×
20.04.2015
216.013.415f

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ

Вид РИД

Изобретение

№ охранного документа
0002548233
Дата охранного документа
20.04.2015
Аннотация: Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии, включающий следующие этапы: эксплуатацию камеры сгорания в рабочем состоянии; регистрацию термоакустической величины газового объема камеры сгорания и/или величины колебаний конструкции камеры сгорания в рабочем состоянии и определение параметрической величины по термоакустической величине и/или по величине колебаний; определение спектра параметрической величины в рабочем состоянии в виде ее амплитудной характеристики в зависимости от времени; идентификацию первого и второго резонансов параметрической величины с помощью спектра; определение амплитудного значения первого резонанса и амплитудного значения второго резонанса; расчет параметра стабильности в качестве функции амплитудного значения первого резонанса и амплитудного значения второго резонанса; определение нижнего и/или верхнего значения расстояния, на которое параметр стабильности лежит выше нижнего заданного порогового и/или ниже верхнего заданного порогового значения. Пороговые значения выбраны таким образом, что в случае эксплуатации камеры сгорания в рабочем состоянии с еще допустимо высокой склонностью к гудению параметр стабильности в этом рабочем состоянии имеет одно из пороговых значений. Определяют квантификацию склонности к гудению посредством нижнего и/или верхнего значения расстояния. При этом параметрической величиной является звуковое давление в камере сгорания, измеряемое с помощью, по меньшей мере, одного микрофона. Изобретение направлено на создание способа диагностирования, при котором камера сгорания может эксплуатироваться с достаточно низкой склонностью к гудению. 2 н. и 14 з.п. ф-лы, 4 ил.

Область техники, к которой относится изобретение

Изобретение относится к способу диагностирования склонности камеры сгорания к гудению и к способу управления газовой турбиной с камерой сгорания для предотвращения ее гудения.

Уровень техники

При сгорании топливно-воздушной смеси в камере сгорания, в частности в камере сгорания газовой турбины, могут возникать колебания при горении. Возникновение колебаний при горении известно и как «гудение камеры сгорания». В частности, камера сгорания газовой турбины склонна к гудению, когда газовая турбина эксплуатируется с высокой температурой на ее входе, чтобы достичь ее высокого термического кпд. Высокая температура на входе газовой турбины может достигаться за счет соответственно высокой температуры горения в камере сгорания, из-за чего последняя склонна к гудению. При гудении камеры сгорания периодически возникают коррелированные флуктуации превращений при горении и статического давления в камере сгорания, причем скорости горения основаны на взаимодействии протекающей в камере сгорания топливно-воздушной смеси с превращением в пламени в данный момент. За счет изменения превращения, вызванного, например, увеличением подачи топлива в камеру сгорания, могут возникать колебания давления, которые, в свою очередь, могут приводить к изменению превращения и, тем самым, к образованию стабильного колебания давления. Колебания при горении вызывают повышенные механическую и термическую нагрузки на конструкцию камеры сгорания и ее подвеску. Колебания при горении могут возникать внезапно такой интенсивности, что сама конструкция камеры сгорания или другие компоненты газовой турбины могут быть повреждены. При возникновении таких рабочих состояний газовая турбина обычно разгружается с высоким нагрузочным градиентом, в результате чего, как недостаток, уменьшается ее выходная мощность.

В этом случае помощь может оказать эксплуатация газовой турбины с достаточным расстоянием от границы самовозбужденных колебаний при горении. Например, из-за изменяющихся окружающих условий граница самовозбужденных колебаний при горении может, однако, неблагоприятно смещаться, так что для максимально неблагоприятных окружающих условий приходится соблюдать достаточное расстояние от границы самовозбужденных колебаний при горении. При этом недостаток в том, что тем самым приходится ограничивать верхний диапазон мощности газовой турбины, в котором ее нельзя эксплуатировать.

Раскрытие изобретения

Задачей изобретения является создание способа диагностирования склонности камеры сгорания к гудению, способа управления работой газовой турбины с камерой сгорания и устройства управления работой газовой турбины, причем этим способом камера сгорания может эксплуатироваться с достаточно низкой склонностью к гудению.

Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии включает в себя следующие этапы:

- эксплуатацию камеры сгорания в рабочем состоянии;

- регистрацию термоакустической величины газового объема камеры сгорания и/или величины, колебаний конструкции камеры сгорания в рабочем состоянии и определение параметрической величины по термоакустической величине и/или по величине колебаний;

- определение спектра параметрической величины в рабочем состоянии в виде ее амплитудной характеристики в зависимости от времени;

- идентификацию первого и второго резонансов параметрической величины с помощью спектра;

- определение амплитудных значений первого и второго резонансов;

- расчет значения соотношения от деления амплитудных значений первого и второго резонансов в качестве параметра стабильности;

- определение нижнего и/или верхнего значения расстояния, на которое параметр стабильности лежит выше нижнего заданного порогового значения и/или ниже верхнего заданного порогового значения, причем пороговые значения выбраны таким образом, что в случае эксплуатации камеры сгорания в рабочем состоянии еще с допустимо высокой склонностью к гудению параметр стабильности в этом рабочем состоянии имеет одно из пороговых значений;

- квалификацию склонности к гудению посредством нижнего и/или верхнего значения расстояния.

Пороговые значения могут выбираться в зависимости от рабочего состояния или окружающих условий. Величина амплитудных значений параметрической величины умеренно изменяется с нагрузкой на камеру сгорания и является лишь условно информативной для диагностирования склонности камеры сгорания к гудению. Достижение границы гудения часто характеризуется тем, что амплитудные значения внезапно очень резко возрастают. Следовательно, по умеренной сначала характеристике амплитудных значений нельзя обнаружить, что камера сгорания опасно приближается к границе гудения. Если затем после достижения границы гудения амплитуды резко возрастают (как правило, в доли секунды), то газовая турбина может быть защищена от повреждений только за счет принятия жестких, с точки зрения эксплуатационника невыгодных мер, т.е., например, мгновенного заметного снижения нагрузки. Здесь помощь может оказать изобретение: приближение к границе гудения в определенных случаях обнаруживается по изменению формы спектра параметрической величины. Так, например, для квалификации склонности к гудению можно было бы привлечь соотношение амплитуд двух частотных полос. Если при возрастании нагрузки соотношение амплитуд остается постоянным (несмотря на возрастание абсолютных амплитудных значений), то опасности нет. Если же соотношение изменяется, то камера сгорания приближается к границе гудения или удаляется от нее. За счет квантификации склонности к гудению можно обнаружить тенденцию приближения к границе гудения и тем самым своевременно принять ответные меры, что препятствует достижению границы гудения с его негативными последствиями для эксплуатации.

Предпочтительно, что параметр стабильности рассчитывается с помощью значения соотношения от деления амплитудных значений первого и второго резонансов. По мере возрастания нагрузки на камеру сгорания смещаются частотные положения резонансов, причем для данной камеры сгорания, например, экспериментальным путем могут быть заданы полосы частот, в которых при работе камеры сгорания возникают резонансы. Для простой идентификации резонансов можно, тем самым, исследовать, в частности, эти полосы частот, так что не требуется сканировать весь частотный диапазон спектра.

Предпочтительно параметр стабильности образуют в виде логарифма значения соотношения. Далее предпочтительно, что параметр стабильности демпфируется по времени с помощью демпфирующей функции. Таким образом, можно предпочтительно ограничить чрезмерные неустановившиеся изменения параметра стабильности. Например, демпфирующая функция может быть образована так, что в момент n параметр стабильности образуют из среднеарифметического значения соотношения в момент n и значения соотношения в момент n-1.

Предпочтительно, что параметрическая величина измеряется в нескольких местах и для каждого места определяется локальный спектр, причем локальные спектры имеют огибающую, используемую в качестве спектра. Образованный огибающей спектр представляет все определяемое пространственными неоднородностями рабочее состояние камеры сгорания. За счет этого можно предпочтительно оценить склонность камеры сгорания к гудению в рабочем состоянии, в котором камера сгорания нагружена пространственно однородно. Камера сгорания выполнена предпочтительно в виде кольцевой камеры сгорания вращательно-симметрично вокруг оси и имеет несколько мест, в которых измеряются параметрические величины, причем число мест измерений уменьшено с использованием симметрии форм колебаний. Далее предпочтительно, что параметрической величиной является звуковое давление в камере сгорания и/или ускорение ее конструкции.

