×
20.04.2015
216.013.411e

Результат интеллектуальной деятельности: СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ)

Вид РИД

Изобретение

№ охранного документа
0002548168
Дата охранного документа
20.04.2015
Аннотация: Изобретение относится к способу получения Tc. Заявленный способ включает следующие стадии: получение раствора, содержащего Mo-молибдат-ионы; создание протонного луча с энергией, достаточной для того, чтобы при облучении Mo-молибдат-ионов индуцировать ядерную реакцию Mo(p,2n)Tc; облучение раствора протонным лучом и индуцирование ядерной реакции Mo(p,2n)Tc; применение метода экстрагирования для экстрагирования Tc из раствора. Кроме того, изобретение касается устройства для получения Tc, включающего раствор, содержащий Mo-молибдат-ионы; ускоритель для создания протонного луча с энергией, достаточной для того, чтобы при облучении Mo-молибдат-ионов индуцировать ядерную реакцию Mo(p,2n)Tc, для облучения раствора и для индуцирования ядерной реакции Mo(p,2n)Tc; секции экстрагирования для экстрагирования Tc из раствора. Техническим результатом является отсутствие необходимости в эксплуатации реакторов с высокообогащенным ураном для получения изотопов, в частности, для медицинской диагностики. 2 н. и 12 з.п. ф-лы, 3 ил.

Изобретение касается способа и устройства для получения 99mTc. 99mTc применяется, в частности, в медицинской графической диагностике, например в SPECT (Single Photon Emission Computerized Tomography - ОФЭКТ - однофотонная эмиссионная компьютерная томография).

Стандартный генератор 99mTc представляет собой прибор для экстрагирования метастабильного изотопа 99mTc из источника, который содержит распадающийся 99Mo.

99Mo, в свою очередь, чаще всего получается методом, в котором в качестве мишени применяется высокообогащенный уран 235U. При облучении мишени нейтронами в качестве продукта расщепления образуется 99Mo. В соответствии с международным соглашением, однако, в будущем станет все труднее эксплуатировать реакторы с высокообогащенным ураном, что может привести к снижению поставок радионуклидов для графической диагностики ОФЭКТ.

Поэтому задачей изобретения является создать способ и устройство для альтернативного получения 99mTc.

Задача изобретения решается с помощью признаков независимых пунктов формулы изобретения. Предпочтительные усовершенствования изобретения содержатся в признаках зависимых пунктов формулы изобретения.

Предлагаемый изобретением способ получения 99mTc включает следующие стадии:

- приготовление раствора, содержащего 100Mo-молибдат-ионы;

- создание протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc;

- облучение раствора протонным лучом и индуцирование ядерной реакции 100Mo(p,2n)99mTc;

- применение метода экстрагирования для экстрагирования 99mTc из раствора.

То есть 99mTc получается непосредственно с помощью ядерной реакции, которая осуществляется при взаимодействии протонного луча с атомами молибдена, по уравнению 100Mo(p,2n)99mTc. Энергия протонного луча составляет больше 20 Мэв и поэтому находится в диапазоне, в котором лежит эффективное сечение для указанной ядерной реакции. При этом атомы 99mTc могут получаться в количестве, достаточном для получения 99mTc. Благодаря тому, что атомы молибдена находятся в растворе в виде молибдат-ионов, образовавшийся 99mTc может затем просто экстрагироваться из раствора с помощью метода экстрагирования. Экстрагированный 99mTc может затем применяться в разных целях, в частности для получения радионуклида для графической диагностики ОФЭКТ.

Протонный луч ускоряется до энергии, равной по меньшей мере 20 Мэв. Предпочтительно луч частиц ускоряется до энергии, равной от 20 Мэв до 25 Мэв. Путем ограничения максимальной энергии до максимум 35 Мэв, в частности до 30 Мэв и в частности не более чем до 25 Мэв, предотвращается обусловленное слишком высокой энергией луча частиц возбуждение ядерных реакций, которые приводят к нежелательным продуктам реакции, например к другим изотопам Tc, чем 99mTc, которые затем снова требуют дополнительной стадии, с помощью которой эти нежелательные продукты реакции снова удаляются. Камера, в которой находится раствор, содержащий молибдат-ионы, может быть устроена или, соответственно, размеры ее могут быть выбраны таким образом, чтобы выходящий луч частиц обладал энергией, равной по меньшей мере 10 Мэв. Таким образом энергетический диапазон протонного луча может оставаться в области, в которой возникающие ядерные реакции остаются под контролем и в которой нежелательные продукты реакции образуются только в приемлемом количестве.

