×
27.04.2015
216.013.45ef

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОМОДУЛЬНОГО ЖИДКОГО СТЕКЛА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов. Способ получения высокомодульного жидкого стекла включает приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении. В качестве кремнеземсодержащего вещества используют регенерированный фильтровальный отработанный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м. Полученный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м отсеивают. Готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе гидроксида натрия 400-450 кг/т порошка в течение 15-30 мин. Получают жидкое стекло с модулем 2,5-3,0. При непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5. Изобретение позволяет получить высокомодульное жидкое стекло высокого качества с низким содержанием примесей: AlO, FeO, СаО и водонерастворимых веществ менее 0,20 мас.%. 3 пр.
Основные результаты: Способ получения высокомодульного жидкого стекла, включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, отличающийся тем, что предварительно дозируют исходные ингредиенты, при этом в качестве кремнеземсодержащего аморфного вещества используют регенерированный отработанный фильтровальный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м, готовят суспензию из порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку в течение 15-30 мин и получают промежуточный продукт - жидкое стекло с низким модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5.

Изобретение относится к технологии получения высокомодульного жидкого стекла для производства строительных материалов и может быть использовано при изготовлении теплоизоляционных и других изделий.

Химический состав натриевого растворимого стекла может быть выражен формулой:

Na2O×nSiO2+mH2O, где Na2O - гидроксид натрия, SiO2 - диоксид кремния.

Из нее видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение SiO2:Na2O=M, показывающее, сколько кремнекислоты приходится на единицу оксида натрия, называется силикатным модулем стекла. Чаще всего производится и встречается стекло с модулем 2.6-2.8, но очень важно получать жидкое стекло с более высоким модулем.

К высокомодульным относятся водные силикатные системы с модулем примерно выше 4. Это те силикатные системы, которые нельзя получить растворением в воде безводного силикатного стекла соответствующего модуля или растворением кремнезема в щелочах. Высокомодульные щелочные силикатные системы условно делят на две группы. Системы с силикатным модулем выше 25 обычно называют золями. Это чисто коллоидные системы с частицами кремнезема определенных размеров, стабилизированные щелочами. Несмотря на полимерное происхождение, о кремнеземе уже говорят не как о полимере, а как о частицах кремнезема размерами от 2-3 нм и выше. Другая группа образует так называемые полисиликаты с модулем от 4 до 25 и является, по существу, переходной от истинных растворов к коллоидным системам. Известно, что растворы щелочных силикатов с модулем даже ниже 2 содержат сложные полисиликатные анионы. Это тем более справедливо для высокомодульных систем, где доля полисиликатных ионов высока. Поэтому название «полисиликатные растворы», не отражая нового их качества, является условным. Полисиликатные растворы натрия или калия характерны неустойчивостью по отношению к гелеобразованию или коагуляции. Устойчивость таких систем, помимо других факторов, зависит от концентрации кремнезема в системе. Время жизни полисиликатных растворов может быть настолько мало, что вынуждает использовать их по месту производства или производить на месте потребления.

Применение водорастворимых силикатов основано главным образом на использовании свойств кремнеземной составляющей. Технологические свойства водных растворов, богатых кремнеземом, существенно отличаются от свойств низкомодульных систем, так же как и свойства композиций, образующихся в результате высыхания или твердения полисиликатных растворов и золей. Поэтому высокомодульные системы имеют свои особые области применения, расширяющие возможности использования водных щелочных силикатов в хозяйственной деятельности.

Известен способ (Патент РФ №2220906) получения жидкого стекла путем взаимодействия кремнеземсодержащего вещества с водным раствором гидроксида натрия при температуре 200-250°C. В качестве исходного кремнеземсодержащего вещества используют кварцевый песок фракции 0,1-0,315 мм, содержащий 95,5-98,15 масс.% диоксида кремния. Недостатком способа является использование высокой температуры и, следовательно, высокие энергозатраты, а также трудности получения высокомодульного жидкого стекла, в связи с невозможностью уменьшения соотношения раствора гидроксида натрия к кремнеземсодержащему веществу без существенного повышения температуры нагрева смесей.

Известен способ получения жидкого стекла (Патент РФ RU 2285665) путем гидротермальной обработки кремнеземсодержащего вещества с водным раствором гидроксида натрия. В качестве исходного кремнеземсодержащего вещества используют остаток, полученный после обработки серпентинита (серпентиниты - породы, состоящие в основном из минерала серпентина состава 3MgO·2SiO2·2H2O, затем магнетита, хромита и остатков первичных минералов [Словарь по геологии нефти. Гостоптехиздат, Ленинград, 1958 г., с.600] соляной кислотой - аморфный диоксид кремния. Полученную суспензию фильтруют для удаления не прореагировавшего остатка, раствор концентрируют для получения жидкого стекла с заданными модулем и плотностью. Недостатком данного способа является использование исходного материала (серпентинита) сложного химического состава с невысоким процентным содержанием диоксида кремния, неширокое распространение месторождений серпентинита, необходимостью применения соляной кислоты и получение жидкого стекла невысокого модуля.

