×
20.04.2015
216.013.455e

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ

Вид РИД

Изобретение

№ охранного документа
0002549256
Дата охранного документа
20.04.2015
Аннотация: Изобретение относится к измерительной технике и может быть использовано для измерения физических параметров и скорости потоков жидкостей и газов. Техническим результатом изобретения является повышение точности измерения и повышение быстродействия способа. Суть способа состоит в том, что в потоке локально устанавливают три идентичных терморезисторных элемента с подогревом - охлаждением управляемыми контролируемыми источниками разной переменной мощности, измеряют сопротивления терморезисторных элементов во времени, определяют мгновенные значения температуры терморезисторных элементов и их производных, определянэт мгновенное значение параметра потока по градуировочной зависимости от интегрального коэффициента теплообмена a(t)S тер-морезисторного элемента со средой или по градуировочной зависимости от теплоемкости тс терморезисторного элемента, которые вычисляют.по формулам где θ(t), θ(t) и θ(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов; θ'(t), θ'(t) и θ'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов; Ρ(t), Ρ(t) и Ρ(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов, температуру потока θc(t) определяют по формуле.
Основные результаты: Способ измерения параметров потоков жидкостей и газов, заключающийся в установке локально в потоке нескольких идентичных терморезисторных элементов с подогревом - охлаждением управляемыми контролируемыми источниками разной переменной мощности, измерении сопротивлений терморезисторных элементов во времени, отличающийся тем, что используют три терморезисторных элемента, определяют мгновенные значения температуры терморезисторных элементов и их производных, определяют мгновенное значение параметра потока, например, скорости по градуировочной характеристике параметра ν(t)=φ[α(t)S] oт интегрального коэффициента теплообмена α(t)S терморезисторного элемента со средой и теплоемкость терморезисторного элемента, которые вычисляют по формулам где θ(t), θ(t) и θ(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов;θ'(t), θ'(t) и θ'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов;P(t), P(t) и Р3(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов,температуру потока θ(t) определяют по формуле где m - масса датчика,c - искомая теплоемкость материала датчика.

Изобретение относится к измерительной технике и может быть использовано для измерения физических параметров и скорости потоков жидкостей и газов.

Известны способы измерения параметров потока термоанемометрами, содержащими два датчика температуры с непрерывным, прерывистым или гармоническим подогревом одного или двух датчиков и работающих в разомкнутых системах с выходным сигналом разности температур датчиков при фиксированной разности мощностей нагрева или в замкнутых системах с выходным сигналом разности мощностей нагрева при фиксированной разности температур датчиков [1].

Общим недостатком известных способов измерения параметров потоков является зависимость результата измерения от конструктивных параметров датчиков, которые могут изменяться в процессе эксплуатации, что приводит к снижению точности.

Наиболее близким к предлагаемому способу (прототипом) является способ измерения параметров потоков жидкостей и газов по постоянной времени термочувствительного элемента, состоящего из двух половинок, которую определяют путем попеременного пропускания импульсов тока нагрева и регистрации с помощью измерителя интервалов времени отрезков времени от начала нагрева и охлаждения до момента равенства величин сопротивлений двух половин термочувствительного элемента [2]. Способ имеет ограничение на использование только линейных датчиков.

В этом способе предполагается, что времена вхождения в "регулярный режим" нагрева и охлаждения и постоянные времени при нагреве датчика изнутри током опроса и охлаждения потоком извне равны. Это достаточно грубое приближение и приводит к существенным погрешностям [3].

Предполагается также, что конструктивные параметры датчика, его масса и теплоемкость не изменяются в процессе эксплуатации. Если эти параметры будут изменяться из-за коррозии и обрастания датчиков, то появится дополнительная погрешность измерения.

Быстродействие этого способа ограничено временем переходного процесса от начала нагрева до равенства сопротивлений половинок датчика.

Таким образом, известный способ имеет низкую точность и ограниченное быстро-. действие.

Предлагаемый способ имеет общее с прототипом то, что он предусматривает использование нескольких идентичных датчиков (или идентичных частей одного датчика) и разных режимов нагрева.

В основу изобретения поставлено решение задачи измерения параметров потоков жидкости и газов, при котором за счет определения мгновенных значений коэффициента теплообмена и следовательно измеряемого параметра потока, а также температуры потока и конструктивного параметра датчиков, обеспечивается технический результат изобретения - повышение точности измерения и повышение быстродействия способа.

