×
20.04.2015
216.013.4416

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЙ ПАРАМЕТРОВ ПОРИСТОЙ СРЕДЫ ПОД ДЕЙСТВИЕМ ЗАГРЯЗНИТЕЛЯ

Вид РИД

Изобретение

№ охранного документа
0002548928
Дата охранного документа
20.04.2015
Аннотация: Использование: для определения изменений параметров пористой среды под действием загрязнителя. Сущность изобретения заключается в том, что размещают излучатель и приемник акустических волн на противоположных поверхностях образца пористой среды, осуществляют первое облучение по меньшей мере одной части образца пористой среды акустическими волнами и измеряют скорость распространения продольных акустических волн, на основе пористости и характера насыщения образца выбирают эмпирическую взаимосвязь между скоростью продольной акустической волны и пористостью для данного типа пористой среды, осуществляют фильтрационный эксперимент по прокачке раствора загрязнителя через образец пористой среды, осуществляют второе облучение той же части образца акустическими волнами и измеряют скорость распространения продольных акустических волн и, используя выбранную эмпирическую взаимосвязь, определяют изменение пористости в этой части образца пористой среды исходя из скоростей продольной акустической волны, измеренных до и после прокачки загрязнителя. Технический результат: обеспечение возможности определения изменения свойств пористой среды, возникающего в результате воздействия загрязнителя. 17 з.п. ф-лы, 3 ил.

Изобретение относится к способам неразрушающего анализа образцов пористых материалов, в частности, оно может быть использовано для количественного исследования ухудшения свойств околоскважинной зоны нефте/газосодержащих пластов из-за проникновения в нее компонентов бурового раствора.

Проблема повреждения околоскважинной зоны пласта под воздействием проникших компонент бурового раствора (или промывочной жидкости) является очень важной, особенно для длинных горизонтальных скважин, т.к. заканчивание большинства из них производится в необсаженном состоянии, т.е. без цементированной и перфорированной эксплуатационной колонны.

Буровые растворы представляют собой сложные смеси полимеров, частиц (размером от сотен микрометров до менее одного микрона), глин и других добавок, содержащихся в "несущей" жидкости - "основе" бурового раствора, в качестве которой может выступать вода, нефть или какая-либо синтетическая жидкость.

В процессе бурения под воздействием избыточного давления фильтрат бурового раствора, а также содержащиеся в нем мелкие частицы, полимеры и иные компоненты проникают в околоскважиную зону пласта и вызывают значительное снижение ее проницаемости. Кроме того, на стенке скважины формируется внешняя фильтрационная корка, состоящая из отфильтрованных твердых частиц и иных компонентов бурового раствора.

Во время технологической процедуры очистки скважины (путем постепенного вывода на добычу) внешняя фильтрационная корка разрушается, а проникшие компоненты бурового раствора частично вымываются из околоскважинной зоны, и ее проницаемость частично восстанавливается. Тем не менее, часть компонентов остается необратимо удержанной в поровом пространстве породы (адсорбция на поверхности пор, захват в поровых сужениях и т.д.), что приводит к существенному различию между исходной проницаемостью и проницаемостью, восстановленной после проведения технологической процедуры очистки (обычно восстановленная проницаемость не превышает 50-70% от начальной).

Общепринятым лабораторным методом проверки качества бурового раствора является фильтрационный эксперимент по его закачке в образец керна с последующей обратной прокачкой (т.е. вытеснения проникшего бурового раствора исходной пластовой жидкостью), в ходе которого замеряется динамика ухудшения/восстановления проницаемости как функция от количества закачанных поровых объемов флюидов (буровой раствор или пластовая жидкость).

Общепринятый лабораторный метод позволяет измерить только интегральное гидравлическое сопротивление образца керна (отношение текущего перепада давления на керне к текущему расходу), изменение которого обусловлено динамикой роста/разрушения внешней фильтрационной корки на торце керна и накоплением/выносом компонент бурового раствора в породе.