Известен также способ получения высокомодульного жидкого стекла для производства строительных материалов (патент РФ №2238242 C2) (прототип), включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку. В качестве кремнеземсодержащего аморфного вещества используют кремнезем, который является отходом производства кристаллического кремния. В качестве добавки используют «карамель», которая является промежуточным продуктом сульфатно-целлюлозной переработки древесины. Соотношение твердой и жидкой фаз составляет 1:0,97-1,03 при расходе едкого натра (в пересчете Na2O) 76,2-81,4 кг/м3, а гидротермальную обработку проводят при температуре 85-95°C и атмосферном давлении в течение 10-15 мин.

Недостатком этого способа является трудность отделения чисто аморфного кремнеземсодержащего вещества в виде отходов при производстве кристаллического кремния.

Техническим результатом изобретения является расширение сырьевой базы для получения высокомодульного жидкого стекла за счет использования в качестве кремнеземсодержащего аморфного вещества регенерированного отработанного фильтровального порошка кизельгура, снижение себестоимости производства жидкого стекла при одновременном решении вопросов улучшения экологии окружающей среды.

Технический результат достигается тем, что в способе получения высокомодульного жидкого стекла, включающем приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, согласно изобретению, предварительно дозируют исходные ингредиенты, для приготовления суспензии в качестве кремнеземсодержащего вещества используют регенерированный отработанный фильтровальный порошок кизельгура, содержащего (87÷92)% аморфного диоксида кремния, который после использования в производстве растительного масла регенерируют путем прокаливания порошка при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги, измельчают в шаровой мельнице регенерированный порошок кизельгура до размера частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка в течение 15-30 мин, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения заданного модуля не менее 4,5.

Способ состоит в следующем. Исходные компоненты (щелочь, воду и микрокремнезем) дозируют в заданных количествах, перемешивают до образования суспензии в течение 2-3 минут и помещают в емкость (реактор), снабженную механической мешалкой и электрообогревом. Содержимое реактора нагревают до температуры 70-75°C и отключают от сети. За счет экзотермии протекающих химических реакций, температура суспензии повышается до 85-95°C. Время варки жидкого стекла с низким силикатным модулем 2,5-3,0 при атмосферном давлении составляет 15-30 минут; затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5.

Аморфный кремнезем (кизельгур) распространен в природе гораздо меньше, чем кристаллический. Он образовался из SiO2, входившего в состав панцирей организмов диатомовых водорослей и некоторых инфузорий. Кизельгур обладает большой пористостью и малой плотностью. Высокая пористость кизельгура связана с особенностями его строения, состоящего из крошечных связанных между собой пор или ячеек, занимающих вплоть до 85% объема материала. Кизельгур используется в процессе производства растительных масел для их очистки от восков. После обезжиривания отработанного фильтровального порошка остаточное содержание жиров в нем составляет до 10% при влажности до 60%. Удаление такого порошка на промышленные свалки существенно ухудшает экологическую обстановку. Поэтому очень важно проводить глубокую регенерацию отработанного фильтровального порошка путем его прокаливания при температуре 550-650°C с целью полного удаления органических остатков и свободной влаги. В результате регенерированный порошок не содержит окисленных жировых остатков и может использоваться в производстве жидкого стекла. Для этого в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку, разогревают до температуры 85-95°C и в течение 15-30 мин получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Получаемое при этом высокомодульное жидкое натриевое стекло имеет широкий диапазон плотности и модульного числа. Этим расширяется область безотходного производства растительного масла и применения кизельгура.

Проведенный заявителем анализ уровня техники по патентным и научно-техническим источникам информации позволил установить, что заявитель не обнаружил источник, характеризующийся признаками, тождественными всем признакам прототипа, позволил установить совокупность существенных по отношению к усматриваемому заявителем техническому результату отличительных признаков в заявленном способе получения высокомодульного жидкого стекла, изложенных в формуле изобретения.

