×
27.04.2015
216.013.45ef

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОДУЛЬНОГО ЖИДКОГО СТЕКЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов. Способ получения высокомодульного жидкого стекла включает приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении. В качестве кремнеземсодержащего вещества используют регенерированный фильтровальный отработанный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м. Полученный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м отсеивают. Готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе гидроксида натрия 400-450 кг/т порошка в течение 15-30 мин. Получают жидкое стекло с модулем 2,5-3,0. При непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5. Изобретение позволяет получить высокомодульное жидкое стекло высокого качества с низким содержанием примесей: AlO, FeO, СаО и водонерастворимых веществ менее 0,20 мас.%. 3 пр.
Основные результаты: Способ получения высокомодульного жидкого стекла, включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, отличающийся тем, что предварительно дозируют исходные ингредиенты, при этом в качестве кремнеземсодержащего аморфного вещества используют регенерированный отработанный фильтровальный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м, готовят суспензию из порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку в течение 15-30 мин и получают промежуточный продукт - жидкое стекло с низким модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5.

Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных и других изделий.

Химический состав натриевого растворимого стекла может быть выражен формулой:

Na2O×nSiO2+mH2O, где Na2O - гидроксид натрия, SiO2 - диоксид кремния.

Из нее видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение SiO2:Na2O=M, показывающее, сколько кремнекислоты приходится на единицу оксида натрия, называется силикатным модулем стекла. Чаще всего производится и встречается стекло с модулем 2.6-2.8, но очень важно получать жидкое стекло с более высоким модулем.

К высокомодульным относятся водные силикатные системы с модулем примерно выше 4. Это те силикатные системы, которые нельзя получить растворением в воде безводного силикатного стекла соответствующего модуля или растворением кремнезема в щелочах. Высокомодульные щелочные силикатные системы условно делят на две группы. Системы с силикатным модулем выше 25 обычно называют золями. Это чисто коллоидные системы с частицами кремнезема определенных размеров, стабилизированные щелочами. Несмотря на полимерное происхождение, о кремнеземе уже говорят не как о полимере, а как о частицах кремнезема размерами от 2-3 нм и выше. Другая группа образует так называемые полисиликаты с модулем от 4 до 25 и является, по существу, переходной от истинных растворов к коллоидным системам. Известно, что растворы щелочных силикатов с модулем даже ниже 2 содержат сложные полисиликатные анионы. Это тем более справедливо для высокомодульных систем, где доля полисиликатных ионов высока. Поэтому название «полисиликатные растворы», не отражая нового их качества, является условным. Полисиликатные растворы натрия или калия характерны неустойчивостью по отношению к гелеобразованию или коагуляции. Устойчивость таких систем, помимо других факторов, зависит от концентрации кремнезема в системе. Время жизни полисиликатных растворов может быть настолько мало, что вынуждает использовать их по месту производства или производить на месте потребления.

Применение водорастворимых силикатов основано главным образом на использовании свойств кремнеземной составляющей. Технологические свойства водных растворов, богатых кремнеземом, существенно отличаются от свойств низкомодульных систем, так же как и свойства композиций, образующихся в результате высыхания или твердения полисиликатных растворов и золей. Поэтому высокомодульные системы имеют свои особые области применения, расширяющие возможности использования водных щелочных силикатов в хозяйственной деятельности.

Известен способ (Патент РФ №2220906) получения жидкого стекла путем взаимодействия кремнеземсодержащего вещества с водным раствором гидроксида натрия при температуре 200-250°C. В качестве исходного кремнеземсодержащего вещества используют кварцевый песок фракции 0,1-0,315 мм, содержащий 95,5-98,15 масс.% диоксида кремния. Недостатком способа является использование высокой температуры и, следовательно, высокие энергозатраты, а также трудности получения высокомодульного жидкого стекла, в связи с невозможностью уменьшения соотношения раствора гидроксида натрия к кремнеземсодержащему веществу без существенного повышения температуры нагрева смесей.

