×
20.04.2015
216.013.4413

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества. Технический результат - повышение точности измерения последовательного сопротивления базы диода путем исключения саморазогрева p-n-перехода диода протекающим током в процессе измерения. Используется известный способ измерения последовательного сопротивления базы диода, в котором через диод пропускают прямой ток различной величины и измеряют падение напряжения на диоде при этих значениях прямого тока. Искомую величину последовательного сопротивления базы диода определяют по известным формулам. Для достижения технического результата прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI и измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока. Последовательное сопротивление базы определяется по формуле где ΔU=U-U; ΔU=U-U; ν=ln 2/b; b=ln k. 3 ил.
Основные результаты: Способ измерения последовательного сопротивления базы диода, состоящий в том, что через диод пропускают прямой ток различной величины, измеряют падение напряжения на диоде при этих значениях прямого тока и определяют искомую величину последовательного сопротивления базы диода по известным формулам, отличающийся тем, что прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI, измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле где ΔU= U-U; ΔU= U-U; ν = ln 2/b; b= ln k.

Изобретение относится к технике измерения электрофизических параметров полупроводниковых диодов и может быть использовано на выходном и входном контроле их качества.

Как известно, одним из важных параметров полупроводниковых диодов является последовательное сопротивление базы, которое приводит к отклонению реальной вольт-амперной характеристики (ВАХ) диода от экспоненциальной функции в режиме больших (сравнимых с предельно допустимыми) токов (см. Степаненко И.П. Основы теории транзисторов и транзисторных схем. - М.: Радио и связь, 1977. - 488 с.).

Известен способ измерения сопротивления базы полупроводникового диода (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа, 1975. - 386 с.), состоящий в пропускании через диод постоянного прямого тока Iд различной величины в измерении падения напряжения Uд на диоде при заданных значениях прямого тока и построении ВАХ диода Iд=F(Uд). Сопротивление базы определяется по отклонению ВАХ диода от экспоненты, путем решения системы уравнений, составленных по результатам измерений при нескольких значениях прямого тока.

Сопротивление базы проявляется в отклонении ВАХ от экспоненты только при больших токах, близких к предельно допустимым для данного типа диодов, поэтому недостатком способа является большая погрешность измерения из-за разогрева диода большим постоянным током.

Известен способ определения сопротивления базы диода, заключающийся в подаче на диод импульса прямого тока и измерении скачка напряжения на диоде в момент переключения тока (см. Полупроводниковые диоды: под ред. Носова Р.И., Горюнова Н.Н. - М., Сов. радио, 1968. - 322 с. или Степаненко И.П. Основы теории транзисторов и транзисторных схем. - М.: Радио и связь, 1977. - 488 с.).

Недостатком является большая погрешность измерения, обусловленная опять же нагревом диода большим прямым током, а также тем, что для измерения относительно малого скачка напряжения (порядка нескольких десятков милливольт на уровне сотен милливольт прямого падения напряжения на диоде) используют, как правило, осциллограф.

Технический результат - повышение точности измерения последовательного сопротивления базы диода.

Технический результат достигается тем, что через диод пропускают прямой ток и измеряют падение напряжения на диоде, при этом прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов с большой скважностью и амплитудой I1, kI1, 2kI1, измеряют пиковое значение падений напряжения U1, U2, U3 на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле

где ΔU32=U3-U2; ΔU21=U2-U1; v=ln 2/b; b=ln k.

Если выбрать k=2, то v=ln 2/b=1 и формула заметно упрощается

Пиковое значение падений напряжения U1, U2, U3 на диоде определяют либо импульсным вольтметром, либо вольтметром переменного тока с известным типом преобразователя.

Сущность способа состоит в следующем. В режиме больших токов, когда падение напряжения на последовательном сопротивлении базы становится заметным, то есть сравнимым с падением напряжения на p-n-переходе диода. Строго говоря, отклонение ВАХ от экспоненциальной функции будет наблюдаться уже при тех токах, при которых падение напряжения на сопротивлении базы будет сравнимо с тепловым потенциалом , где kB - постоянная Больцмана, Tn - температура p-n-перехода диода, q - заряд электрона. Выражение для ВАХ диода с учетом последовательного сопротивления базы (см., например, Полупроводниковые диоды. Параметры, методы измерений. Под ред. Горюнова Н.Н. и Носова Ю.Р. Изд-во "Советское радио", 1968, 304 с. или Аронов В.Л., Федотов Я.А. Исследование и испытание полупроводниковых приборов. - М.: Высшая школа. - 1975. - 465 С.) принято записывать в виде:

где m - параметр неидеальности диода, I0 - ток насыщения.