Ускорение протонов до указанной энергии требует обычно только одного единственного блока ускорителя среднего размера, который также может применяться и инсталлироваться локально. Возможно получение 99mTc описанным способом локально вблизи или, соответственно, в окрестностях желаемого места применения, например в окрестностях больницы. В противоположность традиционным, нелокальным методам производства, которые связаны с применением больших установок, таких как ядерные реакторы, и сопутствующей им проблемой распределения, локальное производство решает многие проблемы. Отделения радиационной медицины могут планировать свои рабочие процессы независимо друг от друга и обходятся без затратной логистики и инфраструктуры.

В одном из вариантов осуществления процесс экстрагирования может представлять собой процесс экстрагирования жидкостью из жидкости, в частности, с применением метилэтилкетона.

Этот процесс экстрагирования предлагается, потому что 99mTc находится в растворе. 99mTc растворяется в метилэтилкетоне, при этом молибдат-ионы продолжают оставаться в водном растворе. Таким образом 99mTc может быть отделен от 100Mo. Насыщенный 99mTc метилэтилкетон может, например, сушиться, так что затем 99mTc может, например, использоваться для изготовления радиоактивного лекарства.

В одном из вариантов осуществления остаточные после экстрагирования 99mTc растворенные 100Mo-молибдат-ионы снова подаются в раствор, подлежащий облучению, например, в замкнутом циркуляционном контуре. Так обеспечивается особенно эффективное применение исходного материала, а именно 100Mo-молибдат-ионов.

В одном из вариантов осуществления раствор, содержащий 100Mo-молибдат-ионы, представляет собой раствор 100Mo-молибдат-соли, при этом в растворе при облучении протонным лучом у катионов 100Mo-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт, в частности катионный конечный продукт, которого не было в первоначально подлежащем облучению растворе, представляющий собой ион, который является неустойчивым и/или потенциально вредным для человеческого тела. Термин «катионный конечный продукт» не обязательно означает, что конечный продукт должен быть катионом, это означает только, что этот конечный продукт происходит из катионов соли.

В этом случае остаточные, растворенные 100Mo-молибдат-ионы после экстрагирования 99mTc снова добавляются в подлежащий облучению раствор, при этом по меньшей мере один катионный конечный продукт перед добавлением удаляется, в частности, с применением ионообменника.

Этот вариант осуществления может обладать тем преимуществом, что раствор, снова добавляемый в подлежащий облучению раствор, не содержит компонентов, которые при повторном облучении протонным лучом приводили бы к другим продуктам облучения, которые отличаются от катионных конечных продуктов. Тогда, например, можно избежать того, чтобы в раствор подавались катионные конечные продукты, которые при облучении приводили бы к другим, новым ядерным реакциям. Благодаря этому можно достичь предотвращения неконтролируемых или необозримых ядерных реакций, несмотря на циркуляцию молибдат-ионов.

В одном из вариантов осуществления экстрагированный 99mTc может очищаться от загрязнений, в частности, с применением ионообменника.

Таким образом могут, например, удаляться потенциально нежелательные компоненты экстрагированного раствора 99mTc перед дальнейшей переработкой. Так могут, например, удаляться потенциальные, токсичные для человеческого тела вещества перед образованием радионуклида или другие радионуклиды с другим периодом полураспада.

В одном из вариантов осуществления 100Mo-молибдат-соль включает 6Li2100MoO4. 6Li распадается при ядерной реакции 6Li(p,3He)4H с получением 4H, который, в свою очередь, распадается с получением трития.

При применении 7Li обстрел протонным лучом приводил бы к возбуждению реакции 7Li(p,n)7Be, при этом 7Be снова должен был бы удаляться. Применение 6Li предотвращает это.