Известен способ получения жидкого стекла (Патент РФ RU 2285665) путем гидротермальной обработки кремнеземсодержащего вещества с водным раствором гидроксида натрия. В качестве исходного кремнеземсодержащего вещества используют остаток, полученный после обработки серпентинита (серпентиниты - породы, состоящие в основном из минерала серпентина состава 3MgO·2SiO2·2H2O, затем магнетита, хромита и остатков первичных минералов [Словарь по геологии нефти. Гостоптехиздат, Ленинград, 1958 г., с.600] соляной кислотой - аморфный диоксид кремния. Полученную суспензию фильтруют для удаления не прореагировавшего остатка, раствор концентрируют для получения жидкого стекла с заданными модулем и плотностью. Недостатком данного способа является использование исходного материала (серпентинита) сложного химического состава с невысоким процентным содержанием диоксида кремния, неширокое распространение месторождений серпентинита, необходимостью применения соляной кислоты и получение жидкого стекла невысокого модуля.

Известен также способ получения высокомодульного жидкого стекла для производства строительных материалов (патент РФ №2238242 C2) (прототип), включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку. В качестве кремнеземсодержащего аморфного вещества используют кремнезем, который является отходом производства кристаллического кремния. В качестве добавки используют «карамель», которая является промежуточным продуктом сульфатно-целлюлозной переработки древесины. Соотношение твердой и жидкой фаз составляет 1:0,97-1,03 при расходе едкого натра (в пересчете Na2O) 76,2-81,4 кг/м3, а гидротермальную обработку проводят при температуре 85-95°C и атмосферном давлении в течение 10-15 мин.

Недостатком этого способа является трудность отделения чисто аморфного кремнеземсодержащего вещества в виде отходов при производстве кристаллического кремния.

Техническим результатом изобретения является расширение сырьевой базы для получения высокомодульного жидкого стекла за счет использования в качестве кремнеземсодержащего аморфного вещества регенерированного отработанного фильтровального порошка кизельгура, снижение себестоимости производства жидкого стекла при одновременном решении вопросов улучшения экологии окружающей среды.

Технический результат достигается тем, что в способе получения высокомодульного жидкого стекла, включающем приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, согласно изобретению, предварительно дозируют исходные ингредиенты, для приготовления суспензии в качестве кремнеземсодержащего вещества используют регенерированный отработанный фильтровальный порошок кизельгура, содержащего (87÷92)% аморфного диоксида кремния, который после использования в производстве растительного масла регенерируют путем прокаливания порошка при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги, измельчают в шаровой мельнице регенерированный порошок кизельгура до размера частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка в течение 15-30 мин, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения заданного модуля не менее 4,5.

Способ состоит в следующем. Исходные компоненты (щелочь, воду и микрокремнезем) дозируют в заданных количествах, перемешивают до образования суспензии в течение 2-3 минут и помещают в емкость (реактор), снабженную механической мешалкой и электрообогревом. Содержимое реактора нагревают до температуры 70-75°C и отключают от сети. За счет экзотермии протекающих химических реакций, температура суспензии повышается до 85-95°C. Время варки жидкого стекла с низким силикатным модулем 2,5-3,0 при атмосферном давлении составляет 15-30 минут; затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5.

Аморфный кремнезем (кизельгур) распространен в природе гораздо меньше, чем кристаллический. Он образовался из SiO2, входившего в состав панцирей организмов диатомовых водорослей и некоторых инфузорий. Кизельгур обладает большой пористостью и малой плотностью. Высокая пористость кизельгура связана с особенностями его строения, состоящего из крошечных связанных между собой пор или ячеек, занимающих вплоть до 85% объема материала. Кизельгур используется в процессе производства растительных масел для их очистки от восков. После обезжиривания отработанного фильтровального порошка остаточное содержание жиров в нем составляет до 10% при влажности до 60%. Удаление такого порошка на промышленные свалки существенно ухудшает экологическую обстановку. Поэтому очень важно проводить глубокую регенерацию отработанного фильтровального порошка путем его прокаливания при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги. В результате регенерированный порошок не содержит окисленных жировых остатков и может использоваться в производстве жидкого стекла. Для этого в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку, разогревают до температуры 85-95°C и в течение 15-30 мин получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Получаемое при этом высокомодульное жидкое натриевое стекло имеет широкий диапазон плотности и модульного числа. Этим расширяется область безотходного производства растительного масла и применения кизельгура.