Предложенный способ управления работой газовой турбины с камерой сгорания включает в себя следующие этапы:

- осуществление описанного способа диагностирования склонности камеры сгорания газовой турбины к гудению во время ее работы;

- уменьшение выходной мощности газовой турбины, как только квалификация склонности к гудению покажет, что параметр стабильности достиг, по меньшей мере, одного из пороговых значений.

Таким образом, параметр стабильности может использоваться для эксплуатации газовой турбины непосредственно в качестве регулируемой величины. Нагрузка на газовую турбину в данный момент находится в непосредственной корреляции с параметром стабильности, так что с его помощью можно регулировать мощность газовой турбины в отношении предотвращения гудения камеры сгорания.

Способ управления работой газовой турбины включает в себя также следующий этап: как только квалификация склонности к гудению покажет, что параметр стабильности достиг заданного значения расстояния, по меньшей мере, до одного из пороговых значений, управление работой газовой турбины осуществляется таким образом, что склонность к гудению снижается. За счет этого предпочтительно перед наступлением недопустимо высокой склонности к гудению можно предотвратить снижение мощности газовой турбины, что обеспечивает ее максимально непрерывную работу. Предпочтительно, что для снижения склонности к гудению в качестве меры понижают температуру на выходе турбины за счет изменения массового потока воздуха из компрессора в камеру сгорания в качестве регулирующей величины по сравнению с ее заданным значением и/или изменяют температуру подаваемого в камеру сгорания топлива в качестве регулирующей величины по сравнению с ее заданным значением и/или изменяют пространственное распределение подачи топлива в камеру сгорания в качестве регулирующей величины по сравнению с ее заданным значением и/или в случае нескольких ступеней горелок изменяют распределение по различным ступеням горелок в качестве регулирующей величины по сравнению с ее заданным значением. После манипуляции с регулирующей величиной и как только квантификация склонности к гудению покажет, что она еще уменьшилась, регулирующую величину предпочтительно возвращают к ее заданному значению.

Далее способ управления работой газовой турбины включает в себя также следующий этап: как только квантификация склонности к гудению покажет, что параметр стабильности достиг заданного и представляющего низкую склонность к гудению значения расстояния, по меньшей мере, до одного из пороговых значений, управление работой газовой турбины осуществляется таким образом, что ее работа оптимизируется, в частности, в отношении выходной мощности, токсичных выбросов и/или расхода топлива.

Краткое описание чертежей

Ниже предпочтительный вариант способа диагностирования склонности камеры сгорания к гудению и способы управления работой газовой турбины поясняется со ссылкой на прилагаемые схематичные чертежи, на которых изображают:

- фиг. 1: диаграмму спектра параметрической величины камеры сгорания в разных рабочих состояниях;

- фиг. 2: диаграмму временной характеристики параметра стабильности при возрастании температуры на входе турбины;

- фиг. 3: диаграмму характеристики управления газовой турбиной при неблагоприятном изменении окружающих условий;

- фиг. 4: диаграмму характеристики управления газовой турбиной при возрастании мощности.

Осуществление изобретения

На фиг. 1 изображена система координат, в которой нанесены спектры 1, 1′, 1′′. Ось 4 абсцисс показывает частоту в Гц, а ось 5 ординат - амплитуду в виде безразмерной величины. Спектрами 1, 1′, 1′′ являются амплитудные характеристики параметрической величины в зависимости от частоты. Параметрической величиной является звуковое давление в камере сгорания, возникающее при ее работе. Звуковое давление в камере сгорания может измеряться, например, с помощью одного или нескольких микрофонов в ней.

Спектр 1 возникает, когда склонность камеры сгорания к гудению низкая. Если рабочее состояние камеры сгорания изменяется таким образом, что склонность к гудению повышается, то спектр 1 изменяется в спектр 1'. Если рабочее состояние камеры сгорания продолжает изменяться таким образом, что склонность к гудению повышается и попадает в еще допустимый предельный диапазон, то спектр 1' изменяется в спектр 1''. В качестве первого резонанса спектры 1, 1', 1'' имеют первый амплитудный максимум 2, 2', 2'', а в качестве второго резонанса - второй амплитудный максимум 3, 3', 3''.

