×
10.04.2015
216.013.4018

Результат интеллектуальной деятельности: ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике, а именно к волоконно-оптическим датчикам давления, и может быть использовано в измерительных системах для контроля давления. Техническим результатом изобретения является повышение точности оптического детектора разности давлений. Оптический детектор разности давлений содержит корпусной элемент с опорными поверхностями, две камеры, упругие элементы, шток, оптические световоды, относительно торцов которых на расстоянии сформирована отражающая поверхность. Упругие элементы закреплены соосно друг относительно друга. Оси оптических световодов перпендикулярны отражающей поверхности, причем продолжения осей указанных световодов пересекают ее левую и правую границы. Направления смещений отражающей поверхности совпадают с осью каждого из упругих элементов. Упругие элементы изготовлены из монокристаллического кремния. Конструктивные элементы изготовлены из материалов с близкими коэффициентами температурного расширения. 2 з.п. ф-лы. 8 ил.

Изобретение относится к измерительной технике, а именно к волоконно-оптическим датчикам давления, и может быть использовано в измерительных системах для контроля давления.

Известен волоконно-оптический датчик давления, содержащий корпус, прокладку, на которую опирается втулка, рабочий и дополнительный жгуты подводящих и отводящих оптических волокон, общие торцы которых закреплены во втулке, мембрану радиусом R с зеркальной поверхностью, которая установлена относительно общего торца рабочего жгута с зазором x0, общий торец дополнительного жгута, расположенный напротив зеркальной поверхности мембраны с зазором х0, оптические оси подводящих и отводящих оптических волокон дополнительного жгута, расположенные относительно оптических осей подводящих и отводящих оптических волокон рабочего жгута соответственно на расстоянии А, определяемом выражением:

где rc - радиус сердцевины оптического волокна, α - максимальный угол прогиба мембраны, W - максимальный прогиб центра мембраны, x0=dOB/2tgθNA, где dOB, θNA - диаметр и апертурный угол оптического волокна соответственно. Патент Российской Федерации №2308689, МПК: G01L 11/02, G01L 19/04, 2007 г.

Недостатком аналога является пониженная точность, что связанно с используемым в датчике материалом мембраны. Как известно, основным недостатком металлических упругих элементов, является гистерезис.

Известен волоконно-оптический датчик давления, содержащий корпус, подводящие и отводящие оптические волокна, относительно общего торца которых с зазором установлена кварцевая мембрана, жестко закрепленная в штуцере, кольцевую прокладку толщиной, равной длине волны источника излучения, волокна, вклеенные в корпусе на расстоянии друг от друга, свободные концы которых выступают над поверхностью корпуса, кольцевую прокладку, выполненную в виде металлической пленки, напыленной по периметру, введенную деталь с треугольником в сечении с углом при вершине 2θ с боковым углублением, повторяющим форму и размеры оптических волокон, металлическую крышку с центральным сквозным отверстием шириной, равной диаметру оптического волокна dOB и длиной а, определяемой выражением a=2dOBtgθ, расположенную и жестко закрепленную между корпусом и штуцером, прижимающую оптические волокна к детали с треугольником в сечении, оптические волокна, расположенные выше крышки, срезанные и отполированные под определенным углом к продольной оси волокон. Патент Российской Федерации №2253850, МПК: G01L 11/02, G01L 19/04, 2005 г. (прототип).

Недостатком прототипа является пониженная точность из-за трудностей в реализации сложных технологических и измерительных операций, необходимых для изготовления датчика.

Технический результат изобретения - повышение точности оптического детектора разности давлений.

Технический результат достигается тем, что в оптическом детекторе разности давлений, содержащем корпусной элемент с опорными поверхностями, две камеры, упругие элементы, шток, оптические световоды, относительно торцов которых на расстоянии сформирована отражающая поверхность, упругие элементы закреплены соосно друг относительно друга, оси оптических световодов перпендикулярны отражающей поверхности, причем продолжения осей указанных световодов пересекают ее левую и правую границы, направления смещений отражающей поверхности совпадают с осью каждого из упругих элементов. Упругие элементы изготовлены из монокристаллического кремния. Конструктивные элементы изготовлены из материалов с близкими коэффициентами температурного расширения.

Сущность изобретения поясняется на фигурах 1-8.

На фиг.1 схематично представлен оптический детектор разности давлений, где: 1 - левый световод, 2 - правый световод, 3 - шток, 4 и 5 - упругие элементы, 6 - корпусной элемент, 7 - опорная поверхность, 8 - камера для приема измеряемого давления P1, 9 - камера для приема измеряемого давления Р2.

На фиг.2 схематично представлено расположение сечений световодов, при совпадении положения осей левого световода 1 и правого световода 2 соответственно с левой и правой границами отражающей поверхности 10.

На фиг.3 схематично представлено расположение сечений световодов, при крайнем положении левого световода 1 относительно левой границы отражающей поверхности 10.

На фиг.4 схематично представлено расположение сечений световодов, при крайнем положении правого световода 2 относительно правой границы отражающей поверхности 10.

