×
10.04.2015
216.013.3f8e

Результат интеллектуальной деятельности: АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов в условиях микрогравитации. Ампула содержит герметичный корпус 1 из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель 4 с загрузкой селенида галлия 5 и графитовые вставки 3, 7, при этом загрузка 5 помещается непосредственно во внутренний объем кварцевого тигля 4, а графитовые вставки 3, 7 размещены снаружи по обе стороны тигля 4, между корпусом 1 ампулы и одной из графитовых вставок 3, 7 установлен демпфирующий элемент 2 из углеграфитового войлока. Изобретение позволяет выращивать кристаллы GaSe повышенного качества. 2 ил.
Основные результаты: Ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, отличающаяся тем, что загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.

Выращивание кристаллов в условиях микрогравитации - важное направление в быстро развивающемся космическом материаловедении.

Предлагаемое изобретение относится к технологическому оборудованию, предназначенному для выращивания кристаллов моноселенида галлия в условиях микрогравитации.

Кристаллы GaSe широко используются в нелинейной оптике, а также могут применяться для создания детекторов ядерных частиц, фотоприемников, устройств поляризационной оптики. Выращивание кристаллов GaSe в условиях микрогравитации открывает широкие перспективы для дальнейшего повышения качества материала.

Наиболее близким к заявляемому по своей технической сущности устройству является ампула для выращивания кристаллов GaSb в условиях микрогравитации (Carlos R. Lopez, Jerey R. Mileham, Reza Abbaschian. Microgravity growth of GaSb single crystals by the liquid encapsulated melt zone (LEMZ) technique. Journal of Crystal Growth 200 (1999) 1-12.) - прототип. Ампула состоит из герметичного корпуса и тигля, выполненных из кварцевого стекла, в котором размещаются загрузка GaSb, инкапсулированная в оболочку из смеси солей NaCl и KCl. Осевые и радиальные положения кристалла фиксируются молибденовыми штифтами в графитовых вставках. Использование конструкции-прототипа в качестве ампулы для выращивания кристаллов GaSe невозможно из-за следующих недостатков: а) температура плавления оболочки существенно ниже температуры плавления GaSe, поэтому оболочка из смеси солей NaCl и KCl непригодна для использования в качестве материала тигля для выращивания монокристаллов селенида галлия; б) фиксация загрузки в графитовых вставках может привести к загрязнению расплава ионами железа, содержащимися в графите в качестве примеси; в) при достижении температуры расплава GaSe (1100°C) в процессе выращивания молибденовые штифты начнут химически взаимодействовать с графитовыми вставками, что приведет к разрушению конструкции; г) отсутствие демпфирующего элемента, замедляющего осевые перемещения кварцевого тигля при вибрациях ампулы в процессе полета, а также компенсирующего различие линейного расширения графита и кварцевого стекла с ростом температуры, может привести к разрушению ампулы.

Задачей предлагаемого устройства является создание ампулы для выращивания кристаллов GaSe в условиях микрогравитации.

Заявляемая в качестве изобретения ампула для выращивания кристаллов GaSe в условиях микрогравитации лишена недостатков прототипа. Технический результат достигается тем, что ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, при этом загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.

Конструкция ампулы представлена на фиг.1а и фиг.1б, где 1 - корпус ампулы, 2 - углеграфитовый войлок, 3 и 7 - графитовые вставки, 4 - кварцевый тигель, 5 - загрузка GaSe, 6 и 8 - герметизирующие кварцевые пробки.

Сборка ампулы, представленной на фиг.1а, осуществляется следующим образом: в корпусе ампулы 1 последовательно размещаются: демпфирующая шайба из углеграфитового войлока 2, графитовая вставка 3, кварцевый тигель 4 с загрузкой поликристаллического GaSe 5 и пустого пространства, оставленного с учетом коэффициента объемного расширения GaSe при плавлении; тигель 4 вакуумируется и герметично запаивается кварцевой пробкой 6; далее следуют: графитовая вставка 7; затем ампула вакуумируется и герметично запаивается кварцевой пробкой 8.

Сборка ампулы, представленной на фиг.1б, осуществляется следующим образом: в корпусе ампулы 1 последовательно размещаются: графитовая вставка 3, кварцевый тигель 4 с загрузкой поликристаллического GaSe 5 и пустого пространства, оставленного с учетом коэффициента объемного расширения GaSe при плавлении; тигель 4 вакуумируется и герметично запаивается кварцевой пробкой 6; далее следуют: графитовая вставка 7 и демпфирующая шайба из углеграфитового войлока 2; затем ампула вакуумируется и герметично запаивается кварцевой пробкой 8.

Два варианта последовательности сборки ампулы отличается между собой расположением демпфирующей шайбы из углеграфитового войлока 2: на фиг.1а она расположена перед графитовой вставкой 3, а на фиг.1б - размещается после графитовой вставки 7. Такое расположение демпфирующей шайбы из углеграфитового войлока не влияет на технический результат изобретения и дает возможность углеграфитовому войлоку замедлять осевые перемещения кварцевого тигля при вибрациях ампулы в процессе полета, а также компенсировать различие линейного расширения графита и кварцевого стекла с ростом температуры.