Сущность предлагаемого способа заключается в следующей совокупности существенных признаков: для получения высокомодульного жидкого стекла в качестве кремнеземсодержащего вещества используют измельченный аморфный диоксид кремния, полученный после регенерации отработанного при производстве растительных масел порошка кизельгура. Отличительными признаками также является то, что в шаровой мельнице измельчают регенерированный порошок кизельгура до размером частиц (0,1-10)·10-6 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, готовят суспензию из измельченного порошка кизельгура с размером частиц (1-10)·10-6 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, в течение 15-30 мин разогревают при температуре 85-95°C, проводят гидротермальную обработку, получают жидкое стекло с модулем 2,5-3,0, затем при непрерывном перемешивании дополнительно вводят сухой регенерированный мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м до достижения силикатного модуля целевого продукта не менее 4,5. Предложенная совокупность признаков соответствует условию «новизна». Предложенный способ промышленно применим. Ниже приведены примеры осуществления данного способа.

Пример 1. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 175,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 330 см3 раствора гидроксида натрия концентрацией 230 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 95°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,305 г/см3 и объемом 480 см3, содержащее, % мас.: 29,70 SiO2; 9,88 Na2O; 0,17 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,60 SiO2; 8,78 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,22.

Пример 2. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,72 SiO2, 3,34 MgO, 2,86 CaO, 1,86 Fe2O3, 0,22 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 195,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 360 см3 раствора гидроксида натрия концентрацией 250 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 93°C при перемешивании пульпы в течение 30 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 510 см3, содержащее, % мас.: 29,72 SiO2; 9,86 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 3,01. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 162 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас.: 54,80 SiO2; 8,63 Na2O; 0,16 водонерастворимых веществ, имеющее модуль 6,35.

Пример 3. Аморфный диоксид кремния, полученный путем регенерации отработанного в производстве подсолнечного масла кизельгура, имеющий химический состав, % мас.: 91,44 SiO2, 3,34 MgO, 2,96 CaO, 1,90 Fe2O3, 0,21 Al2O3, измельчили в шаровой мельнице до размеров (0,1-10)·10-6 м, отсеяли мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м, взяли 180,0 г измельченного порошка кизельгура с размером частиц (1-10)·10-6 м, смешали с 340 см3 раствора гидроксида натрия концентрацией 210 г/дм3. Гидротермальную обработку суспензии проводили при атмосферном давлении и температуре 97°C при перемешивании пульпы в течение 25 минут. Полученное жидкое стекло с плотностью 1,312 г/см3 и объемом 444 см3, содержащее, % мас.: 28,78 SiO2; 9,98 Na2O; 0,19 водонерастворимых веществ, от осадка не отделяли. Силикатный модуль жидкого стекла 2,88. При непрерывном перемешивании равномерно медленно добавили сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10-6 м в количестве 135 г, в результате получили высокомодульное жидкое стекло, содержащее, % мас: 53,40 SiO2; 8,72 Na2O; 0,18 водонерастворимых веществ, имеющее модуль 6,12.

Таким образом, предлагаемый способ получения жидкого стекла позволяет получать высокомодульное натриевое жидкое стекло высокого качества с заданными силикатным модулем и плотностью, а также с низким содержанием примесей (Al2O3, Fe2O3, СаО) и водонерастворимых веществ (<0,20 мас. %) и соответствует требованиям «Стекло высокомодульное натриевое жидкое».

В производстве строительных материалов высокомодульное жидкое стекло, приготовленное предлагаемым способом, используют полностью, не отделяя от осадка. Осадок в виде тонкодисперсных частиц выполняет роль микронаполнителя, способствуя повышению механической прочности изделий. Таким образом, предлагаемый двухстадийный способ получения жидкого стекла является реально осуществимым методом гидротермального синтеза конечного продукта с заданными свойствами при предельно низких режимных параметрах реакции - давлении, температуре и времени - из регенерированного отработанного фильтровального диатомитового порошка кизельгура.

Способ получения высокомодульного жидкого стекла, включающий приготовление суспензии кремнеземсодержащего аморфного вещества в растворе гидроксида натрия и последующую гидротермальную обработку при температуре 85-95°C и атмосферном давлении, отличающийся тем, что предварительно дозируют исходные ингредиенты, при этом в качестве кремнеземсодержащего аморфного вещества используют регенерированный отработанный фильтровальный порошок кизельгура, который измельчают в шаровой мельнице до размеров частиц (0,1-10)·10 м, отсеивают мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м, готовят суспензию из порошка кизельгура с размером частиц (1-10)·10 м с раствором гидроксида натрия при расходе едкого натра 400-450 кг/т порошка, проводят гидротермальную обработку в течение 15-30 мин и получают промежуточный продукт - жидкое стекло с низким модулем 2,5-3,0, затем при непрерывном помешивании равномерно медленно добавляют в жидкое низкомодульное стекло сухой мелкодисперсный порошок кизельгура с размером частиц не более (0,1-1,0)·10 м до достижения заданного модуля не менее 4,5.
Источник поступления информации: Роспатент