Таким образом не происходит образование катионного продукта, который при повторном облучении протонным лучом приводил бы к неконтролируемой цепи ядерных реакций. При известных условиях обходятся без ступени очистки, с помощью которой удаляется образующийся катионный конечный продукт.

В другом варианте осуществления 100Mo-молибдат-соль включает Na2100MoO4. По меньшей мере один катионный конечный продукт включает при этом 18F. Конечно имеющийся 23Na при обстреле протонным лучом в реакции 23Na(p,n)23Mg превращается в 23Mg, который, в свою очередь, быстро распадается с получением 23Na. Следующей ядерной реакцией является 23Na(p,x)18F. В целом после облучения в качестве катионного конечного продукта теперь имеется также 18F, которого не было в первоначальном растворе. 18F может удаляться с помощью ионообменника, например, из раствора, который после экстрагирования 99mTc содержит остаточный молибдат и который снова добавляется в первоначальный раствор. Тем самым предотвращается возбуждение цепи лишь с трудом контролируемых ядерных реакций, обусловленных облучением 18F и контуром рециркуляции.

В другом варианте осуществления 100Mo-молибдат-соль включает K2100MoO4, при этом катионный конечный продукт включает 41Ca. Конечно имеющийся 41K посредством протонного луча преобразуется в следующих ядерных реакциях: 41K(p,n)41Ca, 41K(p,γ)42Ca, 41K(p,αγ)38Ar. Также, конечно, имеющийся 39K посредством протонного луча преобразуется в следующих ядерных реакциях: 39K(p,d)38K, 39K(p,γ)40Ca. 38K распадается с получением 38Ar. Из образовавшихся ионов Ca только 41Ca неустойчив. С помощью ионообменника могут удаляться все ионы. Рециркуляция 38Ar является некритичной, так как поперечное сечение взаимодействия для взаимодействия с протонным лучом лежит в другом диапазоне, чем поперечное сечение взаимодействия для ядерной реакции 100Mo(p,2n)99mTc. Поэтому рециркуляция и облучение 38Ar не создает цепи ядерных реакций с неконтролируемыми конечными продуктами.

Устройство для получения 99mTc, включающее

- раствор, содержащий 100Mo-молибдат-ионы;

- ускоритель для создания протонного луча с энергией, достаточной для того, чтобы при облучении 100Mo-молибдат-ионов индуцировать ядерную реакцию 100Mo(p,2n)99mTc, для облучения раствора и для индуцирования ядерной реакции 100Mo(p,2n)99mTc;

- секцию экстрагирования для экстрагирования 99mTc из раствора.

В одном из вариантов осуществления раствор, содержащий 100Mo-молибдат-ионы, представляет собой раствор 100Mo-молибдат-соли, при этом в растворе при облучении протонным лучом у катионов 100Mo-молибдат-соли индуцируется ядерная реакция, в результате которой образуется по меньшей мере один катионный конечный продукт, и при этом устройство дополнительно включает следующую за секцией экстрагирования секцию очистки, в которой экстрагированный 99mTc может очищаться от загрязнений катионным конечным продуктом.

В одном из вариантов осуществления предусмотрен циркуляционный контур, с помощью которого остаточные после экстрагирования 99mTc растворенные 100Mo-молибдат-ионы могут снова добавляться в подлежащий облучению раствор посредством, например, замкнутого циркуляционного контура. В частности, если раствор 100Mo-молибдат-ионов представляет собой раствор 100Mo-молибдат-соли, устройство дополнительно может включать включенную в циркуляционный контур промежуточную секцию очистки, в которой указанный по меньшей мере один катионный конечный продукт удаляется перед добавлением остаточных растворенных 100Mo-молибдат-ионов, в частности, с применением ионообменника.

Предыдущее и последующее описание отдельных признаков, преимущества которых и действия которых касается как категории устройства, так и категории способа, без явного упоминания об этом в каждом случае; описанные при этом отдельные признаки могут быть также существенными для изобретения в других комбинациях, чем показанные.

Варианты осуществления изобретения с предпочтительными усовершенствованиями в соответствии с признаками зависимых пунктов поясняются подробнее с помощью следующего чертежа, не будучи им ограничены. Показано:

фиг.1 - конструкция устройства для получения 99mTc из молибдат-соли лития;

фиг.2 - конструкция устройства для получения 99mTc из молибдат-соли натрия;

фиг.3 - конструкция устройства для получения 99mTc из молибдат-соли калия.