Однако профиль поврежденной пористости и проницаемости вдоль образца керна (т.е. вдоль оси фильтрации) после закачки бурового раствора (или после обратной прокачки), представляет собой важную информацию для понимания механизма повреждения пласта и выбора соответствующего метода повышения коэффициента продуктивности скважины (минимизации повреждения призабойной зоны пласта). Данные параметры не замеряются в рамках указанной выше традиционной процедуры проверки качества бурового раствора.

Для определения этих параметров требуется привлечение дополнительных методов.

Патент США No.2003/0217599, опубликованный 7 ноября 2003 года, содержит метод определения дефектов, содержащихся внутри пористых сред, таких как мембрана, используя плоские волны. Плоские волны генерируют быструю продольную волну и медленную продольную волну внутри исследуемой пористой среды. При этом быстрая продольная волна передает информацию о пористости исследуемой среды, а медленная продольная волна - информацию о присутствии дефектов в пористой среде или типах материалов, слагающих исследуемую пористую среду.

В патенте США №2009/0168596 от 2 июля 2009 заявляется метод оценки пористости и литологии продуктивного горизонта в реальном времени с помощью каротажа, во время бурения используя измеренные величины аттрибутов затухания в породе для волн сжатия и/или сдвига. Измеренные аттрибуты затухания используются совместно с эмпирической картой литологии для определения литологии, пористости и насыщенности продуктивного горизонта, когда эти параметры неизвестны.

В патенте США No. 2011/0242938 от 6 октября 2011 предлагаются методы, а также примеры их реализации для анализа образцов керна, отобранных из скважины. Предлагаемые методы могут включать извлечение первого керна из скважины с помощью керноотборного инструмента на первой глубине, измерение ультразвуковым методом скорости звука в первом образце керна, передачу измеренной ультразвуковым методом скорости звука в первом образце керна на устройство отображения, анализ в реальном времени измеренной скорости ультразвуковых волн, выбор второго образца керна на первой глубине, если качество первого керна оказалось неудовлетворительным, извлечение второго керна на второй глубине, если первый керн оказался высокого качества. Далее в патенте США No. 2011/0242938 декларируется определение одного из следующих параметров: однородность, целостность, литология образцов керна на основе полученного профиля скорости ультразвуковых волн.

Все отмеченные выше патенты направлены на определение свойств пористой среды, таких как пористость, характер насыщения, литология, исходя из аттрибутов волн, распространяющихся через образец исследуемой пористой среды. В них не предусмотрено определение изменения свойств пористой среды, возникающего в результате воздействия загрязнителя.

Технический результат, достигаемый при реализации изобретения, заключается в обеспечении возможности определения изменения свойств пористой среды, возникающего в результате воздействия загрязнителя.

В соответствии с предлагаемым способом определения изменений параметров пористой среды под действием загрязнителя размещают излучатель и приемник акустических волн на противоположных поверхностях образца пористой среды, осуществляют первое облучение по меньшей мере одной части образца пористой среды продольными акустическими волнами и измеряют скорость распространения продольных акустических волн. На основе пористости и характера насыщения образца выбирают эмпирическую взаимосвязь между скоростью продольной акустической волны и пористостью для данного типа пористой среды. Затем осуществляют фильтрационный эксперимент по прокачке раствора загрязнителя через образец пористой среды и осуществляют второе облучение той же части образца продольными акустическими волнами и измерение скорости распространения продольных акустических волн. Используя выбранную эмпирическую взаимосвязь, определяют изменение пористости в этой части образца пористой среды исходя из скоростей продольной акустической волны, измеренных до и после прокачки загрязнителя.

Предпочтительно излучатель и приемник ультразвуковых волн размещают так, чтобы оси их максимальной чувствительности совпадали.

В качестве образца пористого материала может быть использован керн горной породы, а в качестве загрязнителя - буровой раствор. Предварительно может быть проведено экстрагирование керна.

Пористость образца пористой среды может быть предварительно измерена.

В качестве эмпирической взаимосвязи между скоростью продольной акустической волны и пористостью используют аналитическую зависимость? или зависимость в виде номограммы, или зависимость по теории Френкеля-Био-Николаевского.

