×
20.04.2015
216.013.4460

Результат интеллектуальной деятельности: ТУРБОКОМПРЕССОР С ГАЗОМАГНИТНЫМИ ПОДШИПНИКАМИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения, а конкретно - к турбокомпрессорам, используемым в системах наддува автомобильных, тепловозных, судовых и других видов двигателей внутреннего сгорания. Турбокомпрессор с газомагнитными подшипниками содержит ротор с рабочим колесом компрессора. Приводом компрессора служит турбина, работающая на отработавших газах ДВС, а цилиндрический ротор размещается в двух опорно-упорных газомагнитных подшипниках. В каждом газомагнитном подшипнике размещены кольцевой активный электромагнит и два активных радиальных электромагнита для восприятия осевых и радиальных усилий соответственно путем взаимодействия с валом, колесом турбины и кольцевой вставкой колеса компрессора из ферромагнитного материала. В газомагнитных подшипниках выполнены питатели для подвода в осевом и радиальном направлении сжатого воздуха, подаваемого из нагнетательной магистрали компрессора. Изобретение позволяет обеспечить возможность регулирования несущей способности подшипников, повысить эффективность демпфирования колебаний ротора и упростить систему подачи воздушной смазки к подшипникам. 2 ил.
Основные результаты: Турбокомпрессор с газомагнитными подшипниками, содержащий ротор с рабочим колесом компрессора, отличающийся тем, что приводом компрессора служит турбина, работающая на отработавших газах ДВС, а цилиндрический ротор размещается в двух опорно-упорных газомагнитных подшипниках, в каждом из которых размещены кольцевой активный электромагнит и два активных радиальных электромагнита для восприятия осевых и радиальных усилий соответственно путем взаимодействия с валом, колесом турбины и кольцевой вставкой колеса компрессора из ферромагнитного материала, при этом в газомагнитных подшипниках выполнены питатели для подвода в осевом и радиальном направлении сжатого воздуха, подаваемого из нагнетательной магистрали компрессора.

Изобретение относится к области машиностроения, а конкретно - к турбокомпрессорам, используемым в системах наддува автомобильных, тепловозных, судовых и других видов двигателей внутреннего сгорания (ДВС).

Известны турбокомпрессоры со следующими видами бесконтактных опор, обеспечивающих минимальные потери на трение: газовыми, магнитными и газомагнитными (конической формы).

Известен турбокомпрессор с подшипниковым узлом на газовой смазке, представляющим собой плавающую моновтулку с питающими отверстиями [1]. Конструкция моновтулки обеспечивает компенсацию радиальных и осевых перемещений. Для отвода отработавшего воздуха вал ротора выполнен полым, а рабочее колесо турбины имеет осевые сверления.

Известен турбокомпрессор с газостатическими подшипниками [2]. Ротор турбокомпрессора состоит из турбинного колеса, на одном валу с которым по обе стороны располагаются компрессорные колеса. Между турбинным и соответствующим компрессорным колесом располагается газостатический подшипник, являющийся одновременно опорным и упорным. На концах вала установлены подшипники качения с упругодемпферными обоймами.

Известен турбокомпрессор с газостатическими опорами [3]. Особенность конструкции подшипников заключается в том, что газостатические опоры располагаются между рабочим колесом компрессора или турбины и соответствующим участком корпуса компрессора или турбины.

Недостатками указанных конструкций подшипниковых узлов является относительно невысокая несущая способность газового слоя, что при возникновении вибраций на работающем двигателе, может привести к потере устойчивости. Также можно отметить усложнение конструкции подшипникового узла и некоторых других элементов. В случае моновтулки это применение конструктивных решений для обеспечения внешнего смазочного газового слоя (между подшипником и корпусом), выполнение вала ротора полым и рабочего колеса турбины со сверлениями. В случае второй конструкции - это применение страховочных подшипников качения на концах вала. В третьем турбокомпрессоре усложняется конструкция рабочих колес турбины и компрессора, а также соответствующих частей корпусов, что приводит к усложнению технологии изготовления деталей.