По варианту осуществления, показанному на фиг.1, сначала приготавливается водный раствор 11, в котором растворен 6Li2100MoO4.

Раствор 11 затем подается в облучательную камеру 13, которая облучается протонным лучом 15, создаваемым блоком 17 ускорителя, таким как, например, циклотрон. Протонный луч 15 при этом при входе в облучательную камеру 13 обладает энергией, составляющей от 20 до 25 Мэв, а при выходе энергией, равной примерно 10 Мэв. В этом энергетическом диапазоне протонный луч 15 взаимодействует с 100Mo и превращает его в ядерной реакции частично непосредственно в 99mTc, посредством ядерной реакции 100Mo(p,2n)99mTc.

При облучении ионов 6Li возникают также следующие ядерные реакции: 6Li(p,3He)4H, причем 4H сразу же распадается с получением трития.

Облученный раствор подается в секцию 19 для экстрагирования растворителями, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора. Растворенный в МЭК 99mTc может затем подвергаться дальнейшей переработке, например, в последующем фармацевтическом модуле (не показан).

Остаточный раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 11.

Вариант осуществления, показанный на фиг.2, отличается от фиг.1 тем, что сначала приготавливается водный раствор 21, в котором растворен Na2100MoO4.

При облучении ионов Na возникают следующие ядерные реакции: 23Na(p,n)23Mg и 23Na(p,x)18F. 23Mg распадается, в свою очередь, на устойчивый 23Na. 18F, напротив, является радиоактивным.

Облученный раствор подается для экстрагирования растворителями в секцию 19, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора. Перед дальнейшей переработкой загрязнения 18F могут удаляться с помощью первого ионообменика 23.

Также 18F может удаляться с помощью другого ионообменика 25, прежде чем остаточный после экстрагирования 99mTc раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 21.

Экстрагированный и очищенный от 18F раствор 27 99mTc может затем, например, передаваться в последующий фармацевтический модуль.

Вариант осуществления, показанный на фиг.3, отличается от фиг.1 тем, что сначала приготавливается водный раствор, в котором растворен K2100MoO4.

При облучении ионов Na возникают следующие ядерные реакции: 41K(p,n)41Ca, 41K(p,γ)42Ca, 41K(p,αγ)38Ar, 39K(p,d)38K, 39K(p,γ)40Ca. Из образующихся катионных продуктов только 41Ca является неустойчивым.

Облученный раствор подается для экстрагирования растворителями в секцию 19, в которой с помощью МЭК (метилэтилкетона) 99mTc экстрагируется из водного раствора.

Перед дальнейшей переработкой загрязнения 41Ca могут удаляться с помощью первого ионообменика 33.

Также 41Ca может удаляться с помощью другого ионообменика 35, прежде чем остаточный после экстрагирования 99mTc раствор молибдат-соли снова добавляется в первоначально приготовленный раствор 31.

Экстрагированный и очищенный от 41Ca раствор 99mTc может затем, например, сушиться в сушильном блоке 37 и передаваться в последующий фармацевтический модуль (не показан).

Спецификация позиций

11, 21, 31 Водный раствор

13 Облучательная камера

15 Протонный луч

17 Ускорительный блок

19 Секция для экстрагирования растворителями

23, 33 Первый ионообменник

25, 35 Другой ионообменник

27 Очищенный раствор 27 99mTc

29 Сушильное устройство


СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ)
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ)
СПОСОБ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ Тc (РЕЗОСКАНА, ЗОЛЕДРОНОВОЙ КИСЛОТЫ)
Источник поступления информации: Роспатент

Showing 151-160 of 1,429 items.
20.02.2014
№216.012.a2ea

Кольцевой диффузор для осевой турбинной машины, система для осевой турбинной машины, а также осевая турбинная машина

Система осевой турбинной машины содержит проточный канал, ограниченный наружной и внутренней стенками, и решетку направляющих лопаток. Ниже по потоку решетки направляющих лопаток расположен кольцевой диффузор, имеющий наружную и внутреннюю стенки. Наружная стенка кольцевого диффузора...
Тип: Изобретение
Номер охранного документа: 0002507421
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a308

