×
20.04.2015
216.013.415f

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ

Вид РИД

Изобретение

№ охранного документа
0002548233
Дата охранного документа
20.04.2015
Аннотация: Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии, включающий следующие этапы: эксплуатацию камеры сгорания в рабочем состоянии; регистрацию термоакустической величины газового объема камеры сгорания и/или величины колебаний конструкции камеры сгорания в рабочем состоянии и определение параметрической величины по термоакустической величине и/или по величине колебаний; определение спектра параметрической величины в рабочем состоянии в виде ее амплитудной характеристики в зависимости от времени; идентификацию первого и второго резонансов параметрической величины с помощью спектра; определение амплитудного значения первого резонанса и амплитудного значения второго резонанса; расчет параметра стабильности в качестве функции амплитудного значения первого резонанса и амплитудного значения второго резонанса; определение нижнего и/или верхнего значения расстояния, на которое параметр стабильности лежит выше нижнего заданного порогового и/или ниже верхнего заданного порогового значения. Пороговые значения выбраны таким образом, что в случае эксплуатации камеры сгорания в рабочем состоянии с еще допустимо высокой склонностью к гудению параметр стабильности в этом рабочем состоянии имеет одно из пороговых значений. Определяют квантификацию склонности к гудению посредством нижнего и/или верхнего значения расстояния. При этом параметрической величиной является звуковое давление в камере сгорания, измеряемое с помощью, по меньшей мере, одного микрофона. Изобретение направлено на создание способа диагностирования, при котором камера сгорания может эксплуатироваться с достаточно низкой склонностью к гудению. 2 н. и 14 з.п. ф-лы, 4 ил.

Область техники, к которой относится изобретение

Изобретение относится к способу диагностирования склонности камеры сгорания к гудению и к способу управления газовой турбиной с камерой сгорания для предотвращения ее гудения.

Уровень техники

При сгорании топливно-воздушной смеси в камере сгорания, в частности в камере сгорания газовой турбины, могут возникать колебания при горении. Возникновение колебаний при горении известно и как «гудение камеры сгорания». В частности, камера сгорания газовой турбины склонна к гудению, когда газовая турбина эксплуатируется с высокой температурой на ее входе, чтобы достичь ее высокого термического кпд. Высокая температура на входе газовой турбины может достигаться за счет соответственно высокой температуры горения в камере сгорания, из-за чего последняя склонна к гудению. При гудении камеры сгорания периодически возникают коррелированные флуктуации превращений при горении и статического давления в камере сгорания, причем скорости горения основаны на взаимодействии протекающей в камере сгорания топливно-воздушной смеси с превращением в пламени в данный момент. За счет изменения превращения, вызванного, например, увеличением подачи топлива в камеру сгорания, могут возникать колебания давления, которые, в свою очередь, могут приводить к изменению превращения и, тем самым, к образованию стабильного колебания давления. Колебания при горении вызывают повышенные механическую и термическую нагрузки на конструкцию камеры сгорания и ее подвеску. Колебания при горении могут возникать внезапно такой интенсивности, что сама конструкция камеры сгорания или другие компоненты газовой турбины могут быть повреждены. При возникновении таких рабочих состояний газовая турбина обычно разгружается с высоким нагрузочным градиентом, в результате чего, как недостаток, уменьшается ее выходная мощность.

В этом случае помощь может оказать эксплуатация газовой турбины с достаточным расстоянием от границы самовозбужденных колебаний при горении. Например, из-за изменяющихся окружающих условий граница самовозбужденных колебаний при горении может, однако, неблагоприятно смещаться, так что для максимально неблагоприятных окружающих условий приходится соблюдать достаточное расстояние от границы самовозбужденных колебаний при горении. При этом недостаток в том, что тем самым приходится ограничивать верхний диапазон мощности газовой турбины, в котором ее нельзя эксплуатировать.

Раскрытие изобретения

Задачей изобретения является создание способа диагностирования склонности камеры сгорания к гудению, способа управления работой газовой турбины с камерой сгорания и устройства управления работой газовой турбины, причем этим способом камера сгорания может эксплуатироваться с достаточно низкой склонностью к гудению.