Известна турбомашина с магнитными подшипниками [4]. В конструкции турбомашины для поддержания ротора используются радиальные и осевые активные магнитные подшипники. Недостатком турбомашины является относительно невысокая несущая способность подшипников, свойственная не только газовым, но и магнитным подшипникам, и наличие страховочных подшипников качения, что усложняет конструкцию всего устройства.

В общем, недостатки газовых и магнитных опор турбокомпрессоров можно свести к следующему. И газовые, и магнитные подшипники имеют относительно невысокую несущую способность и склонность к потере устойчивости при возникновении вибрации, что неизбежно на работающем двигателе. Магнитные подшипники, а иногда и газовые, страхуются подшипниками качения или скольжения на случай их отказа, что приводит к усложнению конструкции. Также в магнитном поле взвешенное тело находится в неустойчивом положении.

Тем не менее, применение в турбокомпрессорах бесконтактных опор с малыми потерями на трение имеет перспективу. Решением, позволяющим улучшить характеристики бесконтактных опор и частично устранить их недостатки, является применение комбинированных опор - газомагнитных подшипников. Такие подшипники имеют большую несущую способность, лучше демпфируют колебания и стабилизируют вращение ротора. При этом можно отказаться от страховочных подшипников, так как страховкой магнитному подшипнику будет газовая смазка.

Известен турбокомпрессор с электроприводом и газомагнитной конической опорой [5]. Ротор турбокомпрессора состоит из рабочего колеса компрессора, конической опоры, обращенной меньшим диаметром в сторону компрессора, двух колес для нагнетания газовой смазки в рабочий зазор и отвода ее из зазора. Газомагнитный подвес ротора обеспечивается совместным действием подъемных сил слоя газовой смазки и электромагнитных сил притяжения ротора к статору.

Особенностью последнего турбокомпрессора является то, что в конструкции отсутствует турбинное колесо для привода компрессора, что фактически превращает турбокомпрессор в электрокомпрессор, а вал в середине имеет конический участок, что усложняет технологию его изготовления. В то же время конструкция ротора абсолютного большинства выпускаемых турбокомпрессоров ДВС включает цилиндрический вал, компрессорное и турбинное колеса. Конический подшипник также обеспечивает компенсацию осевых усилий только в одном направлении, в то время как в турбокомпрессорах, работающих на отработавших газах ДВС, возможно появление осевых усилий в двух направлениях в связи с пульсацией газового потока.

Описанный выше турбокомпрессор является ближайшим аналогом заявляемому изобретению по принципу поддержания ротора. Предложенное ниже конструктивное решение позволяет, используя саму идею объединения газовых и магнитных сил, изложенную в [5], применить ее для отраслевых конструкций турбокомпрессоров, работающих на отработавших газах ДВС.

Основной целью изобретения является усовершенствование турбокомпрессора путем изменения конструкции подшипникового узла, позволяющее применить газомагнитный принцип поддержания ротора для отраслевых конструкций турбокомпрессоров с цилиндрическим ротором и газотурбинным приводом с одновременным упрощением системы подачи сжатого воздуха к подшипникам.

Для решения поставленной задачи предложен турбокомпрессор с газомагнитными подшипниками, содержащий ротор с рабочим колесом компрессора. Приводом компрессора служит турбина, работающая на отработавших газах ДВС, а цилиндрический ротор размещается в двух опорно-упорных газомагнитных подшипниках, в каждом из которых размещены кольцевой активный электромагнит и два активных радиальных электромагнита для восприятия осевых и радиальных усилий соответственно путем взаимодействия с валом, колесом турбины и кольцевой вставкой колеса компрессора из ферромагнитного материала. В газомагнитных подшипниках выполнены питатели для подвода в осевом и радиальном направлении сжатого воздуха, подаваемого из нагнетательной магистрали компрессора.

Технический результат: возможность воспринимать осевые усилия ротора в двух направлениях, регулировать несущую способность подшипников, эффективно демпфировать колебания ротора и упростить систему подачи воздушной смазки к подшипникам.

Конструктивная схема турбокомпрессора с газомагнитными подшипниками представлена на фиг. 1, схема размещения радиальных электромагнитов в подшипнике - на фиг. 2:

1 - рабочее колесо компрессора;

2 - вставка из ферромагнитного материала;

3 - втулка;

4 - корпус подшипника;

5 - опорно-упорный подшипник;

6 - рабочее колесо турбины;

7 - питающие отверстия;

8 - радиальный электромагнит;

9 - осевой электромагнит;

10 - вал;

11 - камера.