Система сжигания топлива газотурбинного двигателя

Система сжигания топлива газотурбинного двигателя содержит по меньшей мере один резонатор, расположенный на стенке системы сжигания топлива, ограничивающей канал течения потока горячих и находящихся под давлением газообразных продуктов сгорания. Объем резонатора ограничен стенками, одна из...
Тип: Изобретение
Номер охранного документа: 0002507451
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3b1

Обмотка и способ изготовления обмотки

Изобретение относится к обмотке для трансформатора с намотанным электрическим проводником, при этом электрический проводник имеет электрическую изоляцию. Кроме того, изобретение относится к способу изготовления обмотки. За счет применения носителя, который предназначен для размещения на нем...
Тип: Изобретение
Номер охранного документа: 0002507620
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3b4

Способ для определения момента времени переключения электрического переключающего прибора

Изобретение касается способа для определения момента времени переключения электрического переключающего прибора с промежутком (1) прерывателя, расположенного между первым участком (2) линии, нагруженным возбуждающим напряжением (4), и вторым участком (3) линии, образующим колебательный контур...
Тип: Изобретение
Номер охранного документа: 0002507623
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a3e4

Способ управления для использования резервирования в случае неисправности многофазного выпрямителя переменного тока с распределенными накопителями энергии

Изобретение относится к управлению многофазным выпрямителем переменного тока. Технический результат заключается в усовершенствовании способа управления выпрямителем, чтобы при отказе в выходных цепях не проявлялись составляющие постоянного напряжения. В соответствии с изобретением, подсистемой...
Тип: Изобретение
Номер охранного документа: 0002507671
Дата охранного документа: 20.02.2014
20.02.2014
№216.012.a419

Способ контроля процесса плавки в электродуговой печи и устройство обработки сигналов, программный код и носитель данных для выполнения этого способа

Изобретение относится к способу контроля процесса плавки в электродуговой печи (11), а также к устройству (21) обработки сигналов для электродуговой печи (11), к программному коду и носителю для хранения данных для осуществления этого способа. В способе с помощью датчиков (22) корпусного звука...
Тип: Изобретение
Номер охранного документа: 0002507724
Дата охранного документа: 20.02.2014
27.02.2014
№216.012.a5cb

Способ и устройство для отделения диоксида углерода от отходящего газа работающей на ископаемом топливе энергоустановки

Изобретение относится к способу отделения диоксида углерода от дымового газа работающей на ископаемом топливе энергоустановки. Сначала в процессе сжигания сжигается ископаемое топливо (2), причем образуется горячий, содержащий диоксид углерода отходящий газ (3). На следующем этапе в процессе...
Тип: Изобретение
Номер охранного документа: 0002508158
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a61e

Намоточная машина

Изобретение относится к области электротехники и может быть применено для изготовления высоковольтных вводов. Намоточная машина содержит удерживающие средства, средства подачи слоев намотки и несущую охватывающую ленту конструкцию. Удерживающие средства удерживают и вращают высоковольтный...
Тип: Изобретение
Номер охранного документа: 0002508241
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a6ef

Сегментированная в осевом направлении обойма направляющих лопаток для газовой турбины, а также газовая турбина и газопаровая турбинная установка с сегментированной обоймой направляющих лопаток

Обойма направляющих лопаток газовой турбины содержит осевые сегменты, по меньшей мере, один из которых выполнен в виде решетчатой структуры из труб. Решетчатая структура соответствующего осевого сегмента с внутренней и/или наружной стороны снабжена облицовкой из листового металла, имеющей...
Тип: Изобретение
Номер охранного документа: 0002508450
Дата охранного документа: 27.02.2014
27.02.2014
№216.012.a6f3

Энергоустановка с перегрузочным регулирующим клапаном

Изобретение относится к энергетике. Энергоустановка, содержащая перегрузочный паропровод, в котором расположен перегрузочный регулирующий клапан, управляемый регулятором давления, причем перегрузочный регулирующий клапан открывается прежде, чем откроется обводной регулирующий клапан, который...
Тип: Изобретение
Номер охранного документа: 0002508454
Дата охранного документа: 27.02.2014
Showing 151-160 of 948 items.
27.01.2014
№216.012.9be6