Способ диагностирования склонности камеры сгорания к гудению в рабочем состоянии включает в себя следующие этапы:

- эксплуатацию камеры сгорания в рабочем состоянии;

- регистрацию термоакустической величины газового объема камеры сгорания и/или величины, колебаний конструкции камеры сгорания в рабочем состоянии и определение параметрической величины по термоакустической величине и/или по величине колебаний;

- определение спектра параметрической величины в рабочем состоянии в виде ее амплитудной характеристики в зависимости от времени;

- идентификацию первого и второго резонансов параметрической величины с помощью спектра;

- определение амплитудных значений первого и второго резонансов;

- расчет значения соотношения от деления амплитудных значений первого и второго резонансов в качестве параметра стабильности;

- определение нижнего и/или верхнего значения расстояния, на которое параметр стабильности лежит выше нижнего заданного порогового значения и/или ниже верхнего заданного порогового значения, причем пороговые значения выбраны таким образом, что в случае эксплуатации камеры сгорания в рабочем состоянии еще с допустимо высокой склонностью к гудению параметр стабильности в этом рабочем состоянии имеет одно из пороговых значений;

- квалификацию склонности к гудению посредством нижнего и/или верхнего значения расстояния.

Пороговые значения могут выбираться в зависимости от рабочего состояния или окружающих условий. Величина амплитудных значений параметрической величины умеренно изменяется с нагрузкой на камеру сгорания и является лишь условно информативной для диагностирования склонности камеры сгорания к гудению. Достижение границы гудения часто характеризуется тем, что амплитудные значения внезапно очень резко возрастают. Следовательно, по умеренной сначала характеристике амплитудных значений нельзя обнаружить, что камера сгорания опасно приближается к границе гудения. Если затем после достижения границы гудения амплитуды резко возрастают (как правило, в доли секунды), то газовая турбина может быть защищена от повреждений только за счет принятия жестких, с точки зрения эксплуатационника невыгодных мер, т.е., например, мгновенного заметного снижения нагрузки. Здесь помощь может оказать изобретение: приближение к границе гудения в определенных случаях обнаруживается по изменению формы спектра параметрической величины. Так, например, для квалификации склонности к гудению можно было бы привлечь соотношение амплитуд двух частотных полос. Если при возрастании нагрузки соотношение амплитуд остается постоянным (несмотря на возрастание абсолютных амплитудных значений), то опасности нет. Если же соотношение изменяется, то камера сгорания приближается к границе гудения или удаляется от нее. За счет квантификации склонности к гудению можно обнаружить тенденцию приближения к границе гудения и тем самым своевременно принять ответные меры, что препятствует достижению границы гудения с его негативными последствиями для эксплуатации.

Предпочтительно, что параметр стабильности рассчитывается с помощью значения соотношения от деления амплитудных значений первого и второго резонансов. По мере возрастания нагрузки на камеру сгорания смещаются частотные положения резонансов, причем для данной камеры сгорания, например, экспериментальным путем могут быть заданы полосы частот, в которых при работе камеры сгорания возникают резонансы. Для простой идентификации резонансов можно, тем самым, исследовать, в частности, эти полосы частот, так что не требуется сканировать весь частотный диапазон спектра.

Предпочтительно параметр стабильности образуют в виде логарифма значения соотношения. Далее предпочтительно, что параметр стабильности демпфируется по времени с помощью демпфирующей функции. Таким образом, можно предпочтительно ограничить чрезмерные неустановившиеся изменения параметра стабильности. Например, демпфирующая функция может быть образована так, что в момент n параметр стабильности образуют из среднеарифметического значения соотношения в момент n и значения соотношения в момент n-1.

Предпочтительно, что параметрическая величина измеряется в нескольких местах и для каждого места определяется локальный спектр, причем локальные спектры имеют огибающую, используемую в качестве спектра. Образованный огибающей спектр представляет все определяемое пространственными неоднородностями рабочее состояние камеры сгорания. За счет этого можно предпочтительно оценить склонность камеры сгорания к гудению в рабочем состоянии, в котором камера сгорания нагружена пространственно однородно. Камера сгорания выполнена предпочтительно в виде кольцевой камеры сгорания вращательно-симметрично вокруг оси и имеет несколько мест, в которых измеряются параметрические величины, причем число мест измерений уменьшено с использованием симметрии форм колебаний. Далее предпочтительно, что параметрической величиной является звуковое давление в камере сгорания и/или ускорение ее конструкции.