В качестве параметра стабильности для квалификации склонности камеры сгорания к гудению образуют натуральный логарифм соотношения первого 2, 2', 2'' и второго 3, 3', 3'' амплитудных максимумов.

На фиг.2 изображена система координат, на абсциссе 8 которой нанесено время от 0 до 2 минут. В качестве левой ординаты 6 нанесен параметр стабильности, а в качестве правой ординаты 7 - температура на выходе турбины. В момент 0 минут кривая 10 температуры на выходе турбины составляет 579°C. Из этого следует рабочее состояние в камере сгорания, в которой господствует звуковое давление, чей спектр 1 изображен на фиг.1. С первым 2 и вторым 3 амплитудными максимумами для спектра 1 возникает параметр стабильности 6 на отметке 0,6, как это показано на диаграмме на фиг.2 кривой 9 в момент 0 минут. Если для работы газовой турбины температура на выходе турбины повышается, как это показано на фиг.2 кривой 10, то через 0,75 минуты возникает рабочее состояние в камере сгорания, в которой господствует звуковое давление в соответствии со спектром 1' на фиг.1. Из спектра 1' с первым 2' и вторым 3' амплитудными максимумами возникает параметр стабильности 6 на отметке 0,3, как это показано на фиг.2 кривой 9 в момент 0,75 минуты. Наконец, характеристика температуры 10 на выходе турбины возрастает до первого уровня 11. Как показано на фиг.2, кривая 9 параметра стабильности 6 в зависимости от времени падает, что является признаком возрастающей в зависимости от времени склонности камеры сгорания к гудению.

На фиг.2 показана также кривая ускорения 14 конструкции камеры сгорания, которое вплоть до возрастания температуры 10 на выходе турбины до первого уровня 11, в основном, постоянное. Если температура 10 на выходе турбины возрастает до второго уровня 12, то кривая 9 параметра стабильности 6 продолжает падать и в камере сгорания возникает гудение. Следствием гудения является то, что самовозбужденные колебания при горении возбуждают сильные колебания конструкции камеры сгорания, в результате чего ускорение 14 внезапно возрастает до пика 15. Пик 15 ускорения настолько высокий, что следует опасаться повреждения конструкции камеры сгорания. Поэтому для предотвращения ее повреждения газовая турбина выключается, что обозначено быстрым падением кривой 10 температуры на выходе турбины.

На диаграмме на фиг.2 пороговое значение 16 параметра стабильности 6 лежит на отметке 0,1. Кривая 9 параметра стабильности 6 не достигает (обозначено поз.17) порогового значения 16 в первый момент 18, составляющий 1,55 минуты. Первый момент 18 смещен назад на 15 секунд относительно второго момента 19, в который возникает пик 15 ускорения. Если при работе газовой турбины параметр стабильности 6 не достигает порогового значения 16, то остается время реакции 15 секунд, в течение которого работа газовой турбины должна быть изменена таким образом, чтобы можно было избежать гудения камеры сгорания и, тем самым, быстрого выключения газовой турбины.