Поставленная задача решается тем, что в способе измерения параметров потоков жидкостей и газов, который включает установку локально в потоке нескольких идентичных терморезисторных элементов с подогревом-охлаждением управляемыми контролируемыми источниками разной переменной мощности, измерение сопротивлений терморезисторных элементов во времени, согласно изобретению используют три терморезисторных элемента, определяют мгновенное значения температуры терморезисторных элементов и их производных, определяют мгновенное значение параметра потока, например, скорости по градуировочной характеристике параметра ν(t)=φ[α(t)S] от интегрального коэффициента теплообмена α(t)S терморезисторного элемента со средой и теплоемкость терморезисторного элемента, которые вычисляют по формулам

где θ1(t), θ2(t) и θ3(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов;

θ1'(t), θ2'(t) и θ3'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов;

Ρ1(t), Ρ2(t) и Ρ3(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов,

температуру потока θc(t) определяют по формуле

Для пояснения сути предлагаемого способа рассмотрим структурную схему устройства, которое его реализует. На чертеже показан пример такой структурной схемы.

Устройство содержит три идентичных термочувствительных элемента - резисторные датчики температуры 11, 12, 13 с нагревательно-охладительными элементами 21, 22, 23. Выходы датчиков поданы на входы преобразователей сопротивлений в цифру 31, 32, 33. Входы нагревательно-охладительных элементов соединены с источниками управляемой мощности нагрева - охлаждения 41, 42, 43. Входы - выходы блоков 31, 32, 33 и 41, 42, 43 соединены с процессором 5.

В качестве терморезисторных датчиков могут быть использованы медные, платиновые и никелевые термометры сопротивления, термометры с косвенным подогревом и другие термочувствительные элементы, у которых температура изменяет сопротивление датчика по известной функции преобразования, а по градуировочной характеристике и измеренному мгновенному сопротивлению датчика определить его среднеобъемную мгновенную температуру. Это могут третьи части одного распределенного нитевидного датчика или три отдельных датчика.

В качестве встроенных нагревательных элементов могут использоваться резисторы из сплавов с малым температурным коэффициентом (манганин, константан) или высокотемпературные (нихром, вольфрам). В качестве нагревателей - охладителей возможно использование спаев термопар, питаемых разнополярным током для обеспечения режимов нагрева или охлаждения.

Для измерения сопротивлений датчиков возможно применение известных схем включения преобразователей аналог - цифра, желательно с высоким быстродействием.

Источники управляемой мощности нагрева - охлаждения выполняются как цифро-аналоговые преобразователи кода в напряжение или ток с одновременным контролем (аналого-цифровым преобразованием) тока или напряжения на нагрузке (нагревателе-охладителе).

Точность и быстродействие всех аналого-цифровых и цифроаналоговых преобразователей в блоках 3i, и 4i должна быть согласована. На процессор 5 возлагается задача реализации алгоритма измерения. Блоки 3i, и 4i и процессор могут быть реализованы на одном или нескольких микроконверторах с обрамлением, например, типа AduC824.

Способ измерения параметров потока осуществляют следующим образом. В потоке локально размещают три идентичных датчика температуры 11, 12, 13 с нагревателями-охладителями 21, 22, 23 и обеспечивают разную контролируемую переменную мощность нагрева-охлаждения Ρ1(t), Ρ2(t), и P3(t), измеряют мгновенные значения сопротивлений R1(t), R2(t) и R3(t) датчиков, определяют мгновенные значения температур датчиков θ1(t), θ2(t) и θ3(t) по известным градуировочным характеристикам θi(Ri) или по аналитическим зависимостям, например, для медных датчиков с линейной характеристикой по формуле

где i=1, 2, 3; Ri0 - известное сопротивление i-го датчика при нулевой температуре, β - температурный коэффициент чувствительности.

Используем уравнение теплового баланса для подогревааемого (охлаждаемого) мощностью P(t) i-го датчика, помещенного в среду с температурой θc(t)

где известные величины θi(t), Ρi(t), вычисляемая из ряда отсчетов θi(t) величина θi'(t), неизвестная конструктивная, медленно изменяющаяся величина mс, неизвестные θc(t) и αi(t);

θi(t) и θi'(t) - мгновенные температура датчика и ее производная;

αi(t) - мгновенный коэффициент теплообмена;

mс - теплоемкость датчика;

m - масса датчика;

с - удельная теплоемкость материала датчика;

S - площадь поверхности теплообмена датчика со средой;

Уравнение 2 справедливо для датчика, который может считаться сосредоточенным в пространстве и инерционным звеном 1-го порядка во времени, работающим в "регулярном режиме" для рабочего диапазона частот изменчивости температуры среды θc(t) и коэффициента теплоообмена αi(t) при периодическом изменении Pi(t).