Предложенный способ управления работой газовой турбины с камерой сгорания включает в себя следующие этапы:

- осуществление описанного способа диагностирования склонности камеры сгорания газовой турбины к гудению во время ее работы;

- уменьшение выходной мощности газовой турбины, как только квалификация склонности к гудению покажет, что параметр стабильности достиг, по меньшей мере, одного из пороговых значений.

Таким образом, параметр стабильности может использоваться для эксплуатации газовой турбины непосредственно в качестве регулируемой величины. Нагрузка на газовую турбину в данный момент находится в непосредственной корреляции с параметром стабильности, так что с его помощью можно регулировать мощность газовой турбины в отношении предотвращения гудения камеры сгорания.

Способ управления работой газовой турбины включает в себя также следующий этап: как только квалификация склонности к гудению покажет, что параметр стабильности достиг заданного значения расстояния, по меньшей мере, до одного из пороговых значений, управление работой газовой турбины осуществляется таким образом, что склонность к гудению снижается. За счет этого предпочтительно перед наступлением недопустимо высокой склонности к гудению можно предотвратить снижение мощности газовой турбины, что обеспечивает ее максимально непрерывную работу. Предпочтительно, что для снижения склонности к гудению в качестве меры понижают температуру на выходе турбины за счет изменения массового потока воздуха из компрессора в камеру сгорания в качестве регулирующей величины по сравнению с ее заданным значением и/или изменяют температуру подаваемого в камеру сгорания топлива в качестве регулирующей величины по сравнению с ее заданным значением и/или изменяют пространственное распределение подачи топлива в камеру сгорания в качестве регулирующей величины по сравнению с ее заданным значением и/или в случае нескольких ступеней горелок изменяют распределение по различным ступеням горелок в качестве регулирующей величины по сравнению с ее заданным значением. После манипуляции с регулирующей величиной и как только квантификация склонности к гудению покажет, что она еще уменьшилась, регулирующую величину предпочтительно возвращают к ее заданному значению.

Далее способ управления работой газовой турбины включает в себя также следующий этап: как только квантификация склонности к гудению покажет, что параметр стабильности достиг заданного и представляющего низкую склонность к гудению значения расстояния, по меньшей мере, до одного из пороговых значений, управление работой газовой турбины осуществляется таким образом, что ее работа оптимизируется, в частности, в отношении выходной мощности, токсичных выбросов и/или расхода топлива.

Краткое описание чертежей

Ниже предпочтительный вариант способа диагностирования склонности камеры сгорания к гудению и способы управления работой газовой турбины поясняется со ссылкой на прилагаемые схематичные чертежи, на которых изображают:

- фиг. 1: диаграмму спектра параметрической величины камеры сгорания в разных рабочих состояниях;

- фиг. 2: диаграмму временной характеристики параметра стабильности при возрастании температуры на входе турбины;

- фиг. 3: диаграмму характеристики управления газовой турбиной при неблагоприятном изменении окружающих условий;

- фиг. 4: диаграмму характеристики управления газовой турбиной при возрастании мощности.

Осуществление изобретения

На фиг. 1 изображена система координат, в которой нанесены спектры 1, 1′, 1′′. Ось 4 абсцисс показывает частоту в Гц, а ось 5 ординат - амплитуду в виде безразмерной величины. Спектрами 1, 1′, 1′′ являются амплитудные характеристики параметрической величины в зависимости от частоты. Параметрической величиной является звуковое давление в камере сгорания, возникающее при ее работе. Звуковое давление в камере сгорания может измеряться, например, с помощью одного или нескольких микрофонов в ней.