В соответствии с одним из вариантов осуществления изобретения после проведения фильтрационного эксперимента по прокачке раствора загрязнителя через образец пористой среды дополнительно прокачивают пластовую жидкость, при этом закачку пластовой жидкости осуществляют с торца, противоположного торцу, с которого осуществлялась закачка раствора загрязнителя.

В соответствии с еще одним вариантом осуществления изобретения перед каждым измерением скорости распространения продольных акустических волн образец пористой среды высушивают до полного удаления поровой влаги.

В соответствии с еще одним вариантом осуществления изобретения излучатель и приемник акустических волн размещают перпендикулярно оси фильтрации загрязнителя, осуществляют пошаговое перемещение излучателя и приемника вдоль оси фильтрации загрязнителя и на каждом шаге измеряют скорости продольных акустических волн при первом и втором облучении в различных частях образца вдоль оси фильтрации загрязнителя и определяют профиль измененной пористости.

В соответствии с другим вариантом осуществления изобретения в качестве образца пористого материала используют керн горной породы, в качестве загрязнителя используют буровой раствор, а полученный профиль измененной пористости используют для корректировки интерпретации данных акустического каротажа.

В соответствии с еще одним вариантом осуществления изобретения наряду с определением изменения пористости определяют и изменение проницаемости, для чего в процессе первого и второго облучения образца продольными акустическими волнами дополнительно измеряют коэффициент затухания или амплитуду продольной акустической волны по меньшей мере в одной части образца. На основе характера насыщения образца пористой среды выбирают эмпирическую взаимосвязь между затуханием или амплитудой продольной акустической волны и проницаемостью для данного типа пористой среды и, используя выбранную эмпирическую взаимосвязь между затуханием или амплитудой продольной акустической волны и проницаемостью для данного типа пористой среды? определяют изменение проницаемости.

В качестве эмпирической взаимосвязи между затуханием или амплитудой продольной акустической волны и проницаемостью используют аналитическую зависимость или зависимость в виде номограммы, или зависимость по теории Френкеля-Био-Николаевского.

Проницаемость образца пористой среды может быть предварительно измерена.

В соответствии с другим вариантом осуществления изобретения излучатель и приемник акустических волн размещают перпендикулярно оси фильтрации загрязнителя, осуществляют пошаговое перемещение излучателя и приемника вдоль оси фильтрации загрязнителя и на каждом шаге измеряют коэффициент затухания или амплитуду продольной акустической волны при первом и втором облучении в различных частях образца вдоль оси фильтрации загрязнителя и определяют профиль измененной проницаемости.

Изобретение поясняется чертежами, где на фиг.1 в качестве примера приведена схема облучения образца керна ультразвуковыми волнами в различных точках вдоль его оси (направление фильтрации), на фиг.2 - результат измерения скорости продольной ультразвуковой волны в различных точках керна после проведение фильтрационного эксперимента (закачка суспензии частиц SiC в 1% полимерном растворе Xanthan), фиг.3 - результат расчета профиля измененной пористости вдоль керна после проведения фильтрационного эксперимента (закачка суспензии частиц SiC в 1% полимерном растворе Xanthan)

Предлагаемый неразрушающий способ регистрирования и профилирования изменения свойств пористой среды основан на анализе вариаций аттрибутов продольной акустической волны при ее прохождении через различные участки поврежденного и исходного неповрежденного образца пористой среды. В качестве примера рассмотрено применение ультразвуковых волн. Как показано на фиг.1, на противоположных поверхностях образца 1 пористой среды размещают излучатель 2 и приемник 3 акустических ультразвуковых волн. Осуществляют первое облучение по меньшей мере одной части образца ультразвуковыми волнами и измеряют скорость распространения продольных ультразвуковых волн. На основе оцененной теоретически или предварительно измеренной (например, согласно стандартной методике, ГОСТ 26450.1-85. Породы горные. Методы определения коллекторских свойств. Метод определения коэффициента открытой пористости жидкостенасыщением. СССР 1985) пористости и характера насыщения образца выбирают эмпирическую взаимосвязь между скоростью волны и пористостью для данного типа пористой среды. Осуществляют фильтрационный эксперимент по прокачке раствора загрязнителя через образец пористой среды, направление 4 фильтрации показано на фиг.1. Осуществляют второе облучение той же части образца ультразвуковыми волнами и измеряют скорость распространения продольных ультразвуковых волн в этой части. Вариация скорости распространения продольной ультразвуковой волны используется для регистрации изменения пористости.