Известно [3], что коэффициент теплообмена а сложным образом зависит от скорости потока, теплопроводности, удельной теплоемкости, плотности и кинематической вязкости среды. Эти зависимости устанавливаются эмпирически для конкретной жидкости или газа с удовлетворительной точностью.

В этом случае для идентичных датчиков в идентичных условиях среды и при разных мощностях нагрева-охлаждения коэффициенты теплообмена можно принять равными; т.е.

Из уравнения 2 можем записать для трех датчиков

Вычитая первое уравнение из второго и третьего, получим уравнения без температуры среды θc(t)

Решения этих уравнений относительно неизвестных α(t)S и mс имеют вид

Значение α(t)S далее используется для определения изменчивости какого-либо из параметров потока, при постоянстве остальных, из градуировочной характеристики φ[α(t)S], например, для скорости потока ν(t).

Конструктивный параметр тс консервативен, но может изменяться за счет коррозии й обрастания датчиков. В предположении, что эти изменения у всех датчиков одинаковы, его можно всегда определить. Параметр mс может быть информативным, если на датчиках будет что-либо оседать из среды.

Температуру среды θc(t) можно определить по одному из трех уравнений (4)

Целесообразно определять температуру потока как среднюю по трем каналам по формуле

Таким образом, предложенным способом определяются мгновенные значения коэффициента теплообмена и, следовательно, измеряемого параметра потока, а также температуры потока и конструктивного параметра датчиков.

Быстродействие способа ограничено только разрешением и быстродействием преобразователя сопротивлений датчиков и мощности нагрева в цифру и процессора, выполняющего алгоритм измерения.

Вычисление измеряемых параметров потока возможно как встроенным процессором, если его производительности хватит для обработки данных в реальном масштабе времени до конечного результата, так и внешним процессором во время и после измерений.

Использованные источники

1. Короткое П.А., Лондон Г.Е. Динамические контактные измерения тепловых величин. Л., "Машиностроение". Л.О., 1974.-224 с.

2. Авторское свидетельство СССР № 1645903, кл. G01 Р5/12. Приоритет 26.12.83. Опубл. Бюл. № 16, 1991 - прототип.

3. Ярышев Н.А. Теооретические основы измерения нестационарной температуры. -2-е изд., перераб. -Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. - 256 с.

Способ измерения параметров потоков жидкостей и газов, заключающийся в установке локально в потоке нескольких идентичных терморезисторных элементов с подогревом - охлаждением управляемыми контролируемыми источниками разной переменной мощности, измерении сопротивлений терморезисторных элементов во времени, отличающийся тем, что используют три терморезисторных элемента, определяют мгновенные значения температуры терморезисторных элементов и их производных, определяют мгновенное значение параметра потока, например, скорости по градуировочной характеристике параметра ν(t)=φ[α(t)S] oт интегрального коэффициента теплообмена α(t)S терморезисторного элемента со средой и теплоемкость терморезисторного элемента, которые вычисляют по формулам где θ(t), θ(t) и θ(t) - мгновенные температуры первого, второго и третьего терморезисторных элементов;θ'(t), θ'(t) и θ'(t) - мгновенные производные температур первого, второго и третьего терморезисторных элементов;P(t), P(t) и Р3(t) - мгновенные мощности нагрева первого, второго и третьего терморезисторных элементов,температуру потока θ(t) определяют по формуле где m - масса датчика,c - искомая теплоемкость материала датчика.
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ПОТОКОВ ЖИДКОСТЕЙ И ГАЗОВ
Источник поступления информации: Роспатент

Showing 31-38 of 38 items.
20.04.2015
№216.013.455b

Устройство для подъема глубинной морской воды на поверхность

Изобретение относится преимущественно к области океанологии и предназначено для забора глубинной воды морей и океанов с заданных горизонтов для последующих физических, химических, биологических исследований или для извлечения из нее отдельных минеральных или газовых компонентов в промышленных...
Тип: Изобретение
Номер охранного документа: 0002549253
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.455c

Барокомпенсированный первичный измерительный преобразователь с твердотельным чувствительным элементом

Изобретение относится к технике измерений гидрофизических и гидрохимических параметров водных сред в океанографических, гидрографических и экологических глубоководных исследованиях и может быть использовано в различных технологических процессах, связанных с контролем параметров жидкости,...
Тип: Изобретение
Номер охранного документа: 0002549254
Дата охранного документа: 20.04.2015
20.04.2015
№216.013.455d