Спектр 1 возникает, когда склонность камеры сгорания к гудению низкая. Если рабочее состояние камеры сгорания изменяется таким образом, что склонность к гудению повышается, то спектр 1 изменяется в спектр 1'. Если рабочее состояние камеры сгорания продолжает изменяться таким образом, что склонность к гудению повышается и попадает в еще допустимый предельный диапазон, то спектр 1' изменяется в спектр 1''. В качестве первого резонанса спектры 1, 1', 1'' имеют первый амплитудный максимум 2, 2', 2'', а в качестве второго резонанса - второй амплитудный максимум 3, 3', 3''.

В качестве параметра стабильности для квалификации склонности камеры сгорания к гудению образуют натуральный логарифм соотношения первого 2, 2', 2'' и второго 3, 3', 3'' амплитудных максимумов.

На фиг.2 изображена система координат, на абсциссе 8 которой нанесено время от 0 до 2 минут. В качестве левой ординаты 6 нанесен параметр стабильности, а в качестве правой ординаты 7 - температура на выходе турбины. В момент 0 минут кривая 10 температуры на выходе турбины составляет 579°C. Из этого следует рабочее состояние в камере сгорания, в которой господствует звуковое давление, чей спектр 1 изображен на фиг.1. С первым 2 и вторым 3 амплитудными максимумами для спектра 1 возникает параметр стабильности 6 на отметке 0,6, как это показано на диаграмме на фиг.2 кривой 9 в момент 0 минут. Если для работы газовой турбины температура на выходе турбины повышается, как это показано на фиг.2 кривой 10, то через 0,75 минуты возникает рабочее состояние в камере сгорания, в которой господствует звуковое давление в соответствии со спектром 1' на фиг.1. Из спектра 1' с первым 2' и вторым 3' амплитудными максимумами возникает параметр стабильности 6 на отметке 0,3, как это показано на фиг.2 кривой 9 в момент 0,75 минуты. Наконец, характеристика температуры 10 на выходе турбины возрастает до первого уровня 11. Как показано на фиг.2, кривая 9 параметра стабильности 6 в зависимости от времени падает, что является признаком возрастающей в зависимости от времени склонности камеры сгорания к гудению.

На фиг.2 показана также кривая ускорения 14 конструкции камеры сгорания, которое вплоть до возрастания температуры 10 на выходе турбины до первого уровня 11, в основном, постоянное. Если температура 10 на выходе турбины возрастает до второго уровня 12, то кривая 9 параметра стабильности 6 продолжает падать и в камере сгорания возникает гудение. Следствием гудения является то, что самовозбужденные колебания при горении возбуждают сильные колебания конструкции камеры сгорания, в результате чего ускорение 14 внезапно возрастает до пика 15. Пик 15 ускорения настолько высокий, что следует опасаться повреждения конструкции камеры сгорания. Поэтому для предотвращения ее повреждения газовая турбина выключается, что обозначено быстрым падением кривой 10 температуры на выходе турбины.

На диаграмме на фиг.2 пороговое значение 16 параметра стабильности 6 лежит на отметке 0,1. Кривая 9 параметра стабильности 6 не достигает (обозначено поз.17) порогового значения 16 в первый момент 18, составляющий 1,55 минуты. Первый момент 18 смещен назад на 15 секунд относительно второго момента 19, в который возникает пик 15 ускорения. Если при работе газовой турбины параметр стабильности 6 не достигает порогового значения 16, то остается время реакции 15 секунд, в течение которого работа газовой турбины должна быть изменена таким образом, чтобы можно было избежать гудения камеры сгорания и, тем самым, быстрого выключения газовой турбины.