Реализация изобретения в соответствии с одним из изложенных ниже способов позволяет определить не только изменение пористости, но и изменение проницаемости пористой среды. С этой целью в процессе первого и второго облучения образца ультразвуковыми волнами дополнительно измеряют коэффициент затухания или амплитуду продольной волны. На основе теоретически оцененной или предварительно измеренной (например, согласно стандартной методике, 15. ГОСТ 26450.2-85 Породы горные. Метод определения коэффициента абсолютной газопроницаемости при стационарной и нестационарной фильтрации. СССР 1985) проницаемости и характера насыщения выбирают эмпирическую взаимосвязь между затуханием волны и проницаемостью для данного типа пористой среды. Вариация коэффициента затухания или амплитуды продольной ультразвуковой волны используется для регистрации изменения проницаемости.

Общеизвестно, что скорость и коэффициент затухания акустических волн в пористой среде зависят от свойств последней, таких как пористость, проницаемость, сжимаемость и плотность слагающих ее фаз и т.д.

Теория распространения волн в пористых средах, разработанная Френкелем-Био-Николаевским (см., например, Biot M.A. Theory of propagation of elastic waves in a fluid-saturated solid. I. Low frequency range // J. Acoust. Soc. Amer. 1956. V.28. P.168-178. II. Higher frequency range // J. Acoust. Soc. Amer. 1956. V.28. P.179-191, или Nikolaevskiy V.N. Geomechanics and Fluidodynamics with applications to reservoir engineering. Springer Verlag, Dordrecht. 1996. стр.50-57, 65-72) предсказывает существование двух типов продольных волн: "быстрая" волна (или продольная волна первого типа) и "медленная" (или продольная волна второго рода). В диапазоне частот 0.5-10 МГц, что соответствует типичным лабораторным измерениям, продольная волна второго рода характеризуется интенсивным затуханием, особенно в насыщенных породах, и, следовательно, не может распространяться на сколь-либо значимые расстояния.

Таким образом, данное изобретение ограничивается рассмотрением аттрибутов продольной волны только первого рода.

Другим следствием теории Френкеля-Био-Николаевского является зависимость скорости продольной волны первого рода от пористости породы, а также сжимаемости и плотности насыщающего флюида и породы скелета. Коэффиент затухания и дисперсия (т.е. зависимость фазовой скорости от частоты) волны первого рода зависят также и от проницаемости породы.

При интерпретации данных акустического каротажа обычно применяются простые эмпирические связи. Например, для оценки пористости в плотной хорошо сцементированной породе широко используется эмпирическое уравнение среднего времени (или уравнение Вилли), связывающее интервальное время пробега волны и пористость породы (см., например. Log interpretation principles/applications by Schlumberger. 1989, Глава 5, стр.6):

или

где ϕ - пористость породы, tLOG - интервальное время пробега волны через породу, зарегистрированное в акустическом каротаже; tma - интервальное время пробега волны в минеральном скелете породы; tf - интервальное время пробега волны в насыщающей жидкости.

Уравнение (1) соответствует тому факту, что в плотной хорошо сцементированной породе интервальное время пробега продольной волны (т.е. время распространения волны вдоль пути единичной длины, а следовательно, обратно пропорциональное величине скорости волны) является величиной, средней по объему от интервального времени пробега волны в минеральном скелете породы и в жидкости, заполняющей поровое пространство.