На фиг.5-7 представлены графики изменения интенсивности световых потоков, отраженных от поверхности 10 при смещениях штока 3 в пределах величины ±Δ, относительно торцов левого 1 и правого 2 световодов, где:

Iо.св.1 - интенсивность отраженного светового потока, направленного в левый световод 1,

Iо.св.2 - интенсивность отраженного светового потока, направленного в правый световод 2,

Io.c. - интенсивность суммарного отраженного светового потока. Величина интенсивности светового потока выражена в относительных единицах.

На фиг.8 представлен график изменения разностного сигнала, сформированного отраженными световыми потоками левого 1 и правого 2 световодов при смещениях штока 3, где:

Up. - величина разностного сигнала, выраженная в относительных единицах.

Оптический детектор разности давлений содержит камеру 8 для приема измеряемого давления P1 и камеру 9 для приема измеряемого давления Р2.

Посредством упругих элементов 4 и 5, соосно закрепленных в камерах 8 и 9 соответственно, давление передают на шток 3, расположенный внутри корпусного элемента 6 и жестко закрепленный между центрами упругих элементов 4 и 5. В центральной части штока 3 сформирована отражающая поверхность 10. Левый 1 и правый 2 световоды закреплены в корпусном элементе 6 между камерами 8 и 9.

Отражающая поверхность 10 строго ориентирована относительно торцов левого 1 и правого 2 световодов, а именно продолжения осей указанных световодов пересекают ее левую и правую границы.

В исходном положении оси левого световода 1 и правого световода 2 соответственно совпадают с левой и правой границами отражающей поверхности 10 (фиг.2). При отсутствии разности давлений половина светового потока, направленного из левого 1 и правого 2 световодов на эту отражающую поверхность 10, отражается обратно, а вторая половина потока рассеивается. В качестве световодов 1 и 2 использованы оптоволоконные жгуты, представляющие собой тонкую трубку, в которой находится несколько сотен оптических многомодовых волокон. Световой поток при этом коллимирован для того, чтобы максимально исключить световые потери из-за расходимости света.

Оптический детектор разности давлений работает следующим образом.

Давления P1 и Р2 подают соответственно в камеры 8 и 9. Упругими элементами 4 и 5 давления измеряемой среды в камерах 8 и 9 преобразуют в линейные смещения штока 3, закрепленного между центрами упругих элементов 4 и 5. Смещения штока 3 приводят к смещениям отражающей поверхности 10, сформированной в центральной его части, в пределах величины ±Δ.

Смещения отражающей поверхности 10 определяют площади отражения световых потоков левого 1 и правого 2 световодов (фиг.2-4).

Изменения отраженных световых потоков для левого 1 и правого 2 световодов имеют обратную зависимость: если интенсивность отраженного потока для левого световода 1 увеличивается (фиг.5), интенсивность отраженного потока для правого световода 2 уменьшается (фиг.6) и наоборот. Анализ разности значений интенсивностей отраженных световых потоков (фиг.8) позволяет определить величину смещения штока 3, которая пропорциональна разности давлений в камерах для приема измеряемого давления 8 и 9.

Сигналы с обратно зависимыми значениями интенсивности отражения для каждого световода 1 и 2 исключают учет потерь, из-за старения оптической линии передачи сигнала. Калибровка оптического детектора разности давлений, при которой суммарный отраженный поток с обоих световодов 1 и 2, при любом смещении штока в пределах величины ±Δ, принят равным значению "единица" (фиг.7), повышает точность измерений и увеличивает сроки эксплуатации оптического детектора разности давлений. Для устойчивости оптического детектора разности давлений к воздействиям односторонней перегрузки рабочим избыточным давлением корпусной элемент 6 снабжен опорными поверхностями 7.

Для повышения точности и термостойкости при использовании оптического детектора разности давлений в высокотемпературных средах его конструктивные элементы изготовлены из материалов, имеющих близкие по значению коэффициенты температурного расширения. Упругие элементы 4 и 5, шток 3 и некоторые другие детали изготовлены из монокристаллического кремния.


ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
ОПТИЧЕСКИЙ ДЕТЕКТОР РАЗНОСТИ ДАВЛЕНИЙ
Источник поступления информации: Роспатент

Showing 131-140 of 194 items.
25.08.2017
№217.015.d026

Способ определения направления и дальности до источника сигналов

Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника...
Тип: Изобретение
Номер охранного документа: 0002620925
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d230

Способ контроля поверхности

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности. В заявленном способе контроля поверхности на...
Тип: Изобретение
Номер охранного документа: 0002621469
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.deb5

Способ электронного обезгаживания микроканальной пластины

Изобретение относится к оптико-электронному приборостроению, в частности к технологии обезгаживания микроканальных пластин (МКП), и может быть использовано для повышения качества электронно-оптических преобразователей, фотоэлектронных умножителей и детекторов на основе МКП. Технический...
Тип: Изобретение
Номер охранного документа: 0002624916
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deb7

Способ изготовления титано-тритиевой мишени нейтронной трубки

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на...
Тип: Изобретение
Номер охранного документа: 0002624913
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deba