Диаграммы на фиг.3 и 4 аналогичны диаграмме на фиг.2 и иллюстрируют работу газовой турбины с целью предотвращения гудения камеры сгорания. Ее склонность к гудению может повышаться, например, за счет того, что в компрессоре газовой турбины соотношение давлений уменьшается из-за износа или загрязнения. Кроме того, склонность камеры сгорания к гудению может повышаться за счет того, что при работе газовой турбины повышаются окружающая температура и, тем самым, температура на входе компрессора. Например, пусть газовая турбина эксплуатируется при уровне температуры на ее выходе, как это обозначено кривой 10 в начале абсциссы. Будучи вызвана, например, одним из упомянутых влияний, склонность камеры сгорания к гудению повышается, так что кривая 9 параметра стабильности 6 падает. Без вмешательства в работу газовой турбины этот процесс продолжался бы до тех пор, пока камера сгорания не начала гудеть. На фиг.3 второе пороговое значение 16' лежит на отметке 0,2, т.е. выше первого порогового значения 16 на отметке 0,1. Как только кривая 9 параметра стабильности 6 достигает порогового значения 16', с помощью регулятора подача топлива в камеру сгорания в третий момент 20 уменьшается таким образом, что в течение 3 секунд в четвертый момент 21 кривая 10 температуры 7 на выходе турбины падает на 1К. За счет этого падение кривой 9 параметра стабильности 6 замедляется, и она возрастает, так что кривая 9 параметра стабильности 6 снова превышает пороговое значение 16' в пятый момент 22. Например, для уменьшения гудения камеры сгорания снижения температуры 7 на выходе турбины недостаточно, чтобы достичь достаточно большого расстояния до гудения камеры сгорания. После пятого момента 22 кривая 9 параметра стабильности 6 снова падает и не достигает порогового значения 16'. В качестве аналогичной третьему моменту 20 меры кривая 10 температуры 7 на выходе турбины еще раз понижается на 1К, в результате чего падение кривой 9 параметра стабильности 6 снова замедляется, и она возрастает, пока, наконец, кривая 9 параметра стабильности 6 не превысит порогового значения 16'.

Кривая 9 параметра стабильности 6 возрастает до тех пор, пока пороговое значение 16'' не достигнет отметки 0,4. В этом рабочем состоянии склонность камеры сгорания к гудению считается небольшой, так что постепенно уровень температуры 7 на выходе турбины может быть снова поднят в отношении ее кривой 10 до первоначального уровня. За счет этих вмешательств в управление работой газовой турбины предотвращается гудение камеры сгорания, причем, тем не менее, достигается высокая отдача мощности газовой турбиной.

На диаграмме на фиг.4 показана работа газовой турбины, при которой должно достигаться возрастание ее выходной мощности за счет повышения температуры 10 на выходе турбины. За счет повышения кривой 10 температуры на выходе турбины кривая 9 параметра стабильности 6 падает, пока он не достигнет порогового значения 16'. Понижение рампообразной кривой 10 температуры 7 на выходе турбины на 1К предотвращает достижение параметром стабильности 6 порогового значения 16. Если бы понижения температуры 7 на выходе турбины на 1К не произошло, то кривая 9' параметра стабильности 6 имела бы такой вид, что произошло достижение порогового значения 16 на отметке 0,1, в результате чего в случае этого понижения 17 следовало бы произвести быстрое выключение газовой турбины. За счет понижения кривой 10 температуры 7 на выходе турбины на 1К падение кривой 9 параметра стабильности 6 снова замедляется, и она возрастает, так что, наконец, кривая 9 параметра стабильности 6 превышает пороговое значение 16' на отметке 0,2, а затем превышает пороговое значение 16'' на отметке 0,4. В этом рабочем состоянии склонность камеры сгорания к гудению считается небольшой, так что температура 7 на выходе турбины посредством кривой 10 на фиг.4 может быть повышена до соответственно необходимого уровня 10', причем склонность камеры сгорания к гудению всегда остается настолько небольшой, что быстрого выключения газовой турбины не требуется.


СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
СПОСОБ ДИАГНОСТИРОВАНИЯ СКЛОННОСТИ КАМЕРЫ СГОРАНИЯ К ГУДЕНИЮ И СПОСОБ УПРАВЛЕНИЯ ГАЗОВОЙ ТУРБИНОЙ
Источник поступления информации: Роспатент

Showing 511-520 of 1,427 items.
10.02.2016
№216.014.c1d2

Способ получения противокоронной защиты, быстроотверждаемая система защиты от коронного разряда, и электрическая машина

Изобретение относится к способу получения противокоронной защиты для электрических машин. Противокоронная защита отверждается, по меньшей мере, с помощью УФ-излучения и имеет электрически полупроводящий наполнитель, который может содержать карбид кремния и/или графит. Отверждение может...
Тип: Изобретение
Номер охранного документа: 0002574607
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c323