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем признакам прототипа, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения высокомодульного жидкого стекла, изложенных в формуле изобретения.

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков: для получения высокомодульного жидкого стекла в качестве кремнеземсодержащего вещества используют измельченный аморфный диоксид кремния, полученный после регенерации отработанного при производстве растительных масел порошка кизельгура. Отличительными признаками также является то, что в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, в течение 15-30 мин разогревают при температуре 85-95°C, проводят гидротермальную обработку, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Предложенная совокупность признаков соответствует условию «новизна». Предложенный способ промышленно применим. Ниже приведены примеры осуществления данного способа.

Пример 1. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 175,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 330 см3 раствора гидроксида натрия концентрацией 230 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 95°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,305 г/см3 и объемом 480 см3, содержащее, % мас.: 29,70 SiO2; 9,88 Na2O; 0,17 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,60 SiO2; 8,78 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,22.

Пример 2. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 195,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 360 см3 раствора гидроксида натрия концентрацией 250 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 93°C при перемешивании пульпы в течение 30 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 510 см3, содержащее, % мас.: 29,72 SiO2; 9,86 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 162 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,80 SiO2; 8,63 Na2O; 0,16 водонерастворимых веществ, имеющее модуль 6,35.

Пример 3. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,44 SiO2, 3,34 MgO, 2,96 CaO, 1,90 Fe2O3, 0,21 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 180,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 340 см3 раствора гидроксида натрия концентрацией 210 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 97°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 444 см3, содержащее, % мас.: 28,78 SiO2; 9,98 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 2,88. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас: 53,40 SiO2; 8,72 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,12.

Таким образом, предлагаемый способ получения жидкого стекла позволяет получать высокомодульное натриевое жидкое стекло высокого качества с заданными силикатным модулем и плотностью, а также с низким содержанием примесей (Al2O3, Fe2O3, СаО) и водонерастворимых веществ (<0,20 мас. %) и соответствует требованиям «Стекло высокомодульное натриевое жидкое».

В производстве строительных материалов высокомодульное жидкое стекло, приготовленное предлагаемым способом, используют полностью, не отделяя от осадка. Осадок в виде тонкодисперсных частиц выполняет роль микронаполнителя, способствуя повышению механической прочности изделий. Таким образом, предлагаемый двухстадийный способ получения жидкого стекла является реально осуществимым методом гидротермального синтеза конечного продукта с заданными свойствами при предельно низких режимных параметрах реакции - давлении, температуре и времени - из регенерированного отработанного фильтровального диатомитового порошка кизельгура.

Способ получения высокомодульного жидкого стекла, включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, отличающийся тем, что предварительно дозируют исходные ингредиенты, при этом в качестве кремнеземсодержащего аморфного вещества используют регенерированный отработанный фильтровальный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м, готовят суспензию из порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку в течение 15-30 мин и получают промежуточный продукт - жидкое стекло с низким модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5.
Источник поступления информации: Роспатент

Showing 481-490 of 541 items.
26.08.2017
№217.015.d4ff

Способ приготовления витаминного зеленого корма

Изобретение относится к области сельского хозяйства. Способ приготовления витаминного зеленого корма, включающий замачивание зерна ячменя в электроактивированной воде, проращивание и выгон проростков. Промывку зерна осуществляют водопроводной водой в течение 4-8 мин, после чего промытое зерно...
Тип: Изобретение
Номер охранного документа: 0002622250
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d501

