа запыленного и/или задымленного газового потока, и выполненного в виде трех полых секций, имеющих центральный канал, соединенный с источником пара. Внутренний профиль рубашки холодильника выполнен эквидистантным профилю средства для вдувания пара с образованием профилированного зазора между рубашкой холодильника и средством для вдувания пара. На внешней поверхности полых секций, соединенных с источником пара, выполнены отверстия, при помощи которых полость каналов внутри указанных секций соединена с упомянутым профилированным зазором. Технический результат: повышение эффективности очистки газового потока. 7 з.п. ф-лы, 2 ил.

Изобретение относится к очистке воздуха и может быть использовано в газовой, нефтяной, нефтехимической и других отраслях промышленности.

Известны способы очистки газового потока, сущность которых заключается в том, что в пресыщенном водяными парами запыленном потоке газа происходит конденсационное укрупнение дисперсных частиц и осаждение образовавшихся вокруг них капель под действием различных сил (Яворский И.А. и др. Улавливание аэрозолей в оловянной промышленности. Новосибирск: Наука. 1974, с. 23-29).

Однако этот процесс сложный, имеет ряд особенностей, неправильный или неточный учет которых при создании способов очистки делает их неэффективными.

Первая особенность заключается в том, что для начала конденсационного укрупнения дисперсных частиц определенного размера х необходимо чтобы в газовом потоке было достигнуто пересыщение пара, соответствующее закону Кельвина-Томсона. В этом случае будет возможна конденсация пара на частицах размера х и крупнее их. Более мелкие частицы при этом значении пересыщения останутся неукрупненными и не будут уловлены.

Вторая особенность заключается в том, что в очищенном газовом потоке с дисперсными частицами не может быть мгновенно достигнуто заданное пересыщение. При вдувании пара в поток пресыщение достигается после перемешивания пара с газом и установления термического равновесия в парогазовой смеси. Пересыщение в парогазовой смеси сопровождается конденсацией пара на крупных частицах пыли, для которых пересыщение уже достигло величины, достаточной для конденсации. Конденсация пара на этих частицах сопровождается выделением теплоты конденсации и нагревом парогазовой смеси. Конденсация, т.е. убывание парциального давления пара, и связанное с этим повышение средней температуры парогазовой смеси приводят к ограничению величины достигаемого пересыщения, а значит к невозможности улавливания мелких частиц пыли.

Третья особенность заключается в том, что если даже достигнуто пересыщение, достаточное для укрупнения мелких и сравнительно более крупных частиц, то скорость укрупнения для частиц различного размера будет разной. Более крупные частицы укрупняются быстрее. В процессе дальнейшей термостабилизации парогазовой смеси с укрупненными конденсатом пара частицами происходит обсыхание мелких частиц и дальнейшее укрупнение крупных. Это происходит потому, что имеющееся текущее значение пересыщения вследствие закона Кельвина-Томсона различно для капель различного размера.

Четвертая особенность заключается в том, что осаждение уже укрупненных конденсацией частиц принципиально отличается для частиц различного размера. Сравнительно крупные капли, образовавшиеся на дисперсных частицах, подвержены силам инерции и гравитации, поэтому сравнительно легко могут быть осаждены, а более мелкие частицы более взвешены в парогазовом потоке, скорость их витания мала, поэтому они могут быть осаждены быстро и простым путем.

В большинстве известных способов не учтена по меньшей мере часть вышеперечисленных особенностей, поэтому они не могут быть максимально эффективными.

Известен способ очистки газового потока путем многократного последовательного поэтапного насыщения запыленного и/или задымленного газового потока паром жидкости с последующим осаждением на каждом этапе конденсационно-укрупнившихся частиц в зоне охлаждения в виде конденсата и отвода этого конденсата и устройство для его осуществления, содержащее трубчатый корпус, имеющий входное отверстие для входа запыленного или задымленного газового потока, несколько последовательно расположенных конденсационных секций, каждая из которых снабжена инжектором для вдувания пара, холодильником, конфузором, в горловине которого помещен фильтр, и кольцевым сборником для конденсата, и выходное отверстие для выхода очищенного газового потока (Патент США № 3395510, 55-20, 1968).