Из (3) нетрудно выразить падение напряжения на диоде:

Если пропускать через диод постоянный ток большой величины, то в результате саморазогрева температура перехода будет возрастать и будет изменяться и тепловой потенциал, и значение тока насыщения I0 и для вычисления последовательного сопротивления базы необходимо знать эти значения. Для исключения разогрева перехода протекающим током предлагается попускать через диод импульсный ток с большой скважностью. Ясно, что длительность импульсов тока должна существенно превышать время нарастания напряжения для данного типа диодов. При скважности Q>100 приращение температуры перехода будет составлять доли кельвин во всем диапазоне рабочих токов; таким приращением температуры можно пренебречь и считать температуру p-n-перехода одинаковой при любой амплитуде импульсов тока.

Измерительные сигналы, формируемые при реализации способа, показаны на фиг.1. Измеряя амплитуду импульсов прямого падения напряжения на диоде при трех известных значениях амплитуды импульсов тока (не превышающих предельно допустимого значения для данного типа диодов), согласно (4) получим систему уравнений:

где a=ln(I1/I0), а параметр b=ln k.

Система легко решается методом последовательных исключений. Вычислив разности падений напряжений

для сопротивления базы диода rб получим выражение

где ν=ln 2/b.

Способ может быть реализован с помощью устройства, структурная схема которого показана на фиг.2. Устройство содержит две клеммы 1 и 2 для подключения контролируемого диода, устройство управления 3, управляемый генератор 4 импульсов тока, пиковый детектор 5, регистратор 6 и вычислитель 7; при этом клемма 1 соединена с общей шиной устройства, клемма 2 соединена с выходом генератора 4 импульсов тока и с входом пикового детектора 5, выход пикового детектора 5 соединен с входом регистратора 6, а выход регистратора с входом вычислителя 7, при этом выход устройства управления подключен к управляющим входам генератора импульсов тока и регистратора. Эпюры, поясняющие работу устройства, приведены на фиг.3.

Контролируемый диод подключают анодом к клемме 1, а катодом к клемме 2 устройства. По сигналу "Пуск" устройство управления 3 вырабатывает четыре управляющих импульса через равные интервалы времени T (фиг.3, а); по сигналу первого управляющего импульса У1 генератор импульсов тока вырабатывает последовательность импульсов тока с амплитудой I1 и скважностью Q (фиг.3, б), импульсы тока поступают в контролируемый диод, импульсное напряжение амплитудой U1, создаваемое на диоде импульсами тока (фиг.3, в), преобразуется пиковым детектором 5 в постоянное напряжение величиной U1 (фиг.3, г). По сигналу второго управляющего импульса У2 регистратор 6 преобразует напряжение U1 в цифровой код, который поступает в вычислитель 7, по этому же сигналу амплитуда импульсов тока, вырабатываемых генератором 4, увеличивается в k-раз и процедура преобразования повторяется: импульсное напряжение амплитудой U2 (фиг.3, в), создаваемое на диоде импульсами тока амплитудой kI1, преобразуется в постоянное величиной U2 (фиг.3, г).

По сигналу третьего управляющего импульса У3 регистратор 6 преобразует напряжение U2 в цифровой код, который поступает в вычислитель 7, по этому же сигналу амплитуда импульсов тока вырабатываемых генератором 4 устанавливается равной 2kI1 и процедура преобразования напряжения на диоде повторяется в третий раз: импульсное напряжение амплитудой U3 (фиг.3, в), создаваемое на диоде импульсами тока амплитудой 2kI1, преобразуется в постоянное величиной U3 (фиг.3, г). По сигналу четвертого управляющего импульса У4 регистратор 6 преобразует напряжение U3 в цифровой код, который поступает в вычислитель 7. По трем значениям напряжений U1, U2, U3 при известном значении тока I1 и коэффициента k вычислитель 7 вычисляет искомое значение сопротивления базы диода rб по формуле (1).