Для оценки пористости слабосцементированных пород по данным акустического каротажа вводится эмпирический поправочный коэффициент Ср (см., например, Log interpretation principles/applications by Schlumberger. 1989, Глава 5, стр.7):

Существуют и иные эмпирические связи (аналитические или ввиде номограмм) между временем пробега волны и пористостью, полученные для различных типов породы (см., например, Вендельштейн Б.Ю., Резванов Р.А. Геофизические методы определения параметров нефтегазовых коллекторов (при подсчете запасов и проектировании разработки месторождений). М., «Недра», 1978. стр.132-143; Интерпретация результатов геофизических исследований нефтяных и газовых скважин. Справочник. М.: Недра, стр.176).

Проникновение компонент бурового раствора приводит к снижению пористости от исходной величины ϕ0:

где σ - объемная доля захваченных частиц в единице объема пористой среды.

Снижение пористости, в свою очередь, приводит к росту скорости продольной волны (уменьшению интервального времени пробега).

Количественно степень снижения пористости может быть оценена по измеренным величинам скорости распространения (интервального времени пробега) продольной волны в загрязненном и исходном незагрязненном образце, используя известную эмпирическую взаимосвязь (аналитическую или ввиде номограммы) между временем пробега волны и пористостью для данного типа породы, см., например, Wyllie M.R.J., Gregory A.R., Gardner G.H.F. An experimental investigation of factors affecting elastic wave velocities in porous media. 1958. Vol.23. No.3. pp.459-493, или исходя из теории Френкеля-Био-Николаевского, Biot M.A. Theory of propagation of elastic waves in a fluid-saturated solid. I. Low frequency range // J. Acoust. Soc. Amer. 1956. V.28. P.168-178. II. Higher frequency range // J. Acoust. Soc. Amer. 1956. V.28. Р.179-191, или Nikolaevskiy V.N. Geomechanics and Fluidodynamics with applications to reservoir engineering. SpringerVerlag, Dordrecht. 1996. стр.50-57, 65-72).

Например, для связи (1) степень изменения пористости определяется как:

Где и - интервальные времена пробега волны через поврежденную и неповрежденную породу, соответственно.

Полученные данные о глубине и степени снижения пористости могут быть использованы для корректировки интерпретации данных акустического каротажа.

Изменение проницаемости породы может быть оценено по измеренным величинам коэффициента затухания продольной волны в загрязненном и исходном незагрязненном образце, используя теорию Френкеля-Био-Николаевского.

В качестве примера реализации способа приведено измерение повреждения пористости и проницаемости, связанных с проникновением суспензии частиц SiC размером 5 мкм в образец песчанника Bentheimer проницаемости 3200 мД по воде и пористости 23.5%.

Поскольку песчанник Bentheimer является хорошо сцементированной породой, для него применимо эмпирическое уравнение среднего времени (1).

После измерения пористости и после проведения закачки суспензии частиц SiC образец устанавливался на специальный подиум с диаметральной системой позиционирования акустических датчиков. Для излучения и приема акустических волн использовались ультразвуковые преобразователи panametrics V103-RM, апертура датчика равнялась 1.3 см, а основная частота - 1 МГц. Система позиционирования позволяла устанавливать ультразвуковые преобразователи (излучатель и приемник) диаметрально и передвигать их вдоль образца. Шаг профилирования равнялся 2 мм. На каждом шаге измерялось время прохождении продольной волны, по которому рассчитывалась скорость.

Результат измерения скорости продольной ультразвуковой волны в различных точках керна после проведение фильтрационного эксперимента (закачка суспензии частиц SiC в 1% полимерном растворе Xanthan) представлен на фиг.2. Средняя скорость продольной волны в исходном "незагрязненном" образце составила около 2950 м/с (пунктирная линия на фиг.2).

Используя соотношение (4) проведен расчет профиля измененной пористости вдоль керна после проведение фильтрационного эксперимента (закачка суспензии частиц SiC в 1% полимерном растворе Xanthan), Фиг.3.


СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЙ ПАРАМЕТРОВ ПОРИСТОЙ СРЕДЫ ПОД ДЕЙСТВИЕМ ЗАГРЯЗНИТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЙ ПАРАМЕТРОВ ПОРИСТОЙ СРЕДЫ ПОД ДЕЙСТВИЕМ ЗАГРЯЗНИТЕЛЯ
СПОСОБ ОПРЕДЕЛЕНИЯ ИЗМЕНЕНИЙ ПАРАМЕТРОВ ПОРИСТОЙ СРЕДЫ ПОД ДЕЙСТВИЕМ ЗАГРЯЗНИТЕЛЯ
Источник поступления информации: Роспатент

Showing 31-40 of 112 items.
27.09.2014
№216.012.f882

Способ определения коэффициента теплового объемного расширения жидкости

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое...
Тип: Изобретение
Номер охранного документа: 0002529455
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f95b

Многофазный сепаратор-измеритель

Многофазный сепаратор-измеритель выполнен в виде двух вертикальных камер, гидравлически соединенных между собой в верхней и нижней частях. В нижней части первой камеры расположен входной порт, в котором установлена заглушенная сверху трубка с перфорированными стенками для подачи смеси флюидов,...
Тип: Изобретение
Номер охранного документа: 0002529672
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe32

Способ предварительного прогрева нефтенасыщенного пласта

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти и, в частности, с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя. Обеспечивает повышение эффективности способа за счет...
Тип: Изобретение
Номер охранного документа: 0002530930
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006b

Способ определения профиля притока флюидов многопластовых залежей в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов. Технический результат настоящего изобретения заключается в увеличении точности и...
Тип: Изобретение
Номер охранного документа: 0002531499
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0551

Акустическое каротажное устройство

Изобретение относится к области геофизики и может быть использовано для определения свойств горных пород в процессе акустического каротажа. Акустическое каротажное устройство содержит по меньшей мере один излучатель и по меньшей мере два приемника, причем приемники расположены в точках с...
Тип: Изобретение
Номер охранного документа: 0002532759
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0f3e

Способ оценки свойств продуктивного пласта

Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной,...
Тип: Изобретение
Номер охранного документа: 0002535319
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f43

Способ определения параметров забоя и призабойной зоны скважины

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины. Технический результат заключается в обеспечении возможности определения параметров забоя и призабойной зоны во время...
Тип: Изобретение
Номер охранного документа: 0002535324
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100e

Способ определения количественного состава многокомпонентной среды (варианты)

Изобретение относится к области исследования свойств многокомпонентных сред и может найти применение в различных отраслях промышленности, например как нефтегазовая и химическая промышленности. Способы определения количественного состава многокомпонентной среды предусматривают размещение...
Тип: Изобретение
Номер охранного документа: 0002535527
Дата охранного документа: 10.12.2014
20.12.2014
№216.013.108a

Способ и устройство для определения теплопроводности и температуропроводности неоднородного материала

Изобретение относится к области изучения физических свойств неоднородных материалов и может быть использовано для анализа теплопроводности, температуропроводности, объемной теплоемкости различных материалов. Для определения теплопроводности и температуропроводности неоднородного материала...
Тип: Изобретение
Номер охранного документа: 0002535657
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.1782

Способ определения скорости фильтрации пластовых флюидов

Изобретение относится к геофизическим исследованиям скважин и предназначено для определения скоростей течения пластовых флюидов в нефтяных скважинах. Техническим результатом является выделение интервалов глубин (пластов), где происходит движение флюидов, и оценка скорости их фильтрации в месте...
Тип: Изобретение
Номер охранного документа: 0002537446
Дата охранного документа: 10.01.2015
Showing 31-40 of 82 items.
27.07.2014
№216.012.e500

Способ определения теплоты адсорбции и теплоты смачивания поверхности и измерительная ячейка калориметра

Изобретение относится к области исследования свойств взаимодействия поверхности с флюидами и может быть использовано для определения теплоты адсорбции и смачивания поверхности. Заявлена измерительная ячейка калориметра, состоящая из изолированных друг от друга верхней и нижней частей,...
Тип: Изобретение
Номер охранного документа: 0002524414
Дата охранного документа: 27.07.2014
10.08.2014
№216.012.e7a4