Простое вдувание пара в загрязненный газовый поток дает пересыщение только после перемешивания и термостабилизации пара с газом, а этот процесс сравнительно медленный. Охлаждение парогазовой среды на холодильнике связано с конвективным и кондуктивным теплообменом, что также дает медленное нарастание пересыщения. Поэтому в этом способе нарастание пересыщения происходит медленно, а значит, начинающаяся конденсация на сравнительно крупных дисперсных частицах препятствует повышению пересыщения и укрупнению мелких частиц. Кроме того, при прохождении зоны охлаждения парогазовая смесь охлаждается, часть пара конденсируется на холодильнике, пересыщение ее снимается до величины насыщения жидкости над плоской поверхностью жидкости. Образовавшиеся на дисперсных частицах капли конденсата пара оказываются в условиях перегрева относительно газового потока и начинают высыхать. На фильтрах, куда парогазовая смесь поступает после холодильника, будут уловлены только те капли, которые не успели высохнуть. Недостатки этого способа не могут быть устранены повторением всех операций в последующих секциях, поскольку повышение допустимого пересыщения лимитировано температурой холодильника, а значит, газовый поток может быть очищен только от частиц определенного размера и крупнее.

Известен способ и устройство для очистки газового потока путем многократного последовательного поэтапного насыщения запыленного и/или задымленного газового потока паром жидкости с последующим осаждением на каждом этапе конденсационно-укрупнившихся частиц на элементе охлаждения в виде конденсата и отвода этого конденсата, при этом пар на каждом этапе вдувают в виде расширяющихся струй и направляют их на элемент охлаждения под углом к оси газового потока, а образовавшийся конденсат отводят после каждого этапа отдельно (Патент РФ №2038125, МПК: B01D 47/05, B01D 47/00 - прототип).

В указанном способе насыщение потока парами производят по стадиям под действием струй пара, направленных под углом к оси газового потока, на элемент охлаждения. На каждой стадии очистки степень пересыщения потока увеличивают и из него отбирают определенную фракцию, являющуюся самой крупной на данной стадии. Дифференциация укрупнения обеспечивает селективность сбора частиц. В устройстве имеются конденсационные секции, размещенные в трубчатом корпусе и содержащие распылительную головку, холодильник-рубашку, конфузор и кольцевой сборник для конденсата, а также индивидуальные емкости для сбора конденсата.

Основными недостатками является недостаточно высокая эффективность рабочего процесса, обусловленная несовершенством системы осаждения пара на улавливаемых частицах.

Задача изобретения заключается в создании устройства, обеспечивающего эффективную очистку запыленных и задымленных газовых потоков, а также селективное улавливание загрязнений. Техническим результатом изобретения является повышение эффективности очистки газового потока.

Решение указанной задачи достигается тем, что в предложенной конденсационной камере для установки для очистки газового потока, содержащей трубчатый корпус, имеющий входной канал для входа запыленного и/или задымленного газового потока и выходной канал для выхода очищенного газового потока, средство для вдувания пара, холодильник, выполненный в виде рубашки, сосной с корпусом, и кольцевой сборник для конденсата, расположенные внутри упомянутого корпуса, согласно изобретению, средство для вдувания пара выполнено в виде центрального тела, установленного внутри канала для входа запыленного и/или задымленного газового потока и выполненного в виде трех полых секций, имеющих центральный канал, соединенный с источником пара, внутренний профиль рубашки холодильника выполнен эквидистантным профилю средства для вдувания пара с образованием профилированного зазора между рубашкой холодильника и средством для вдувания пара, при этом на внешней поверхности полых секций, соединенных с источником пара, выполнены отверстия, при помощи которых полость каналов внутри указанных секций соединена с упомянутым профилированным зазором.

В варианте выполнения, оси отверстий на внешней поверхности полых секций расположены тангенциально.

Пар в кольцевой зазор на каждом этапе вдувают в виде расширяющихся струй и направляют их на элемент охлаждения под углом к оси газового потока, а образовавшийся конденсат отводят после каждого этапа отдельно.

Такое осуществление очистки обеспечивает более полную очистку газового потока и уменьшение размера частиц, отделяемых от газового потока, благодаря тому, что в результате вдувания струй пара происходит большее пересыщение парогазовой смеси и, следовательно, конденсационное укрупнение более мелких частиц, а в результате перемещения укрупненных газовых частиц расширяющимися струями пара в зону охлаждения и направления струй пара на элемент охлаждения происходит инерционное осаждение частиц на поверхности холодильника.