Цифровой измеритель температуры

Изобретение относится к измерительной технике и предназначено для измерения температуры контактными резисторными датчиками в окружающей среде и в технологических процессах. Техническим результатом изобретения является повышение точности за счет уменьшения динамической погрешности измерения,...
Тип: Изобретение
Номер охранного документа: 0002549255
Дата охранного документа: 20.04.2015
27.05.2015
№216.013.4f8b

Барокомпенсированный электрохимический измерительный газоанализатор (варианты)

Изобретение относится к технике измерения содержания растворенного газа в жидких и газовых средах, предназначено в основном для применения в океанографической аппаратуре и может быть использовано в горной, химической промышленности, в разных технологических и экологических системах измерения и...
Тип: Изобретение
Номер охранного документа: 0002551881
Дата охранного документа: 27.05.2015
26.08.2017
№217.015.e4ae

Устройство для измерения двигательной активности створок моллюсков

Устройство включает лотки, в каждом из которых установлен моллюск и преобразователь перемещения его свободной створки, который содержит датчик Холла, взаимодействующий с постоянным магнитом, связанным со свободной створкой моллюска. Выходы датчиков Холла подключены к коммутатору, подключенному...
Тип: Изобретение
Номер охранного документа: 0002625673
Дата охранного документа: 18.07.2017
26.08.2017
№217.015.eaf7

Способ измерения изменения профиля поля физической величины

Изобретение относится к способам контактного изменения профиля физической величины в различных средах, в частности профиля температуры в море или атмосфере. При осуществлении способа измерения изменения профиля поля физической величины используют распределенные датчики с переменной погонной...
Тип: Изобретение
Номер охранного документа: 0002627979
Дата охранного документа: 14.08.2017
26.08.2017
№217.015.ebda

Способ адаптивного аналого-цифрового преобразования и устройство для его осуществления

Группа изобретений относится к измерительной технике. Технический результат - обеспечение заданной точности аналого-цифрового преобразования за счет обеспечения контролируемого уменьшения или исключения погрешности дискретного представления сигнала путем управления частотой дискретизации. Для...
Тип: Изобретение
Номер охранного документа: 0002628261
Дата охранного документа: 15.08.2017
19.01.2018
№218.016.05d8

Способ измерения вертикального профиля плотности морской воды и устройство для его осуществления

Изобретение относится к области экспериментальной океанографии, предназначено для непосредственного измерения вертикальных профилей плотности, температуры и скорости течения в море и может быть использовано в промышленности и на транспорте для определения тех же параметров в жидких средах, а...
Тип: Изобретение
Номер охранного документа: 0002631017
Дата охранного документа: 15.09.2017
Showing 41-45 of 45 items.
25.06.2018
№218.016.65a7

Устройство для измерения удельной электропроводности жидких сред

Устройство предназначено для измерения удельной электропроводности морской воды непосредственно в среде и может использоваться для измерения в других жидкостях. Сущность изобретения заключается в том, что устройство для измерения удельной электропроводности жидких сред содержит датчик с...
Тип: Изобретение
Номер охранного документа: 0002658498
Дата охранного документа: 21.06.2018
08.07.2018
№218.016.6e68

Способ дискретизации и восстановления непрерывного сигнала

Изобретение относится к области измерительной технике и предназначено для использования в системах контроля окружающей среды и технологических процессов. При дискретизации отсчеты берут пакетами по m отсчетов с задержками от первого , последовательность из N пакетов отсчетов регистрируют или...
Тип: Изобретение
Номер охранного документа: 0002660320
Дата охранного документа: 05.07.2018
16.03.2019
№219.016.e1bf

Способ определения показателя тепловой инерции датчиков температуры

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют анализ переходного процесса после подачи ступенчатого воздействия, при этом используют совместно два датчика, первый из них с неизвестным...
Тип: Изобретение
Номер охранного документа: 0002682073
Дата охранного документа: 14.03.2019
17.03.2019
№219.016.e2d5

Способ измерения профилей температуры, давления и плотности в жидкости

Изобретение предназначено для применения в океанологии и может использоваться в других областях. Сущность изобретения заключается в том, что используют распределенные термопрофилемеры, содержащие по n модулированных по погонной чувствительности по функциям {
Тип: Изобретение
Номер охранного документа: 0002682080
Дата охранного документа: 14.03.2019
01.06.2023
№223.018.74b5

Способ измерения плотности жидкости

Изобретение относится к области измерительной техники и предназначено для использования в океанологии и может быть использовано в других областях. Предложена модификация гидростатического способа для измерения локальной плотности жидкости непосредственно в среде с высоким внешним давлением,...
Тип: Изобретение
Номер охранного документа: 0002767024
Дата охранного документа: 16.03.2022
+ добавить свой РИД