Способ прогнозирования изменения свойств призабойной зоны пласта под воздействием бурового раствора

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано для прогнозирования изменения характеристик призабойной зоны нефтегазосодержащих пластов. Техническим результатом является повышение точности и снижение трудоемкости прогнозирования изменения характеристик...
Тип: Изобретение
Номер охранного документа: 0002525093
Дата охранного документа: 10.08.2014
27.09.2014
№216.012.f882

Способ определения коэффициента теплового объемного расширения жидкости

Изобретение относится к области исследования свойств жидкости и может найти применение в нефтегазовой, химической промышленности и др. Для определения коэффициента объемного теплового расширения жидкости в ячейку калориметра помещают образец исследуемой жидкости и осуществляют ступенчатое...
Тип: Изобретение
Номер охранного документа: 0002529455
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f95b

Многофазный сепаратор-измеритель

Многофазный сепаратор-измеритель выполнен в виде двух вертикальных камер, гидравлически соединенных между собой в верхней и нижней частях. В нижней части первой камеры расположен входной порт, в котором установлена заглушенная сверху трубка с перфорированными стенками для подачи смеси флюидов,...
Тип: Изобретение
Номер охранного документа: 0002529672
Дата охранного документа: 27.09.2014
20.10.2014
№216.012.fe32

Способ предварительного прогрева нефтенасыщенного пласта

Изобретение относится к нефтегазовой отрасли и может быть использовано в тепловых методах добычи тяжелой нефти и, в частности, с использованием парогравитационного дренажа, паротепловой обработки скважины, циклической закачки теплоносителя. Обеспечивает повышение эффективности способа за счет...
Тип: Изобретение
Номер охранного документа: 0002530930
Дата охранного документа: 20.10.2014
20.10.2014
№216.013.006b

Способ определения профиля притока флюидов многопластовых залежей в скважине

Изобретение относится к области геофизических исследований нефтяных и газовых скважин, а именно к определению профиля притока флюидов, поступающих в скважину из продуктивных пластов многопластовых коллекторов. Технический результат настоящего изобретения заключается в увеличении точности и...
Тип: Изобретение
Номер охранного документа: 0002531499
Дата охранного документа: 20.10.2014
10.11.2014
№216.013.0551

Акустическое каротажное устройство

Изобретение относится к области геофизики и может быть использовано для определения свойств горных пород в процессе акустического каротажа. Акустическое каротажное устройство содержит по меньшей мере один излучатель и по меньшей мере два приемника, причем приемники расположены в точках с...
Тип: Изобретение
Номер охранного документа: 0002532759
Дата охранного документа: 10.11.2014
10.12.2014
№216.013.0f3e

Способ оценки свойств продуктивного пласта

Данное изобретение относится к способами оценки продуктивных пластов на нефтегазовых месторождениях, в частности к оценке их свойств. Технический результат заключается в более эффективной оценке свойств пористого пласта. Способ оценки свойств продуктивного пласта, пробуренного скважиной,...
Тип: Изобретение
Номер охранного документа: 0002535319
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0f43

Способ определения параметров забоя и призабойной зоны скважины

Изобретение относится к области заканчивания и испытания скважин в нефтегазовой промышленности и предназначено для расчета параметров забоя и призабойной зоны скважины. Технический результат заключается в обеспечении возможности определения параметров забоя и призабойной зоны во время...
Тип: Изобретение
Номер охранного документа: 0002535324
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.100e

Способ определения количественного состава многокомпонентной среды (варианты)

Изобретение относится к области исследования свойств многокомпонентных сред и может найти применение в различных отраслях промышленности, например как нефтегазовая и химическая промышленности. Способы определения количественного состава многокомпонентной среды предусматривают размещение...
Тип: Изобретение
Номер охранного документа: 0002535527
Дата охранного документа: 10.12.2014
+ добавить свой РИД