В варианте выполнения, оси отверстий на внешней поверхности полых лучей расположены тангенциально и под углом 35…55° к оси газового потока.

Целесообразно вдуваемый на каждом этапе пар направлять расширяющимися струями под углом 35-55° к оси газового потока. При меньшем угле наклона (35-0°) увеличивается скорость потока и уменьшается инерционное движение укрупнившихся частиц в зону охлаждения. При большем угле наклона (55-90°) возрастает тепловое воздействие пара на холодильник, но увеличивается движение укрупнившихся частиц в зону охлаждения.

В варианте выполнения, отверстия для подачи пара на внешней поверхности полых секций выполнены в виде поясов завесы.

В варианте выполнения, полость холодильника соединена с устройством для образования пара и через него с центральным каналом для подачи пара.

В варианте выполнения, установка снабжена индивидуальными емкостями для сбора конденсата, с которыми сообщены кольцевые сборники каждой секции.

В варианте выполнения, внутренняя стенка холодильника выполнена в виде винтовых гофр.

Внутренняя поверхность холодильника может быть выполнена в виде гофр, что увеличивает поверхность контакта с газом и улучшает массообмен. Гофры могут быть выполнены винтовыми, способствующими закрутке потока в канале, что улучшает инерционное осаждение частиц на поверхности холодильника.

Направляемый струями пара в зону охлаждения газовый поток можно закручивать, выполнив стенки холодильника в форме винтовых гофр. Это улучшит инерционное осаждение частиц на стенки холодильника.

В варианте выполнения, каждая конденсационная секция выполнена в виде самостоятельного модуля, имеющего на торцах фланцы для скрепления секций между собой.

Целесообразно каждую секцию выполнить в виде самостоятельного модуля с фланцами для соединения с другими модулями. Это упрощает изготовление устройства и его обслуживание во время эксплуатации.

Сущность изобретения иллюстрируется чертежами, где на фиг. 1 схематично изображено устройство для очистки воздушного потока в продольном разрезе; на фиг. 2 показан поперечный разрез секции устройства, выполненной в виде самостоятельного модуля.

Конденсационная камера для установки для очистки газового потока содержит трубчатый корпус 1, имеющий входной канал 2 для входа запыленного и/или задымленного газового потока. Средство 3 для вдувания пара расположено внутри корпуса 1 и выполнено из трех полых секций 4, имеющих центральный канал 5, соединенный с источником пара. Холодильник выполнен в виде рубашки 6, соосной с корпусом 1, причем внутренний профиль рубашки 6 холодильника выполнен эквидистантным профилю, образованному секциями 4 с образованием профилированного зазора 7 между лучами 8 рубашки 6 холодильника и секциями 4 средства 3 для подачи пара, при этом на внешней поверхности полых секций 4, соединенных с источником пара, выполнены отверстия 9, при помощи которых полость каналов внутри секций 4 соединена с упомянутым профилированным зазором 7. Очищенный газовый поток отводят через выходной канал 10.

В варианте исполнения, камера очистки устройства может быть составлена из нескольких корпусов 1, установленных последовательно и имеющих идентичную внутреннюю конструкцию.

Способ очистки газового потока с использованием предложенного устройства осуществляют следующим образом.

Загрязненный газовый поток при очистке подают через входной канал 2 в трубчатый корпус 1. Внутри трубчатого корпуса 1 газовый поток при помощи средства 3 для вдувания пара и лучей 8 профилированной рубашки 6 холодильника преобразуют из сплошного круглого в полый трехлучевой с профилированными внутренним и наружным профилями. Поперечное сечение указанного потока выполняют состоящим из нескольких лучей, имеющих общий центр, расположенный по оси потока, причем внутренний профиль потока выполняют эквидистантным наружному. В профилированный зазор 7 подают пар, который вдувают в газовый поток через отверстия 9 из полых секций 4 в виде расширяющихся струй и направляют их на поверхность рубашки 6 холодильника под углами от 0 до 180°.