Способ получения белкового витаминного зеленого корма

Изобретение относится к области сельского хозяйства, в частности к кормопроизводству. Способ получения белково-витаминного зеленого корма включает промывку семян люцерны водопроводной водой в течение 4-8 мин. После этого промытое семя замачивают анолитом с pH 2,4-7,8 и...
Тип: Изобретение
Номер охранного документа: 0002622153
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d51a

Способ получения белкового витаминного зеленого корма

Изобретение относится к области сельского хозяйства, в частности к кормопроизводству. Способ получения белково-витаминного зеленого корма включает промывку семян амаранта водопроводной водой в течение 4-8 мин. После чего промытые семена замачивают анолитом с pH 2,4-7,8 и...
Тип: Изобретение
Номер охранного документа: 0002622156
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d51c

Способ получения витаминного зеленого корма

Изобретение относится к области сельского хозяйства. Способ получения витаминного зеленого корма, включающий замачивание семян рыжика в электроактивированной воде, проращивание и выгон проростков. Промывку семян осуществляют водопроводной водой в течение 4-8 мин, после чего промытое семя...
Тип: Изобретение
Номер охранного документа: 0002622144
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d51f

Способ приготовления функциональной кормовой добавки из зерна тритикале

Изобретение относится к области сельского хозяйства, в частности к кормопроизводству. Способ приготовления функциональной кормовой добавки из зерна тритикале включает замачивание зерна тритикале в анолите с рН 3,5-10,8 ед. и окислительно-восстановительным потенциалом 375-840 мВ, концентрацией...
Тип: Изобретение
Номер охранного документа: 0002622151
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d532

Способ изготовления функционального корма

Изобретение относится к области сельского хозяйства, в частности к способу изготовления функционального корма. Способ включает замачивание зерна кукурузы в электроактивированной воде, проращивание и выгон проростков. В качестве зерна используют кукурузу, промывку зерна кукурузы осуществляют...
Тип: Изобретение
Номер охранного документа: 0002622255
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d534

Способ изготовления функционального корма

Изобретение относится к области сельского хозяйства - кормопроизводству. Способ изготовления функционального корма включает промывку семян нута водопроводной водой в течение 4-8 мин. После чего промытые семена замачивают в анолите с рН 2,4-8,0 ед. и окислительно-восстановительным потенциалом...
Тип: Изобретение
Номер охранного документа: 0002622256
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d535

Способ производства биологически активной кормовой добавки

Изобретение относится к области сельского хозяйства, в частности к кормопроизводству. Способ изготовления биологически активной кормовой добавки из зерна фасоли включает промывку зерна фасоли водопроводной водой в течение 4-8 мин. После чего промытое зерно замачивают анолитом с рН 3,0-11,2 ед....
Тип: Изобретение
Номер охранного документа: 0002622253
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d57e

Способ повышения оплодотворяемости коров

Изобретение относится к молочному животноводству. Представлен способ, включающий выявление половой охоты по графику активности поведения, созданному в результате компьютерной обработки, с помощью прибора «AfiTag», прикрепленного к животному в области пястной кости ноги. Половые органы и...
Тип: Изобретение
Номер охранного документа: 0002623169
Дата охранного документа: 22.06.2017
26.08.2017
№217.015.d621

Свая забивная

Изобретение относится к строительству, а именно к фундаментостроению. Для облегчения погружения ствола в грунт, упрощения изготовления и расширения технологических возможностей забивная свая включает винтовой ствол, выполненный пустотелым и по периметру смонтированный из направляющих элементов,...
Тип: Изобретение
Номер охранного документа: 0002622966
Дата охранного документа: 21.06.2017
Showing 481-490 of 700 items.
13.01.2017
№217.015.7f50

Устройство для приготовления кормов

Изобретение относится к устройствам для смешивания кормов. Для расширения технологических возможностей и обеспечения транспортировки компонентов кормов от загрузки к выгрузке при горизонтальном расположении оси вращения барабана, повышения производительности в устройстве, содержащем барабан,...
Тип: Изобретение
Номер охранного документа: 0002600008
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f53