Showing 161-170 of 541 items.
10.06.2015
№216.013.5519

Штамм бактерии pseudomonas aeruginosa

Изобретение относится к биотехнологии и ветеринарии. Штамм Pseudomonas aeruginosa O11 депонирован в коллекции ФГБУ ВГНКИ под наименованием «Pseudomonas aeruginosa №10» и регистрационным номером «№10-ДЕП». Штамм имеет высокую длительно сохраняющуюся иммуногенную активность, в связи с чем может...
Тип: Изобретение
Номер охранного документа: 0002553306
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.5607

Штамм бактерий pseudomonas aeruginosa для изготовления вакцины против псевдомоноза свиней

Изобретение относится к биотехнологии и ветеринарии. Штамм бактерий Pseudomonas aeruginosa №34-ДЕП депонирован в коллекции ФГБУ ВГНКИ. Штамм имеет высокую иммуногенную активность и предназначен для изготовления вакцины против псевдомоноза свиней. При использовании вакцины на основе...
Тип: Изобретение
Номер охранного документа: 0002553553
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5608

Штамм бактерий pseudomonas aeruginosa для изготовления вакцины против псевдомоноза свиней

Изобретение относится к биотехнологии и ветеринарии. Штамм бактерий Pseudomonas aeruginosa №25-ДЕП депонирован в коллекции ФГБУ ВГНКИ. Штамм имеет высокую иммуногенную активность и предназначен для изготовления вакцины против псевдомоноза свиней. При использовании вакцины на основе...
Тип: Изобретение
Номер охранного документа: 0002553554
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5609

Штамм бактерий pseudomonas aeruginosa для изготовления вакцины против псевдомоноза свиней

Изобретение относится к биотехнологии и ветеринарии. Штамм Pseudomonas aeruginosa №1 КВЛ-ДЕП депонирован в коллекции ФГБУ ВГНКИ. Штамм имеет высокую иммуногенную активность и предназначен для изготовления вакцины против псевдомоноза свиней. При использовании вакцины на основе предложенного...
Тип: Изобретение
Номер охранного документа: 0002553555
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.560a

Вакцина ассоциированная против эшерихиоза, стрептококкоза и стафилококкоза крупного рогатого скота

Изобретение относится к области ветеринарной медицины и касается вакцины, ассоциированной против эшерихиоза, стрептококкоза и стафилококкоза крупного рогатого скота. Охарактеризованная вакцина в качестве антигенов содержит суспензию клеток чистых культур возбудителей эшерихиоза Е. coli,...
Тип: Изобретение
Номер охранного документа: 0002553556
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.560b

Способ изготовления вакцины, ассоциированной против псевдомоноза и вирусной геморрагической болезни кроликов

Изобретение касается способа изготовления вакцины, ассоциированной против псевдомоноза и вирусной геморрагической болезни кроликов. Охарактеризованный способ включает отбор пораженных органов от павших кроликов в период их заболевания из местного эпизоотического очага, выделение чистых культур...
Тип: Изобретение
Номер охранного документа: 0002553557
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.560c

Штамм бактерий pseudomonas aeruginosa для изготовления вакцины против псевдомоноза свиней

Изобретение относится к биотехнологии и ветеринарии. Штамм бактерий Pseudomonas aeruginosa №6-ДЕП депонирован в коллекции ФГБУ ВГНКИ. Штамм имеет высокую иммуногенную активность и предназначен для изготовления вакцины против псевдомоноза свиней. При использовании вакцины на основе предложенного...
Тип: Изобретение
Номер охранного документа: 0002553558
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.5655

Штамм бактерии pseudomonas aeruginosa № 9 для изготовления вакцины против псевдомоноза свиней

Изобретение относится к биотехнологии и ветеринарии и касается штамма возбудителя псевдомоноза свиней, коллекции ФГБУ ВГНКИ, депонированного под наименованием «Pseudomonas aeruginosa №9» и регистрационным номером «№9-ДЕП», предназначенного для изготовления вакцины против псевдомоноза свиней....
Тип: Изобретение
Номер охранного документа: 0002553631
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d0

Печь качающаяся обжиговая

Изобретение относится к промышленности строительных материалов, а именно к наклонным обжиговым печам барабанного типа. Печь качающаяся обжиговая, например для обжига керамзита, содержит установленный на роликоопорах футерованный корпус с секторными вырезами, горелочные устройства и привод....
Тип: Изобретение
Номер охранного документа: 0002553754
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d1