Наиболее оптимальным углом наклона струй пара к поверхности рубашки холодильника является угол в пределах 35-55°. Расширяющиеся струи пара имеют такую плотность и скорость, что достигают поверхность холодильника и обеспечивают инерционное движение образовавшихся капель конденсата к нему.

Преобразование потока из сплошного в полый с профилированными внутренним и наружным профилями путем установки внутри канала подачи газового потока центрального тела, выполненного из трех полых секций 4, имеющих общий центральный канал 5, соединенный с источником пара, позволяет уменьшить расстояние между горячей и холодной стенками, повысить концентрацию осаждаемых частиц и пара в единице объема, в частности, в образованном профилированном зазоре, что дает возможность повысить эффективность очистки за счет уменьшения пути перемешивания и ускоренного образования частиц. Кроме этого, непрерывная подача пара по всей длине центрального тела позволит улучшить условия перемешивания и осаждения по всей длине тракта.

Струи пара, подаваемые из отверстий 9, подсасывают очищаемый газ, одновременно обеспечивают инерционное движение образовавшихся капель конденсата и при этом одновременно перемешиваются с ним и образуют парогазовую смесь. В парогазовой смеси быстро создается пересыщение, в результате чего происходит конденсационное укрупнение аэрозольных частиц, причем первыми укрупняться начинают самые крупные частицы. Под действием паровых струй образующиеся укрупненные частицы отбрасываются на поверхность холодильника, где происходит инерционное осаждение капель конденсата, при этом укрупненным частицам необходимо преодолеть гораздо меньшее расстояние. Конденсат вместе с уловленными аэрозольными частицами стекает по поверхности холодильника в кольцевой сборник конденсата, а затем по трубке его отводят в отдельную емкость. Спиральные гофры внутренней поверхности холодильника способствуют закрутке потока газа, чем улучшают инерционное осаждение частиц на поверхности холодильника.

Очищенную в первой секции от частиц крупной фракции парогазовую смесь подают по каналу, образованному стенками средства 3 для вдувания пара и холодильника, в последующую секцию. При этом происходит ее охлаждение. Исследованиями установлено, что температура стенок холодильника должна быть такой, чтобы создавать условия конденсации пара, обеспечивающие надежное прилипание капель конденсата к поверхности его стенок.

Подаваемую в корпус 1 второй секции парогазовую смесь снова обрабатывают струями пара из отверстий 9, но уже с большим пересыщением, чем в первой секции. При этом увеличивается концентрация пара в газовом потоке по мере уменьшения размеров оставшихся частиц. На каждом последующем этапе давление пара увеличивают на 10-30% по сравнению с предыдущим этапом. В результате происходит новое конденсационное укрупнение аэрозольных частиц, причем в первую очередь укрупнению подвергают самые крупные из оставшихся в потоке частиц, которые под действием паровых струй отбрасываются на поверхность холодильника второй секции, где происходит инерционное осаждение капель второй фракции конденсата. Конденсат с уловленными аэрозольными частицами второй фракции через кольцевой сборник и трубку отводят в свою отдельную емкость.

Прошедшие очистку во второй секции от частиц второй фракции парогазовую смесь по каналу, образованному стенками рубашки 6 холодильника и стенками средства 3 для вдувания пара, подают в последующие секции, где парогазовую смесь обрабатывают таким же образом, что и в первых двух секциях, до достижения заданной чистоты газового потока.

Весь процесс очистки контролируют температурными датчиками, на основании показаний которых производят управление подачей пара в средство для вдувания пара каждой секции.

Жидкость, используемая для охлаждения стенок рубашки 6 холодильника, в процессе работы разогревается за счет теплообмена через стенку рубашки холодильника с потоком пара и осажденных капель конденсата, стекающих по наружной поверхности стенки. Подогретая таким образом жидкость, имеющая температуру выше температуры окружающей среды, может быть использована для получения пара, т.к. в этом случае, для доведения ее от исходной температуры до температуры кипения, потребуется меньшее количество теплоты и времени, что позволит повысить эффективность работы установки.

Конденсатосборник (не показан и не обозначен) может быть установлен в корпусе в зависимости от расположения самой конденсационной камеры, горизонтального или вертикального. Форма и месторасположение определяются компоновкой камеры.