При выборе значений амплитуды тока I1 и коэффициента k для реализации способа следует руководствоваться следующими соображениями. Во-первых, необходимо соблюдать условие 2kI1<Imax, где Imax - предельно допустимый импульсный ток для данного типа диодов, во-вторых, при токе величиной I1 падение напряжения на сопротивлении базы должно быть заметным и составлять хотя бы 0,1…0,2 от падения напряжения на p-n-переходе; запишем это условие в виде rбоI1>0,1U1, где rбо - ориентировочное (ожидаемое) значение сопротивления базы для данного типа контролируемых диодов. Из этих двух условий следует, что коэффициент k необходимо выбирать из условия k<5rбоImax/U1. Поскольку априори значение сопротивления базы не известно даже ориентировочно, то выбор значений амплитуды тока I1 и коэффициента k можно осуществить по результатам предварительных измерений ВАХ, для которых можно использовать описанное выше устройство.

Способ измерения последовательного сопротивления базы диода, состоящий в том, что через диод пропускают прямой ток различной величины, измеряют падение напряжения на диоде при этих значениях прямого тока и определяют искомую величину последовательного сопротивления базы диода по известным формулам, отличающийся тем, что прямой ток задают в виде трех последовательностей коротких прямоугольных импульсов большой скважности и амплитудой I, kI, 2kI, измеряют пиковое значение падений напряжения U, U, U на диоде при пропускании этих импульсов тока и последовательное сопротивление базы определяется по формуле где ΔU= U-U; ΔU= U-U; ν = ln 2/b; b= ln k.
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
СПОСОБ ИЗМЕРЕНИЯ ПОСЛЕДОВАТЕЛЬНОГО СОПРОТИВЛЕНИЯ БАЗЫ ПОЛУПРОВОДНИКОВОГО ДИОДА
Источник поступления информации: Роспатент

Showing 251-259 of 259 items.
19.01.2018
№218.016.0031

Газотурбинный двигатель

Изобретение относится к энергетике и машиностроению и может использоваться в двигателестроении. Газотурбинный двигатель содержит корпус, герметизирующую вход в корпус крышку, систему подачи электролита, выполненную в виде форсунки с кавитатором с подачей электролита в поток забираемого в...
Тип: Изобретение
Номер охранного документа: 0002629309
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0063

Способ работы котельной установки теплоэлектроцентрали

Изобретение относится к энергетике. Способ работы котельной установки теплоэлектроцентрали, по которому нагрев воздуха, поступающего в топку котельного агрегата паротурбинной установки, осуществляется последовательно в калорифере и воздухоподогревателе котельного агрегата, в качестве греющей...
Тип: Изобретение
Номер охранного документа: 0002629319
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.007a

Газотурбинный двигатель с внешним теплообменником

Газотурбинный двигатель с внешним теплообменником содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002629304
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0086

Котельная установка

Изобретение относится к котельным установкам, работающим на природном газе. Котельная установка содержит котел с газоходом уходящих газов, дымососом и дымовой трубой, деаэратор с трубопроводами отвода и подвода десорбирующего агента, подвода исходной и отвода деаэрированной воды. Деаэратор...
Тип: Изобретение
Номер охранного документа: 0002629321
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.0089

Газотурбинный двигатель с паровыми форсунками

Газотурбинный двигатель с паровыми форсунками содержит корпус и герметизирующую вход в корпус крышку, компрессор, камеру сгорания, систему подачи электролита через форсунку с кавитатором, воспламеняющее устройство, турбину и электролизер. Герметизирующая вход в корпус крышка выполнена с...
Тип: Изобретение
Номер охранного документа: 0002629305
Дата охранного документа: 28.08.2017
19.01.2018
№218.016.02ca

Способ измерения теплового импеданса полупроводниковых диодов с использованием амплитудно-импульсной модуляции греющей мощности

Использование: для измерения теплофизических параметров полупроводниковых диодов. Сущность изобретения заключается в том, что способ заключается в предварительном определении ватт-амперной характеристики объекта измерения - полупроводникового диода, пропускании через диод последовательности...
Тип: Изобретение
Номер охранного документа: 0002630191
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.04bb

Устройство для предотвращения захвата самолёта

Изобретение относится к авиации. Устройство для предотвращения захвата самолета содержит усиленные пуленепробиваемые дверь (1) и стенки (2) кабины экипажа и прямоугольную, открытую сверху полость с дном (4) и боковыми стенками. Указанная полость выполнена в полу (6) салона непосредственно...
Тип: Изобретение
Номер охранного документа: 0002630881
Дата охранного документа: 13.09.2017
19.01.2018
№218.016.0785