Способ кормления суточных цыплят кур яичного направления

Изобретение относится к сельскому хозяйству, в частности к способу кормления суточных цыплят кур яичного направления. Способ включает вскармливание цветного корма, содержащего зерновую культуру, при этом в первые трое суток жизни цыплятам дают пшено, окрашенное в разные цвета: зеленый,...
Тип: Изобретение
Номер охранного документа: 0002600012
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5c

Способ выращивания цыплят-бройлеров

Изобретение относится к области сельского хозяйства, а именно к птицеводству, и предназначено для повышения мясной продуктивности бройлеров и их сохранности. Для повышения мясной продуктивности бройлеров в конце инкубирования применяют многократную выборку цыплят из инкубатора в конце инкубации...
Тип: Изобретение
Номер охранного документа: 0002600011
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5d

Кормоприготовительная машина

Изобретение относится к устройствам для смешивания компонентов грубых, сочных, водянистых и концентрированных кормов. Кормоприготовительная машина содержит станину и барабан, установленный на раме посредством упругих элементов. Барабан выполнен в виде контейнера и изготовлен из трех...
Тип: Изобретение
Номер охранного документа: 0002600009
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7f5e

Станок для мойки корнеклубнеплодов

Изобретение относится к оборудованию для мойки сыпучих материалов и может быть использовано в строительной, пищевой и других отраслях народного хозяйства. Станок для мойки корнеклубнеплодов содержит загрузочный и разгрузочный лотки, ванну с жидкостью и установленный в ней приводной...
Тип: Изобретение
Номер охранного документа: 0002600010
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.805b

Установка для приготовления лакокрасочной продукции

Изобретение относится к устройствам для приготовления лакокрасочной продукции и может быть применено в лакокрасочной промышленности. В установке для приготовления лакокрасочной продукции, содержащей смеситель, привод, загрузочное и разгрузочное приспособления, смеситель выполнен в виде...
Тип: Изобретение
Номер охранного документа: 0002602143
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8135

Способ получения нетоксичного клеевого состава из плодов клещевины

Изобретение относится к технологии переработки растительных белков и к технической биохимии. Проводят регулируемое самосогревание плодов клещевины в течение 2-х суток при 30°C. Затем отделяют плодовые оболочки, измельчают извлеченные семена, обезжиривают образовавшуюся массу и получают...
Тип: Изобретение
Номер охранного документа: 0002602133
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.82b1

Способ повышения урожайности сои

Изобретение относится к сельскому хозяйству. Осуществляют обработку вегетирующих растений сои регулятором роста в количестве 40 г/га в фазу 6-7 листьев и 40 г/га в фазу бутонизации. В качестве регулятора роста сои используют N-бензил-N-метилнафталин-2-сульфониламид формулы I: Обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002601816
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.8387

Способ приготовления мороженого пониженной калорийности

Изобретение относится к технологии производства мороженого. Способ приготовления мороженого пониженной калорийности включает приготовление смеси из части рецептурных компонентов и их перемешивание, нормализацию смеси по сухим веществам, нагревание смеси, внесение оставшихся рецептурных...
Тип: Изобретение
Номер охранного документа: 0002601817
Дата охранного документа: 10.11.2016
13.01.2017
№217.015.84ef

Способ защиты вегетирующих растений подсолнечника от повреждающего действия 2,4-дихлорфеноксиуксусной кислоты

Изобретение относится к сельскому хозяйству. Для защиты вегетирующих растений подсолнечника от повреждающего действия 2,4-Д их обрабатывают диаллиламидом 3-(2-метоксибензоиламино)-4,6-диметил-5-хлор-тиено[2,3-b]пиридин-2-карбоновой кислоты в количестве 200 г/га через 1 сутки после использования...
Тип: Изобретение
Номер охранного документа: 0002603042
Дата охранного документа: 20.11.2016
+ добавить свой РИД