Турбокомпрессор состоит из корпуса компрессора и корпуса турбины (не показаны), корпуса подшипника 4 и ротора. Ротор состоит из рабочего колеса компрессора 1, рабочего колеса турбины 6 и вала 10. Вал ротора размещается в двух опорно-упорных подшипниках 5. В каждом газомагнитном подшипнике размещается кольцевой электромагнит 9 для компенсации осевых усилий и два радиальных электромагнита 8 для компенсации радиальных усилий. Электромагниты 8 и 9 относятся к типу активных магнитов (система их управления не показана). Магнитное поле создается путем взаимодействия электромагнитов 8 и 9 с валом 10 и рабочим колесом турбины 6, изготовленным из ферромагнитного материала, и рабочим колесом компрессора 1, имеющим кольцевую ферромагнитную вставку 2. Газомагнитные подшипники имеют также питающие отверстия 7 (не менее 4-х в одном ряду по окружности) для подвода сжатого воздуха в рабочий зазор между подшипником и ротором. Газомагнитные подшипники размещаются во втулке 3, которая, в свою очередь, располагается в корпусе подшипника 4. В верхней части корпуса подшипника 4 имеется отверстие и канал для подвода сжатого воздуха из нагнетательного трубопровода компрессора через сверления во втулке 3 сначала в камеры 11, а затем через питающие отверстия 7 в рабочий зазор. В нижней части корпуса подшипников имеется отверстие для отвода отработавшего воздуха в атмосферу. Часть воздуха может выходить в проточные части компрессора и турбины.

Работает турбокомпрессор следующим образом. Перед пуском на электромагниты 8 и 9 подшипников подается питание. При этом вал ротора «всплывает». После подачи рабочего тела (например, продуктов сгорания ДВС) на колесо турбины 6 ротор турбокомпрессора начинает раскручиваться. Часть сжатого воздуха после компрессора отбирается и подается в корпус подшипников 4. Далее по каналам сжатый воздух поступает сначала в камеры 11, затем через питающие отверстия 7 - в рабочий зазор между ротором и подшипниками, образуя газовый смазочный слой. Поддержание ротора в подшипниках обеспечивается совместным действием сил давления газового смазочного слоя и магнитных сил притяжения ротора к подшипникам. Так как входящие в газомагнитный подшипник электромагниты относятся к типу активных магнитов, то это позволяет регулировать несущую способность подшипника и эффективнее демпфировать колебания ротора. Система подачи воздуха по сравнению с устройством [5] упрощена, так как отсутствуют колеса для нагнетания и отвода газовой смазки и пневмопереключатель.

Источники информации

1. Автомобильные двигатели с турбонаддувом / Н.С. Ханин, Э.В. Аболтин, Б.Ф. Лямцев и др. - М.: Машиностроение, 1991. - 336 с.

2. Патент №2117772 РФ, МПК F01D 25/24, F02C 7/06; опубл. 20.08.1998.

3. Патент №2118716 РФ, МПК F04D 29/04; опубл. 10.09.1998.

4. Патент №2386048 РФ, МПК F02C 7/06; опубл. 10.04.2010.

5. Авторское свидетельство №1746069 СССР МПК F04D 25/06; опубл. 07.07.92, бюл. №25.

Турбокомпрессор с газомагнитными подшипниками, содержащий ротор с рабочим колесом компрессора, отличающийся тем, что приводом компрессора служит турбина, работающая на отработавших газах ДВС, а цилиндрический ротор размещается в двух опорно-упорных газомагнитных подшипниках, в каждом из которых размещены кольцевой активный электромагнит и два активных радиальных электромагнита для восприятия осевых и радиальных усилий соответственно путем взаимодействия с валом, колесом турбины и кольцевой вставкой колеса компрессора из ферромагнитного материала, при этом в газомагнитных подшипниках выполнены питатели для подвода в осевом и радиальном направлении сжатого воздуха, подаваемого из нагнетательной магистрали компрессора.
ТУРБОКОМПРЕССОР С ГАЗОМАГНИТНЫМИ ПОДШИПНИКАМИ
ТУРБОКОМПРЕССОР С ГАЗОМАГНИТНЫМИ ПОДШИПНИКАМИ
Источник поступления информации: Роспатент