Предложенное техническое решение может быть использовано в промышленных газоочистителях, а также для очистки воздуха в помещениях, установках кондиционирования воздуха, при сжигании отходов, производстве технической сажи, порошковых материалов, абразивов, красок и других материалов, транспортируемых в виде пыли или аэрозолей.


КОНДЕНСАЦИОННАЯ КАМЕРА
КОНДЕНСАЦИОННАЯ КАМЕРА
Источник поступления информации: Роспатент

Showing 381-390 of 730 items.
10.03.2016
№216.014.cd4d

Пюреобразные консервы на основе топинамбура

Изобретение относится к технологии производства закусочных консервов. Пюреобразные консервы на основе топинамбура содержат топинамбур, шрот семян тыквы, воду, редьку черную, столовую свеклу, пюре фасоли, CO-экстракт хрена. Все компоненты используют в определённом соотношении. Осуществление...
Тип: Изобретение
Номер охранного документа: 0002577023
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cd54

Способ производства фруктового соуса

Изобретение относится к пищевой промышленности, а именно к технологии производства соусов, и может быть использовано при разработке новых составов соусов с улучшенными органолептическими и вкусовыми показателями. Способ предусматривает заливку молотого шрота семян тыквы питьевой водой в...
Тип: Изобретение
Номер охранного документа: 0002577027
Дата охранного документа: 10.03.2016
20.02.2016
№216.014.ce0b

Трехкомпонентный жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения. Трехкомпонентный жидкостный ракетный двигатель (ЖРД), содержащий камеру, газогенератор, агрегаты управления и регулирования, по крайней мере, один турбонасосный агрегат с, как минимум, двумя насосами для двух горючих, причем газовый...
Тип: Изобретение
Номер охранного документа: 0002575238
Дата охранного документа: 20.02.2016
10.04.2016
№216.015.2ba4

Жидкостный ракетный двигатель с дефлектором на срезе сопла

Изобретение относится к управлению вектором тяги жидкостного ракетного двигателя (ЖРД). ЖРД содержит камеру с охлаждаемой сверхзвуковой частью сопла, неохлаждаемый насадок из углерод-углеродного композиционного материала (УУКМ), рулевые агрегаты и раму, наружная поверхность неохлаждаемого...
Тип: Изобретение
Номер охранного документа: 0002579294
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e0c

Способ производства фруктового соуса

Изобретение относится к технологии производства соусов. Подготовленный шрот семян тыквы и кабачка заливают питьевой водой и выдерживают для набухания. Смешивают в рецептурном соотношении с алычовым пюре, сливовым пюре, айвовым пюре, сахаром и солью. Полученную смесь уваривают до достижения...
Тип: Изобретение
Номер охранного документа: 0002579189
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.33cc

Ферромагнитный нелинейный элемент

Изобретение относится к электротехнике и может быть использовано в электрических установках и радиотехнических устройствах в качестве ферромагнитного нелинейного элемента (ФНЭ) для преобразования электрической электромагнитной энергии в область повышенных частот, стабилизации напряжения и...
Тип: Изобретение
Номер охранного документа: 0002582080
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3446

Способ изготовления шаблона

Изобретение относится к области машиностроения и может быть использовано для повышения прочности шаблона и точности нанесения знаков при глубоком электрохимическом маркировании сложнофасонных поверхностей. В способе изготовления шаблона для электрохимического маркирования сложнофасонных...
Тип: Изобретение
Номер охранного документа: 0002581538
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3448

Центробежный насос

Изобретение относится к насосной технике, в частности к центробежным насосам. В центробежном насосе, содержащем корпус с патрубками, вал с ротором, имеющий лопатки, согласно изобретению лопатки выполнены в виде двух групп. Одна группа неподвижно соединена с валом, а вторая установлена на...
Тип: Изобретение
Номер охранного документа: 0002581307
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3461

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к камерам жидкостных ракетных двигателей. Жидкостный ракетный двигатель содержит турбонасосный агрегат, газогенератор, агрегаты питания и регулирования, камеру со смесительной головкой, содержащей наружное, среднее и огневое днища,...
Тип: Изобретение
Номер охранного документа: 0002581310
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.3493