Сплав, защитное покрытие и конструкционная деталь

Изобретение относится к области металлургии, а именно к защитным покрытиям конструкционных деталей. Сплав на основе никеля для защитного покрытия конструкционной детали, в частности детали газовой турбины, предназначенного для защиты от коррозии и/или окисления детали при высоких температурах,...
Тип: Изобретение
Номер охранного документа: 0002574559
Дата охранного документа: 10.02.2016
27.01.2016
№216.014.c35a

Способ эксплуатации сортировочной горки и система управления сортировочной горкой

Изобретение относится к области железнодорожной автоматики, в частности к управлению сортировочными горками. Техническое решение заключается в том, что для соответствующих отцепов (100, 101) в виде скатывающихся вагонов или групп вагонов для первого вагонного замедлителя (70), исходя из...
Тип: Изобретение
Номер охранного документа: 0002574039
Дата охранного документа: 27.01.2016
10.02.2016
№216.014.c3b8

Способ эксплуатации сортировочной станции, а также управляющее устройство для сортировочной станции

Изобретение относится к области управления и эксплуатации сортировочной станции. В способе определяют местоположение (p1) локомотива (10) на пути (100) приема сортировочной станции по отношению к подлежащему расформированию блоку (60), перемещаемому от локомотива (10) из пути (100) приема к...
Тип: Изобретение
Номер охранного документа: 0002574287
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c42c

Устройство и способ загрузки транспортной единицы

Устройство для загрузки транспортной единицы (10), предусмотренной для транспортировки штучных грузов (12), в частности почтовых отправлений, включает в себя первую и вторую вдвигаемые в транспортную единицу (10) на различной высоте транспортерные секции (18, 20) для перемещения и выгрузки...
Тип: Изобретение
Номер охранного документа: 0002574507
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4f8

Способ формирования последовательности импульсных сигналов

Изобретение относится к способу формирования последовательности импульсных сигналов, используя процессор, в частности, для системы калибровки системы измерения синхронизации венцов в турбомашине или другом вращающемся оборудовании. Техническим результатом является обеспечение возможности...
Тип: Изобретение
Номер охранного документа: 0002574358
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c562

Конфигурирование коммуникационных соединений полевых приборов оборудования автоматизации энергоснабжения

Изобретение относится к соответственно выполненному оборудованию автоматизации энергоснабжения. Технический результат - упрощение конфигурирования механизмов регулирования коммуникационных соединений полевых приборов оборудования автоматизации энергоснабжения. Результат достигается тем, что...
Тип: Изобретение
Номер охранного документа: 0002574836
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.c5b7

Светодиодный световой сигнал

Изобретение относится к светодиодному (LED) световому сигналу, в частности железнодорожному LED световому сигналу c сигнализатором (1) для генерации световых точек различных цветов, причем LED выполнены как многоцветные LED, в частности RGB-LED (10)/красные (11)/желтые (12)/зеленые (13) LED....
Тип: Изобретение
Номер охранного документа: 0002578199
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.c621

Ротор для электрической машины и электрическая машина

Изобретение относится к ротору для электрической машины. Технический результат - повышение эффективности охлаждения ротора. Ротор (301) для электрической машины (201) содержит полюсный сердечник (303), который имеет охлаждаемый, намагничиваемый роторный участок (313) из сверхпроводящего...
Тип: Изобретение
Номер охранного документа: 0002578170
Дата охранного документа: 20.03.2016
27.03.2016
№216.014.c66a

Сенсорный элемент с датчиком акустической эмиссии

Использование: для регистрации сигналов акустической эмиссии. Сущность изобретения заключается в том, что сенсорный элемент для контроля системы с датчиком акустической эмиссии для регистрации акустической эмиссии содержит второй датчик для регистрации высоты температуры и/или градиента...
Тип: Изобретение
Номер охранного документа: 0002578513
Дата охранного документа: 27.03.2016
Showing 511-520 of 944 items.
10.12.2015
№216.013.9591

Устройство для измерения состава потока многофазной смеси

Использование: для измерения состава потока многофазной смеси. Сущность изобретения заключается в том, что устройство для измерения состава потока многофазной смеси содержит измерительную трубку (1), формирующую трубопровод для потока многофазной смеси, средство (2) излучения для облучения...
Тип: Изобретение
Номер охранного документа: 0002569909
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9592