Способ изготовления фотоэлектронного прибора

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002624910
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.debd

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Генератор нейтронов содержит проводящий заземленный корпус,...
Тип: Изобретение
Номер охранного документа: 0002624914
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.dece

Способ определения местоположения источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Технический результат: уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения. Сущность: в способе определения местоположения источника сигналов, заключающемся в том,...
Тип: Изобретение
Номер охранного документа: 0002624984
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedc

Способ нейтронного каротажа для определения содержания урана в ураново-рудных формациях, пересеченных скважиной

Использование: для определения содержания урана в ураново-рудных формациях, пересеченных скважиной, посредством нейтронного каротажа. Сущность изобретения заключается в том, что получают во множестве точек записи значений скорости счета мгновенных нейтронов деления и значений скорости счета...
Тип: Изобретение
Номер охранного документа: 0002624985
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
Showing 131-140 of 164 items.
25.08.2017
№217.015.d026

Способ определения направления и дальности до источника сигналов

Способ относится к измерениям, в частности к пеленгу. Техническим результатом является уменьшение погрешности использования его на однопозиционном пункте наблюдения и увеличение помехоустойчивости при наличии мешающих сигналов, приходящих во время прохождения инфразвуком расстояния от источника...
Тип: Изобретение
Номер охранного документа: 0002620925
Дата охранного документа: 30.05.2017
25.08.2017
№217.015.d230

Способ контроля поверхности

Изобретение относится к визуальной оценке качества поверхностей плоских подложек для оптико-электронных компонентов и может быть использовано при техническом контроле состояния поверхности крупных партий деталей в электротехнической промышленности. В заявленном способе контроля поверхности на...
Тип: Изобретение
Номер охранного документа: 0002621469
Дата охранного документа: 06.06.2017
26.08.2017
№217.015.deb5

Способ электронного обезгаживания микроканальной пластины

Изобретение относится к оптико-электронному приборостроению, в частности к технологии обезгаживания микроканальных пластин (МКП), и может быть использовано для повышения качества электронно-оптических преобразователей, фотоэлектронных умножителей и детекторов на основе МКП. Технический...
Тип: Изобретение
Номер охранного документа: 0002624916
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deb7

Способ изготовления титано-тритиевой мишени нейтронной трубки

Изобретение относится к способу изготовления титано-тритиевых мишеней нейтронных трубок, используемых в скважинной геофизической аппаратуре для каротажа нефтяных и газовых месторождений, а также в составе аппаратуры нейтронного активационного анализа. В заявленном способе титан напыляют на...
Тип: Изобретение
Номер охранного документа: 0002624913
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.deba

Способ изготовления фотоэлектронного прибора

Изобретение относится к электровакуумной технике, в частности к технологии изготовления фотоэлектронных приборов (ФЭП), содержащих одну или несколько микроканальных пластин (МКП). Технический результат - увеличение срока службы ФЭП без ионно-барьерной пленки. Способ изготовления...
Тип: Изобретение
Номер охранного документа: 0002624910
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.debd

Генератор нейтронов

Изобретение относится к генераторам нейтронов и может быть использовано для нейтронного анализа веществ, материалов и изделий, для лучевой нейтронной терапии, а также для моделирования нейтронных полей термоядерных устройств. Генератор нейтронов содержит проводящий заземленный корпус,...
Тип: Изобретение
Номер охранного документа: 0002624914
Дата охранного документа: 10.07.2017
26.08.2017
№217.015.dece

Способ определения местоположения источника сигналов

Изобретение относится к измерительной технике, в частности к пеленгаторам. Технический результат: уменьшение погрешности использования его на однопозиционном пункте наблюдения или на средстве передвижения. Сущность: в способе определения местоположения источника сигналов, заключающемся в том,...
Тип: Изобретение
Номер охранного документа: 0002624984
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.ded9

Способ лазерной обработки неметаллических пластин

Изобретение относится к области технологических процессов и может быть использовано для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Предложен способ лазерной обработки неметаллических пластин, заключающийся в измерении толщины пластины h и показателя...
Тип: Изобретение
Номер охранного документа: 0002624998
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedc

Способ нейтронного каротажа для определения содержания урана в ураново-рудных формациях, пересеченных скважиной

Использование: для определения содержания урана в ураново-рудных формациях, пересеченных скважиной, посредством нейтронного каротажа. Сущность изобретения заключается в том, что получают во множестве точек записи значений скорости счета мгновенных нейтронов деления и значений скорости счета...
Тип: Изобретение
Номер охранного документа: 0002624985
Дата охранного документа: 11.07.2017
26.08.2017
№217.015.dedf

Способ лазерной обработки неметаллических пластин

Использование: для лазерного отжига пластин из полупроводниковых, керамических и стеклообразных материалов. Сущность изобретения заключается в том, что в способе лазерной обработки неметаллических пластин, заключающемся в облучении их поверхности импульсом лазерного излучения с плотностью...
Тип: Изобретение
Номер охранного документа: 0002624989
Дата охранного документа: 11.07.2017
+ добавить свой РИД