Статор ветроэлектрогенератора

Изобретение относится к области ветроэнергетики, в частности к ветроэлектрогенераторам сегментного типа. Технический результат - уменьшение массы и габаритов ветроэлектрогенератора. Статор ветроэлектрогенератора содержит вращающееся основание катушки, магнитопроводы, источники магнитного поля,...
Тип: Изобретение
Номер охранного документа: 0002581595
Дата охранного документа: 20.04.2016
Showing 381-390 of 919 items.
10.07.2015
№216.013.5d49

Жидкостный ракетный двигатель

Изобретение относится к области ракетной техники, а именно к двигателестроению, и может быть использовано при создании камер жидкостных ракетных двигателей (ЖРД). ЖРД содержит камеру со смесительной головкой, турбонасосный агрегат, газогенератор, агрегаты питания и регулирования. Камера...
Тип: Изобретение
Номер охранного документа: 0002555422
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5d7f

Способ испытания конструкционного материала на пластичность

Изобретение относится к области механических испытаний конструкционных материалов и может быть использовано при определении механических характеристик листовых материалов в условиях плоской деформации. Способ испытания конструкционного материала на пластичность заключается в том, что гладкий...
Тип: Изобретение
Номер охранного документа: 0002555476
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e00

Статор ветроэлектроагрегата

Изобретение относится к области ветроэнергетики, а именно к ветроэлектрогенераторам. Cтатор ветроэлектроагрегата содержит катушки, торцевой и радиальный магнитопроводы, источник возбуждения. Торцевой магнитопровод выполнен в виде ферромагнитной траверсы крепления ветроколес. Преимуществом...
Тип: Изобретение
Номер охранного документа: 0002555605
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6041

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано при электрохимической доводке форсунок из токопроводящих материалов, преимущественно форсунок для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и...
Тип: Изобретение
Номер охранного документа: 0002556182
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6042

Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой

Изобретение относится к технологии получения полупроводниковых материалов и может быть использовано при создании полупроводниковых приборов. Способ получения гетероструктуры оксид титана - силицид титана на монокристаллической кремниевой подложке, покрытой нанокристаллической титановой пленкой,...
Тип: Изобретение
Номер охранного документа: 0002556183
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.6137

Некогерентный цифровой демодулятор "в целом" кодированных сигналов с фазовой манипуляцией

Изобретение относится к области радиотехники и может быть использовано в устройствах приема цифровых информационных сигналов для цифровой демодуляции кодированных двоичных сигналов с фазовой манипуляцией (ФМ). Технический результат заключается в обеспечении высокоскоростной цифровой демодуляции...
Тип: Изобретение
Номер охранного документа: 0002556429
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.613a

Способ многоальтернативной оптимизации моделей автоматизации структурного синтеза для создания мехатронно-модульных роботов

Изобретение относится к машиностроению, а именно к робототехнике, и может быть использовано при создании мехатронно-модульных роботов. Технический результат заключается в создании способа многоальтернативной оптимизации моделей автоматизации структурного синтеза мехатронно-модульных роботов....
Тип: Изобретение
Номер охранного документа: 0002556432
Дата охранного документа: 10.07.2015
20.07.2015
№216.013.6400

Ротор вертикальный

Изобретение относится к области энергетики и может быть использовано в ветроэлектрогенераторах с вертикальной осью вращения. Изобретение направлено на повышение эффективности за счет упрощения конструкции. Сущность изобретения достигается тем, что у ротора вертикального, который содержит...
Тип: Изобретение
Номер охранного документа: 0002557147
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6426

Способ электрохимической обработки отверстий форсунки

Изобретение относится к электрохимической обработке и может быть использовано для электрохимической доводки форсунок из токопроводящих материалов, преимущественно, для жидкостных ракетных двигателей. Способ включает подачу токопроводящей жидкости через полый инструмент-катод и обрабатываемые...
Тип: Изобретение
Номер охранного документа: 0002557185
Дата охранного документа: 20.07.2015
20.07.2015
№216.013.6429

Способ создания композитных покрытий

Изобретение относится к области гальванотехники и может быть использовано для создания композиционных электрохимических покрытий различного назначения. Способ получения композиционного покрытия включает осаждение металлического покрытия из водного электролита-суспензии с ультрадисперсными...
Тип: Изобретение
Номер охранного документа: 0002557188
Дата охранного документа: 20.07.2015
+ добавить свой РИД