Сварочный присадочный материал, применение сварочного присадочного материала и конструктивный элемент

Изобретение относится к области металлургии, а именно к сварочному присадочному материалу, и может быть использовано при ремонтной сварке лопаток газовых турбин и деталей из жаропрочных сплавов на никелевой основе, работающих в горячем газе, с помощью ручной и автоматизированной сварки при...
Тип: Изобретение
Номер охранного документа: 0002505616
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c1b

Способ и устройство для транспортировки "in-situ" битума или особо тяжелой фракции нефти

Группа изобретений относится к транспортировке «in-situ» битума или особо тяжелой фракции нефти из подземных резервуаров - месторождений нефтеносного песка и горючих сланцев. Обеспечивает повышение эффективности изобретений. Сущность изобретений: подземный резервуар нагружают тепловой энергией...
Тип: Изобретение
Номер охранного документа: 0002505669
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9df1

Способ регулирования уровня расплава кристаллизатора непрерывного литья

Изобретение относится к области непрерывной разливки металлов. Подвод жидкого металла (3) в кристаллизатор (1) непрерывного литья регулируют с помощью закрывающего устройства (4). Частично затвердевшую металлическую заготовку (7) вытягивают из кристаллизатора (1) непрерывного литья с помощью...
Тип: Изобретение
Номер охранного документа: 0002506141
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9e1d

Рельсовое транспортное средство

Изобретение относится к рельсовым транспортным средствам. Рельсовое транспортное средство снабжено по меньшей мере одной направленной к рельсовому пути антенной системы обеспечения безопасности поезда. Кузов вагона рельсового транспортного средства и расположенная в области конца рельсового...
Тип: Изобретение
Номер охранного документа: 0002506185
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9e29

Подводная система компенсации давления

РЕФЕРАТ Изобретение относится к системам для компенсации давления, в частности, для компенсации давления в подводной среде при проведении работ с использованием электротехнического или механического оборудования. Система содержит заполненный текучей средой кожух (1), окружающий полость (3),...
Тип: Изобретение
Номер охранного документа: 0002506197
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.9f55

Топливная форсунка

Изобретение относится к топливной форсунке. Топливная форсунка, предназначенная, в основном, для коаксиального впрыска топлива в поток воздуха (8), кольцеобразно окружающего топливную форсунку, содержит трубу (2) с выходным отверстием (10), при этом труба (2) соединена с топливоподающей...
Тип: Изобретение
Номер охранного документа: 0002506497
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a005

Напорный резервуар с компенсационным сильфоном

Изобретение относится к электротехнике, к напорным резервуарам с деформируемым компенсационным сильфоном. Технический результат состоит в упрощении напорного резервуара. Напорный резервуар (1) имеет первое место (2) соединения, а также второе место (3) соединения. Оба места (2, 3) соединения...
Тип: Изобретение
Номер охранного документа: 0002506673
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a00d

Распределение энергии

Изобретение относится к установке распределения энергии. Техническим результатом является упрощение изменения параметров в установке распределения энергии. В соответствии с изобретением множество отдельных вычислительных устройств через коммуникационную сеть соединены друг с другом и образуют...
Тип: Изобретение
Номер охранного документа: 0002506681
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a013

Использование отходящего тепла

Предложено в промышленном процессе отходящее тепло преобразователей переменного тока в постоянный и электрических двигателей применять для нагрева в другом этапе процесса. Для этого применяется жидкостное охлаждение для элементов, генерирующих отходящее тепло. Тем самым экономится электрическая...
Тип: Изобретение
Номер охранного документа: 0002506687
Дата охранного документа: 10.02.2014
10.02.2014
№216.012.a017

Вентильный преобразователь переменного тока с распределенными тормозными сопротивлениями

Изобретение относится к области электротехники и может быть использовано в приводах и высоковольтной технике. Техническим результатом является повышение надежности за счет исключения полного отказа установки, использующей вентильный преобразователь. В вентильном преобразователе переменного тока...
Тип: Изобретение
Номер охранного документа: 0002506691
Дата охранного документа: 10.02.2014
+ добавить свой РИД