Диаграммы на фиг.3 и 4 аналогичны диаграмме на фиг.2 и иллюстрируют работу газовой турбины с целью предотвращения гудения камеры сгорания. Ее склонность к гудению может повышаться, например, за счет того, что в компрессоре газовой турбины соотношение давлений уменьшается из-за износа или загрязнения. Кроме того, склонность камеры сгорания к гудению может повышаться за счет того, что при работе газовой турбины повышаются окружающая температура и, тем самым, температура на входе компрессора. Например, пусть газовая турбина эксплуатируется при уровне температуры на ее выходе, как это обозначено кривой 10 в начале абсциссы. Будучи вызвана, например, одним из упомянутых влияний, склонность камеры сгорания к гудению повышается, так что кривая 9 параметра стабильности 6 падает. Без вмешательства в работу газовой турбины этот процесс продолжался бы до тех пор, пока камера сгорания не начала гудеть. На фиг.3 второе пороговое значение 16' лежит на отметке 0,2, т.е. выше первого порогового значения 16 на отметке 0,1. Как только кривая 9 параметра стабильности 6 достигает порогового значения 16', с помощью регулятора подача топлива в камеру сгорания в третий момент 20 уменьшается таким образом, что в течение 3 секунд в четвертый момент 21 кривая 10 температуры 7 на выходе турбины падает на 1К. За счет этого падение кривой 9 параметра стабильности 6 замедляется, и она возрастает, так что кривая 9 параметра стабильности 6 снова превышает пороговое значение 16' в пятый момент 22. Например, для уменьшения гудения камеры сгорания снижения температуры 7 на выходе турбины недостаточно, чтобы достичь достаточно большого расстояния до гудения камеры сгорания. После пятого момента 22 кривая 9 параметра стабильности 6 снова падает и не достигает порогового значения 16'. В качестве аналогичной третьему моменту 20 меры кривая 10 температуры 7 на выходе турбины еще раз понижается на 1К, в результате чего падение кривой 9 параметра стабильности 6 снова замедляется, и она возрастает, пока, наконец, кривая 9 параметра стабильности 6 не превысит порогового значения 16'.

Кривая 9 параметра стабильности 6 возрастает до тех пор, пока пороговое значение 16'' не достигнет отметки 0,4. В этом рабочем состоянии склонность камеры сгорания к гудению считается небольшой, так что постепенно уровень температуры 7 на выходе турбины может быть снова поднят в отношении ее кривой 10 до первоначального уровня. За счет этих вмешательств в управление работой газовой турбины предотвращается гудение камеры сгорания, причем, тем не менее, достигается высокая отдача мощности газовой турбиной.

На диаграмме на фиг.4 показана работа газовой турбины, при которой должно достигаться возрастание ее выходной мощности за счет повышения температуры 10 на выходе турбины. За счет повышения кривой 10 температуры на выходе турбины кривая 9 параметра стабильности 6 падает, пока он не достигнет порогового значения 16'. Понижение рампообразной кривой 10 температуры 7 на выходе турбины на 1К предотвращает достижение параметром стабильности 6 порогового значения 16. Если бы понижения температуры 7 на выходе турбины на 1К не произошло, то кривая 9' параметра стабильности 6 имела бы такой вид, что произошло достижение порогового значения 16 на отметке 0,1, в результате чего в случае этого понижения 17 следовало бы произвести быстрое выключение газовой турбины. За счет понижения кривой 10 температуры 7 на выходе турбины на 1К падение кривой 9 параметра стабильности 6 снова замедляется, и она возрастает, так что, наконец, кривая 9 параметра стабильности 6 превышает пороговое значение 16' на отметке 0,2, а затем превышает пороговое значение 16'' на отметке 0,4. В этом рабочем состоянии склонность камеры сгорания к гудению считается небольшой, так что температура 7 на выходе турбины посредством кривой 10 на фиг.4 может быть повышена до соответственно необходимого уровня 10', причем склонность камеры сгорания к гудению всегда остается настолько небольшой, что быстрого выключения газовой турбины не требуется.


СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
Источник поступления информации: Роспатент

Showing 551-560 of 1,427 items.
10.04.2016
№216.015.2e54

Избирательное управление двигателем переменного тока или двигателем постоянного тока

Изобретение относится к области электротехники и может быть использовано для управления приводами, используемыми на подводных лодках. Техническим результатом является обеспечение возможности избирательного управления двигателями переменного или постоянного тока. В устройстве (1) для...
Тип: Изобретение
Номер охранного документа: 0002579439
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2e6b

Газовая турбина и способ балансировки вращающейся части газовой турбины

Газовая турбина содержит систему балансировки вращающейся части, включающую балансировочный весовой элемент и крепежный элемент. Балансировочный весовой элемент выполнен с первым и вторым отверстиями, при этом первое и второе отверстия выполнены с возможностью съемной установки крепежного...
Тип: Изобретение
Номер охранного документа: 0002579613
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2eb0

Способ и блок управления для распознавания манипуляций в сети транспортного средства