Состав шихты для изготовления пеностекла

Изобретение относится к составу шихты для получения пеностекла. Технический результат - повышение теплотехнических и прочностных характеристик пеностекла. Шихта для изготовления пеностекла содержит следующие компоненты, мас. %: стекольный бой 80-87; сульфат натрия 3-5; диатомитовая глина...
Тип: Изобретение
Номер охранного документа: 0002631462
Дата охранного документа: 22.09.2017
19.04.2019
№219.017.3462

Устройство для нагрева нефти при сливе

Устройство предназначено для использования в нефтедобывающей, нефтеперерабатывающей и энергетической промышленности для нагрева нефти и нефтепродуктов при сливе из резервуаров. Устройство содержит резервуар; источник СВЧ энергии с волноводом в районе сливного прибора; радиопрозрачную пластину,...
Тип: Изобретение
Номер охранного документа: 0002460933
Дата охранного документа: 10.09.2012
Showing 271-280 of 431 items.
10.08.2015
№216.013.6dcd

Ремень безопасности для транспортного средства

Изобретение относится к ремню безопасности для транспортного средства. Ремень включает пряжку 1 с прорезью 2, сквозь которую протянута лямка 3, и язычковой защелкой 4, вводимой в замок 5, укрепленный на боковине 6 сиденья 7. Перемычка между прорезью пряжки и ее наружним контуром выполнена в...
Тип: Изобретение
Номер охранного документа: 0002559667
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6dce

Устройство для отвода от автомобиля энергии встречного удара

Изобретение относится к области транспортного машиностроения. Устройство для отвода от автомобиля энергии встречного удара включает установленную в передней части автомобиля подвижную ударную поверхность. Подвижная ударная поверхность выполнена в виде изогнутой в форме части полого цилиндра...
Тип: Изобретение
Номер охранного документа: 0002559668
Дата охранного документа: 10.08.2015
27.08.2015
№216.013.7441

Способ измерения параметров элементов многоэлементных нерезонансных линейных двухполюсников

Изобретение относится к технике измерения параметров элементов электрических цепей и может быть использовано для измерения параметров элементов многоэлементных двухполюсников, в том числе параметров элементов эквивалентных схем замещения полупроводниковых приборов. На контролируемый...
Тип: Изобретение
Номер охранного документа: 0002561336
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7442

Способ измерения теплового сопротивления кмоп цифровых интегральных микросхем

Использование: для контроля качества цифровых интегральных микросхем КМОП логическими элементами и оценки их температурных запасов. Сущность изобретения заключается в том, что способ включает подачу напряжения на контролируемую микросхему, переключение логического состояния греющего...
Тип: Изобретение
Номер охранного документа: 0002561337
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7532

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ получения износостойкого покрытия для режущего инструмента включает вакуумно-плазменное нанесение покрытия, при этом наносят покрытие из нитрида или...
Тип: Изобретение
Номер охранного документа: 0002561577
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7533

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида молибдена. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002561578
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7534

Способ получения износостойкого покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение износостойкого покрытия из нитрида или карбонитрида титана, алюминия, кремния, циркония и хрома при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002561579
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.7555

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида хрома. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002561612
Дата охранного документа: 27.08.2015
27.08.2015
№216.013.75a0

Бампер транспортного средства

Изобретение относится к области транспортного машиностроения. Бампер транспортного средства содержит укрепленный на раме кузова по всей ширине его передней части горизонтальный ударный брус. В теле ударного бруса выполнена последовательность сквозных вертикальных отверстий. В каждую соседнюю...
Тип: Изобретение
Номер охранного документа: 0002561687
Дата охранного документа: 27.08.2015
10.09.2015
№216.013.766d

Устройство для защиты от насилия

Устройство для защиты от насилия относится к области индивидуальных средств и устройств защиты женщин при нападении насильников. Устройство содержит брючный ремень 1 из многослойной эластичной ткани с пряжкой 2 с прорезями 3 для свободного пропускания через пряжку конца ремня. На ремне вблизи...
Тип: Изобретение
Номер охранного документа: 0002561906
Дата охранного документа: 10.09.2015
+ добавить свой РИД