Система и способ обнаружения повреждений и система электропитания кабелей для непосредственного электрического нагрева подводных трубопроводов

Изобретение относится к обнаружению повреждений кабелей. Сущность: система обнаружения повреждений содержит первый амперметр для измерения первого фазного тока, второй амперметр для измерения второго фазного тока, третий амперметр для измерения третьего фазного тока, первый блок вычисления для...
Тип: Изобретение
Номер охранного документа: 0002569910
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9719

Способ управления компрессором

Изобретение относится к способу управления компрессором. Способ содержит следующие этапы: а) передача по меньшей мере одного заданного значения параметра компрессора, b) определение по меньшей мере двух значений регулирующего воздействия по меньшей мере двух исполнительных элементов компрессора...
Тип: Изобретение
Номер охранного документа: 0002570301
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.971a

Пилотная горелка газотурбинного двигателя, камера сгорания и газотурбинный двигатель

Пилотная горелка газотурбинного двигателя содержит переднее тело с осевым прохождением вдоль центральной оси пилотной горелки. Центральная ось имеет осевое направление к зоне сгорания газотурбинного двигателя. Переднее тело содержит переднюю поверхность пилотной горелки, которая направлена к...
Тип: Изобретение
Номер охранного документа: 0002570302
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97f9

Ось колесной пары для рельсового транспортного средства, снабженная защитой от ударов камней, и способ ее изготовления

Ось (11) колесной пары для рельсового транспортного средства содержит оболочку (13), которая имеет металлический компонент (14), который максимум такой же электрохимически высококачественный, как и образующий граничную поверхность (17) оси колесной пары металлический материал. Металлический...
Тип: Изобретение
Номер охранного документа: 0002570525
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9a5d

Способ осаждения двуокиси углерода, а также газотурбинная установка с осаждением двуокиси углерода

Сначала в первом процессе абсорбции абсорбируют диоксид углерода при введении в контакт подводимого содержащего диоксид углерода природного газа с первым обводным потоком растворителя. При этом образуется обедненный диоксидом углерода природный газ и обогащенный диоксидом углерода растворитель....
Тип: Изобретение
Номер охранного документа: 0002571142
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9b6a

Способ и устройство для распознавания ошибочного представления данных изображения на блоке отображения

Изобретение относится к средствам распознавания ошибочного представления данных на блоке отображения. Техническим результатом является повышение надежности распознавания ошибочного представления данных. В способе тестовые данные (Р) регистрируются посредством фотодатчиков (61, 62, 63, 64),...
Тип: Изобретение
Номер охранного документа: 0002571411
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9bbd

Устройство и способ для вытеснения удерживаемых с геометрическим замыканием в диске рабочего колеса лопаток

Вытеснительное устройство для вытеснения лопаток, удерживаемых с геометрическим замыканием в диске рабочего колеса, содержит станину, подъемный поворотный стол, удерживаемый на станине ударный блок, зажимной блок и чеканочный блок. Ударный блок имеет вытеснительный пуансон для приложения...
Тип: Изобретение
Номер охранного документа: 0002571494
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9c8b

Способ и система для впрыска эмульсии в пламя

Система для впрыска эмульсии из первой текучей среды и второй текучей среды в пламя горелки содержит центральный газовый канал, наружный газовый канал, канал текучей среды и смесительное устройство для образования эмульсии из первой текучей среды и второй текучей среды и для выпуска эмульсии в...
Тип: Изобретение
Номер охранного документа: 0002571700
Дата охранного документа: 20.12.2015
20.01.2016
№216.013.a16c

Рельсовое транспортное средство

Изобретение относится к подаче электроэнергии к вспомогательному оборудованию транспортных средств. Рельсовое транспортное средство содержит, по меньшей мере, одну тележку (14) и одно устройство (30) электроснабжения, содержащее защитное устройство (34). Распределительное устройство (36)...
Тип: Изобретение
Номер охранного документа: 0002572966
Дата охранного документа: 20.01.2016
+ добавить свой РИД