Изобретение относится к контролю информационной безопасности. Технический результат - обеспечение безопасности сети транспортного средства. Способ распознавания манипулирования в по меньшей мере одной сети транспортного средства транспортного средства, имеющий следующие этапы: определение...
Тип: Изобретение
Номер охранного документа: 0002580790
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2ecd

Усилительное устройство для управляемого возврата мощности потерь

Изобретение относится к усилительным устройствам и может быть использовано в мощных передатчиках. Достигаемый технический результат - уменьшение модуляционных нелинейностей и уменьшение нелинейных искажений. Усилительное устройство для начального сигнала (s), имеющего начальную частоту (f),...
Тип: Изобретение
Номер охранного документа: 0002580025
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.30a5

Электростатический инжектор частиц для высокочастотного ускорителя заряженных частиц

Изобретение относится к области ускорительной техники. На входе первого объемного резонатора предусмотрен электрод, который подключен к источнику постоянного напряжения и на основе которого формируется потенциальная яма, которая обуславливает ускорение частиц, испускаемых источником ионов, к...
Тип: Изобретение
Номер охранного документа: 0002580950
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.32d0

Пробоотборное устройство для отбора проб капель и газа в узких каналах газовой турбины или любого другого устройства с масляным сапуном

Группа изобретений относится к области техники измерения выбросов от газовых турбинных двигателей в целях соблюдения государственных и региональных стандартов окружающей среды. Аналитическое устройство (100) для анализа состава текучей среды, такой как масляный туман, газовой турбины содержит...
Тип: Изобретение
Номер охранного документа: 0002581086
Дата охранного документа: 10.04.2016
20.04.2016
№216.015.368c

Газовая турбина и способ изготовления такой газовой турбины

Газовая турбина содержит устройство с внешним и внутренним корпусами и уплотнительным кольцом, а также дополнительное устройство с дополнительным внутренним и дополнительным внешним корпусами. Внешний и внутренний корпуса устройства расположены с образованием между ними канала охлаждения....
Тип: Изобретение
Номер охранного документа: 0002581287
Дата охранного документа: 20.04.2016
20.04.2016
№216.015.372c

Способ изготовления турбинного диска и турбина

Турбина включает турбинный диск и другую турбинную часть, между которыми образована полость. Турбинный диск содержит первый и второй выступы. Первый и второй выступы образованы так, что обеспечивается возможность закрепления балансировочного грузика между первым выступом и вторым выступом....
Тип: Изобретение
Номер охранного документа: 0002581296
Дата охранного документа: 20.04.2016
27.04.2016
№216.015.37e3

Миниатюрная магнитная проточная цитометрия

Группа изобретений относится к области магнитного обнаружения клеток, а именно к магнитной проточной цитометрии. Устройство для магнитной проточной цитометрии включает в себя магниторезестивный датчик, проточную камеру, которая предназначена для прохождения потока клеточной суспензии, и участок...
Тип: Изобретение
Номер охранного документа: 0002582391
Дата охранного документа: 27.04.2016
27.04.2016
№216.015.384a

Усовершенствованная группа отверстий футеровок камеры сгорания газотурбинного двигателя с низкими динамикой горения и выделениями

Камера сгорания для газовой турбины содержит внутренний корпус и наружный корпус. Внутренний корпус содержит внутренний стеночный элемент, который содержит группу первых отверстий и группу вторых отверстий. Внутренний стеночный элемент охватывает объем горения камеры сгорания. Группа первых...
Тип: Изобретение
Номер охранного документа: 0002582378
Дата охранного документа: 27.04.2016
Showing 551-560 of 944 items.
20.03.2016
№216.014.cc39

Лопатка для турбомашины и турбомашина, содержащая такую лопатку.