Showing 51-60 of 80 items.
10.12.2015
№216.013.9901

Электрогенератор гидроволновой

Изобретение относится к гидроэнергетике, в частности к производству электроэнергии путем преобразования энергии вертикального волнения воды в электрическую. Электрогенератор гидроволновой предназначен для преобразования энергии волн в электроэнергию. Электрогенератор гидроволновой содержит...
Тип: Изобретение
Номер охранного документа: 0002570789
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.997b

Способ разрушения ледяного покрова

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров при всплытии. Предложен способ разрушения ледяного покрова подводным судном, заключающийся в создании разрушающей ледяной покров нагрузки, которую обеспечивают путем заполнения балластных...
Тип: Изобретение
Номер охранного документа: 0002570916
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.c1f7

Способ определения энергии активации фазовых превращений при распаде мартенсита в стали

Изобретение относится к области металлографии и может быть использовано в описании процессов диффузии, превращений, образования зародышей и роста новой фазы в металлах. Способ определения энергии активации фазовых превращений при распаде мартенсита в стали, в котором для определения энергии...
Тип: Изобретение
Номер охранного документа: 0002574950
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c268

Способ токарной обработки заготовок из капролона

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из капролона. Технической задачей, на решение которой направлено изобретение, является повышение точности размеров и форм обработанной поверхности и...
Тип: Изобретение
Номер охранного документа: 0002574764
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c2e7

Устройство для измерения температуры в зоне резания при точении

Изобретение относится к области измерения температур и может быть использовано измерении температуры при точении. Заявлено устройство для измерения температуры, содержащее заготовку, резец, к задней поверхности режущей пластины которого прикреплен проводник, взаимодействующий с измерительным...
Тип: Изобретение
Номер охранного документа: 0002574234
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c6f3

Динамическая защита

Изобретение относится к военной технике, в частности к конструкции броневой защиты, предназначенной для противодействия кумулятивным боеприпасам. Динамическая защита содержит корпус, в котором расположены две параллельные металлические пластины, детонаторы, равномерно расположенные в зазоре...
Тип: Изобретение
Номер охранного документа: 0002578904
Дата охранного документа: 27.03.2016
20.02.2016
№216.014.cd78

Устройство для разрушения ледяного покрова

Изобретение относится к области судостроения, в частности к подводным судам, разрушающим ледяной покров. Предложено: устройство для разрушения ледяного покрова, состоящее из подводного судна, снабженного якорем, диаметр раскрытия лап которого должен быть больше длины рубки, обеспечивающим при...
Тип: Изобретение
Номер охранного документа: 0002575911
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cdc3

Способ токарной обработки заготовок из капролона

Изобретение относится к обработке материалов резанием и может быть использовано при механической обработке заготовок из пластмасс, преимущественно из капролона. Технической задачей, на решение которой направлено изобретение, является повышение качества обработанной точением поверхности и...
Тип: Изобретение
Номер охранного документа: 0002575723
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cdc6

Способ переработки отходов полиэтиленовой пленки

Изобретение относится к области переработки вторичного сырья и предназначено для переработки отходов полимеров и пластмасс. Согласно способу переработки отходов полиэтиленовой пленки, загружают отходы в агломератор, измельчают отходы, измельченную до тестообразного состояния массу охлаждают,...
Тип: Изобретение
Номер охранного документа: 0002575726
Дата охранного документа: 20.02.2016
27.04.2016
№216.015.37a5

Ретардант роста вегетативных органов огурцов и способ его получения

Изобретение относится к сельскому хозяйству. Композиция предназначена для воздействия на прорастание и рост огурцов. Ретардант роста имеет молекулярную формулу CHCuNO и состоит из активного вещества 4Н-1,2,4-триазол-4-ил([4Н-1,2,4-триазол-4-ил [(4Н-1,2,4-триазол-4-ил-амино)метил]амино]метил]...
Тип: Изобретение
Номер охранного документа: 0002582354
Дата охранного документа: 27.04.2016
Showing 51-60 of 108 items.
10.09.2015
№216.013.7a74