Вибрационная установка для отделочно-упрочняющей обработки деталей

Изобретение относится к машиностроению и может быть использовано для шлифования, полирования и упрочнения поверхностного слоя деталей в контейнерах. Устройство содержит упруго установленную на основании рабочую камеру с приводом. Рабочая камера выполнена пустотелой в форме квадрата с винтовой...
Тип: Изобретение
Номер охранного документа: 0002553755
Дата охранного документа: 20.06.2015
Showing 161-170 of 700 items.
27.07.2014
№216.012.e29e

Устройство для приготовления лакокрасочной продукции

Изобретение относится к устройствам для приготовления продукции во встряхивающих, качающихся и вибрирующих устройствах и может быть применено в лакокрасочной промышленности. Устройство содержит снабженный амортизаторами, установленный с возможностью пространственного движения в трех взаимно...
Тип: Изобретение
Номер охранного документа: 0002523804
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e29f

Озонатор

Изобретение относится к области производства озона и может быть использовано для обработки воздушных и водных сред. Озонатор содержит высоковольтный источник переменного напряжения, выполненный в виде изолированных проводов (электродов), покрытых диэлектриком, намотанных на конусное основание....
Тип: Изобретение
Номер охранного документа: 0002523805
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2a1

Установка для приготовления лакокрасочной продукции

Изобретение относится к устройствам для приготовления продукции во встряхивающих, качающихся и вибрирующих устройствах и может быть применено в лакокрасочной промышленности. Установка для приготовления лакокрасочной продукции содержит снабженный амортизаторами, установленный с возможностью...
Тип: Изобретение
Номер охранного документа: 0002523807
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2c8

Способ посева яровых колосовых культур

Изобретение относится к области сельского хозяйства. Способ включает обработку почвы, предпосевную подготовку семян и посев весной. Предпосевную подготовку семян проводят путем их увлажнения, доводя содержание влаги семян до 45-50% их массы. Выдерживают семена при температуре +5°÷+10°C в...
Тип: Изобретение
Номер охранного документа: 0002523846
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2cb

Устройство для безотвальной обработки почвы в междурядьях сада

Изобретение относится к сельскохозяйственному машиностроению, а именно к орудиям для обработки почвы в рядах плодовых деревьев. Устройство включает раму с системами навески и регулировки глубины обработки, рабочие органы. Рабочие органы выполнены в виде долота и шарнирно закрепленных...
Тип: Изобретение
Номер охранного документа: 0002523849
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2cd

Устройство для приготовления кормов

Изобретение относится к сельскому хозяйству, в частности к устройствам для смешивания кормов. Устройство для приготовления кормов содержит станину, установленный на ней с возможностью вращения барабан, состоящий из секций, и привод. Барабан выполнен по периметру в виде многозаходной винтовой...
Тип: Изобретение
Номер охранного документа: 0002523851
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e2ec

Витаминно-минеральный премикс "успех" для высокопродуктивных коров

Изобретение относится к животноводству и ветеринарии, а именно к кормлению высокопродуктивных коров, и может быть использовано для балансирования рационов при приготовлении комбикормов как на крупных комбикормовых предприятиях, так и непосредственно в хозяйствах. Витаминно-минеральный премикс...
Тип: Изобретение
Номер охранного документа: 0002523882
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e3af

Буроинъекционная свая с наклонными локальными уширениями

Изобретение относится к строительству и может быть использовано при устройстве анкерных креплений котлованов, а также свайных фундаментов. Буроинъекционная свая с наклонными локальными уширениями включает долото, штанги, соединительные муфты и муфты-коронки, с полостями в буровых лопастях, в...
Тип: Изобретение
Номер охранного документа: 0002524077
Дата охранного документа: 27.07.2014
27.07.2014
№216.012.e57f

Способ переработки сильнокислого гидрофуза

Изобретение относится к масложировой промышленности. Способ включает его разделение на фракции введением в него активатора, перемешивание смеси, отстаивание, для полученной партии гидрофуза определяют его объем, коэффициент его водонасыщения, водородный показатель исходного гидрофуза, значение...
Тип: Изобретение
Номер охранного документа: 0002524541
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e6f8

Способ контроля производительности озонатора и устройство для его осуществления

Изобретение относится к озонаторам и может быть использовано на промышленных и сельскохозяйственных предприятия для обработки воздушных и водных сред. Технический результат состоит в обеспечении контроля производительности озонаторов. Для контроля производительности озонатора в качестве расхода...
Тип: Изобретение
Номер охранного документа: 0002524921
Дата охранного документа: 10.08.2014
+ добавить свой РИД