Лопатка для турбомашины, в частности газовой турбины, расположена на турбинном роторе и содержит перо и хвостовую часть, выполненные за одно целое с лопаткой, проход для подачи охлаждающего воздуха в хвостовой части для направления охлаждающего воздуха в охладитель и отвод охлаждающего воздуха,...
Тип: Изобретение
Номер охранного документа: 0002577688
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.cc9b

Электрическая машина с замкнутым, автономным контуром охлаждающей среды

Изобретение касается электрической машины с жидкостным охлаждением. Технический результат - повышение эффективности охлаждения. Электрическая машина имеет основное тело, роторный вал и теплообменник. В основном теле, содержащем статор, расположены охлаждающие каналы для жидкой охлаждающей...
Тип: Изобретение
Номер охранного документа: 0002577773
Дата охранного документа: 20.03.2016
20.02.2016
№216.014.cd5f

Лопатка газовой турбины

Лопатка газовой турбины содержит хвостовик и перо лопатки с входной и выходной кромками и вершиной, систему каналов для охлаждающего воздуха, простирающихся от отверстия для охлаждающего воздуха в хвостовике посредством извилистого змеевидного канала к расположенному в зоне выходной кромки...
Тип: Изобретение
Номер охранного документа: 0002575842
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cd66

Способ компьютерного моделирования технической системы

Изобретение относится к области компьютерного моделирования технических систем. Технический результат - обеспечение более точного и надежного прогнозирования рабочих параметров за счет применения нейронной сети при моделировании. Способ для компьютерного моделирования технической системы, при...
Тип: Изобретение
Номер охранного документа: 0002575417
Дата охранного документа: 20.02.2016
27.02.2016
№216.014.cdb9

Разрядник защиты от перенапряжений с растяжимой манжетой

Разрядник (1) защиты от перенапряжений с колонкой варисторных элементов содержит растяжимую манжету (8) для размещения натяжных элементов (4) и фиксации их в радиальном направлении. Форма манжеты предусматривает заданные зоны деформации, за счет чего при неисправности и перегрузке манжета (8)...
Тип: Изобретение
Номер охранного документа: 0002575917
Дата охранного документа: 27.02.2016
20.02.2016
№216.014.cdfd

Сопловая лопатка с охлаждаемой платформой для газовой турбины

Узел платформы для поддержки сопловой лопатки для газовой турбины содержит поверхность прохождения газа, расположенную так, чтобы контактировать с потоковым рабочим газом, по меньшей мере, один охлаждающий канал. Охлаждающий канал имеет форму для направления охлаждающей текучей среды в...
Тип: Изобретение
Номер охранного документа: 0002575260
Дата охранного документа: 20.02.2016
10.02.2016
№216.014.cead

Устройство для монтажа и демонтажа конструктивного элемента стационарной газовой турбины, стационарная газовая турбина и способ монтажа и демонтажа конструктивного элемента стационарной газовой турбины

Изобретение относится к способу и устройству для монтажа и демонтажа конструктивного элемента в виде горелки или переходной трубы газовой турбины на стационарной газовой турбине. Устройство содержит двухколейную рельсовую систему, по которой передвигается рамная тележка, несущий узел для...
Тип: Изобретение
Номер охранного документа: 0002575109
Дата охранного документа: 10.02.2016
20.02.2016
№216.014.cf3d

Способ компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора

Изобретение относится к способу компьютерной генерации управляемой данными модели технической системы, в частности газовой турбины или ветрогенератора. Управляемая данными модель обучается предпочтительно в областях тренировочных данных с низкой плотностью. Оценщик плотности выдает для наборов...
Тип: Изобретение
Номер охранного документа: 0002575328
Дата охранного документа: 20.02.2016
20.02.2016
№216.014.cf4e

Способ для динамической авторизации мобильного коммуникационного устройства

Изобретение относится к области технического обслуживания. Технический результат - ограничение открытого доступа к сетям с обслуживаемыми установками. Способ для динамической авторизации мобильного коммуникационного устройства для сети, при котором ассоциированный с коммуникационным устройством...
Тип: Изобретение
Номер охранного документа: 0002575400
Дата охранного документа: 20.02.2016
27.03.2016
№216.014.ddab

Устройство и способ для добычи, особенно добычи на месте залегания (in-situ), углеродсодержащего вещества из подземного месторождения

Группа изобретений относится к устройству и способу для добычи углеводородсодержащего вещества, особенно битума или тяжелой фракции нефти, из резервуара. Резервуар нагружается тепловой энергией для снижения вязкости вещества, для чего предусмотрен по меньшей мере один проводящий шлейф для...
Тип: Изобретение
Номер охранного документа: 0002579058
Дата охранного документа: 27.03.2016
+ добавить свой РИД