Способ поворота колесного транспортного средства

Изобретение относится к области транспортного машиностроения. Способ поворота колесного транспортного средства посредством рулевого привода, включающего трапецию с поворотными рычагами и колеса, заключается в том, что поворот осуществляют за счет принудительного изменения величины скорости...
Тип: Изобретение
Номер охранного документа: 0002562937
Дата охранного документа: 10.09.2015
27.09.2015
№216.013.7eca

Комплекс контроля материалов

Изобретение относится к средствам сравнительной оценки (контроля) физико-механических и эксплуатационных свойств материалов, в частности может быть использовано для инструментальных материалов. Комплекс содержит установку для осуществления маятникового скрайбирования посредством внедрения...
Тип: Изобретение
Номер охранного документа: 0002564055
Дата охранного документа: 27.09.2015
10.10.2015
№216.013.8275

Низкопотенциальный преобразователь энергии перепада температур с элегазом

Изобретение относится к электротехнике, к емкостным преобразователям энергии, и может быть использовано для питания маломощных потребителей энергии в климатических условиях с достаточным периодическим перепадом температур, например дневных и ночных, либо в полете искусственного спутника Земли...
Тип: Изобретение
Номер охранного документа: 0002564994
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.82b9

Устройство для удаления гололеда с провода линии электропередач

Использование: в области электротехники. Технический результат - повышение качества и производительности. Устройство содержит корпус, который выполнен с возможностью установки его на провод. Также оно снабжено средствами передвижения и удаления льда. Средство передвижения выполнено в виде...
Тип: Изобретение
Номер охранного документа: 0002565068
Дата охранного документа: 20.10.2015
10.11.2015
№216.013.8e33

Волновая энергетическая установка

Изобретение относится к гидроэнергетике, в частности к производству электроэнергии путем преобразования энергии вертикального волнения воды в электрическую. Волновая энергетическая установка содержит каркас 1, поплавок 4, закрепленный к нему шток 3, имеющий цилиндрическую и винтовую части,...
Тип: Изобретение
Номер охранного документа: 0002568012
Дата охранного документа: 10.11.2015
20.11.2015
№216.013.9150

Устройство для стабилизации частоты вращения однофазного коллекторного электродвигателя повышенной надежности

Изобретение относится к области электротехники и может быть использовано, в частности, в электрифицированном инструменте, бытовых и промышленных электроприборах, приборах специального назначения. Технический результат заключается в повышении надежности работы электропривода. В устройстве для...
Тип: Изобретение
Номер охранного документа: 0002568816
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.941e

Способ получения слоистого пластика

Изобретение относится к способу получения слоистого пластика на основе стеклоткани и термореактивных связующих. Изобретение может быть использовано в машиностроительной, кораблестроительной и авиационной промышленности и является особенно перспективным для производства толстостенных изделий. В...
Тип: Изобретение
Номер охранного документа: 0002569537
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9544

Санитарно-техническая кабина

Изобретение относится к санитарно-гигиеническому оборудованию. Предложенная санитарно-техническая кабина содержит модульные элементы, состоящие из внутренней и внешней оболочек. Внутренняя оболочка является несущим элементом за счет заложенных в ее конструкцию ребер жесткости. Расположенное...
Тип: Изобретение
Номер охранного документа: 0002569831
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.9900

Поплавковый волновой генератор

Изобретение относится к гидроэнергетике, в частности к производству электроэнергии путем преобразования энергии вертикального волнения воды в электрическую. Поплавковый волновой генератор предназначен для преобразования энергии волн в электроэнергию. Волновой генератор содержит каркас 1, шток...
Тип: Изобретение
Номер охранного документа: 0002570788
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9901

Электрогенератор гидроволновой

Изобретение относится к гидроэнергетике, в частности к производству электроэнергии путем преобразования энергии вертикального волнения воды в электрическую. Электрогенератор гидроволновой предназначен для преобразования энергии волн в электроэнергию. Электрогенератор гидроволновой содержит...
Тип: Изобретение
Номер охранного документа: 0002570789
Дата охранного документа: 10.12.2015
+ добавить свой РИД