Назначение элементов ампулы. Кварцевый тигель 4 задает геометрию кристалла и, как следствие, геометрию оптического элемента в поперечном сечении (для селенида галлия механическая обработка затруднена, т.к. кристаллы имеют ярко выраженную слоистую структуру и легко деформируются в определенных кристаллографических направлениях, поэтому получение оптических элементов достигается исключительно скалыванием по спайности). Количество селенида галлия, загружаемого в кварцевый тигель, рассчитывают с учетом объемного расширения материала при фазовом переходе, чтобы при плавлении расплав не разорвал кварцевый тигель изнутри. Графитовые вставки 3 и 7 служат для уменьшения радиального градиента температурного поля в растущем кристалле (осевой градиент задается нагревателем технологической установки). Кварцевая пробка 6 выполнена в форме стакана и служит для уменьшения теплового потока к загрузке селенида галлия при запайке кварцевого тигля. Форма пробки 8 выбрана исходя из конструктивных особенностей технологической установки.

Готовая к работе ампула размещается в технологической установке, отправляемой на околоземную орбиту. На борту космического аппарата включают нагреватель технологической установки, обеспечивающий расплавление исходного поликристаллического слитка. После этого начинается процесс кристаллизации путем перемещения с заданной скоростью фронта кристаллизации. После завершения процесса кристаллизации ампулу охлаждают и извлекают из технологической установки.

Ампула для выращивания кристаллов успешно прошла динамические и ресурсные испытания, а также наземную отработку космических экспериментов в «НИИ стартовых комплексов имени В.П. Бармина».

Ампула для выращивания кристаллов в условиях микрогравитации, содержащая герметичный корпус из кварцевого стекла и коаксиально размещенный в нем герметичный кварцевый тигель с загрузкой и графитовые вставки, отличающаяся тем, что загрузка селенида галлия помещается непосредственно во внутренний объем кварцевого тигля, а графитовые вставки размещены снаружи по обе стороны тигля, между корпусом ампулы и одной из графитовых вставок установлен демпфирующий элемент из углеграфитового войлока.
АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ
АМПУЛА ДЛЯ ВЫРАЩИВАНИЯ КРИСТАЛЛОВ В УСЛОВИЯХ МИКРОГРАВИТАЦИИ
Источник поступления информации: Роспатент

Showing 51-60 of 94 items.
09.06.2019
№219.017.7db1

Способ получения составной мишени для распыления из сплава вольфрам-титан-кремний

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454481
Дата охранного документа: 27.06.2012
09.06.2019
№219.017.7db3

Способ получения составной мишени для распыления из сплава вольфрам-титан-рений

Изобретение относится к области металлургии, в частности к способам производства распыляемых мишеней. Заявлены способ производства составной мишени для получения пленок магнетронным распылением и мишень, полученная этим способом. Способ включает изготовление диска из слитка поликристаллического...
Тип: Изобретение
Номер охранного документа: 0002454482
Дата охранного документа: 27.06.2012
19.07.2019
№219.017.b631

Способ получения кристаллов cdas

Изобретение относится к области выращивания кристаллов диарсенида трикадмия. Кристаллы CdAs получают кристаллизацией капель расплава стехиометрического состава, свободно падающих в атмосфере аргона, находящегося под давлением 5±0,5 МПа, причем градиент температуры на пути падения капель...
Тип: Изобретение
Номер охранного документа: 0002694768
Дата охранного документа: 16.07.2019
17.08.2019
№219.017.c102

Детектор субтерагерцового излучения на основе графена

Изобретение относится к области детекторов электромагнитного излучения в терагерцовом диапазоне частот с использованием нелинейного плазменного отклика двумерной электронной системы. Сущность изобретения: детектор на основе графена, содержащий нелинейный элемент на наноструктуре с двумерной...
Тип: Изобретение
Номер охранного документа: 0002697568
Дата охранного документа: 15.08.2019
02.10.2019
№219.017.cd28

Шнековый дозатор порошков тугоплавких металлов

Изобретение относится к устройствам для подачи порошков тугоплавких металлов и может быть использовано в различных отраслях промышленности, где требуется прецизионная подача порошков. Задачей настоящего изобретения является разработка шнекового дозатора порошков тугоплавких металлов для...
Тип: Изобретение
Номер охранного документа: 0002701277
Дата охранного документа: 25.09.2019
03.10.2019
№219.017.d196

Способ изготовления образцов фуллерена с для спектроскопии

Изобретение относится к области исследования и анализа материалов и может быть использовано в инфракрасной спектроскопии. Образцы фуллерена C для съемки спектров пропускания инфракрасного излучения изготавливают механическим втиранием порошка C в полированную поверхность бромида калия. Способ...
Тип: Изобретение
Номер охранного документа: 0002701823
Дата охранного документа: 01.10.2019
03.10.2019
№219.017.d1c0

Искусственный эритроцинкит

Изобретение относится к искусственным ювелирным кристаллам. Предлагается искусственный эритроцинкит, имеющий в своем составе сульфид цинка, сульфид марганца и сульфид алюминия при следующем соотношении компонентов, мас.%: сульфид алюминия AlS - 0,001-0,01, сульфид марганца MnS - 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002701822
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d219

Тигель для выращивания кристаллов халькогенидов металлов вертикальной зонной плавкой

Изобретение относится к устройствам для выращивания кристаллов халькогенидов металлов: ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, вертикальной зонной плавкой, осуществляемой путем перемещения тигля через неподвижно закрепленный нагреватель. Графитовый тигель состоит из корпуса и крышки 1, имеющей...
Тип: Изобретение
Номер охранного документа: 0002701832
Дата охранного документа: 01.10.2019
04.10.2019
№219.017.d285

Способ получения кристаллов cosns

Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава...
Тип: Изобретение
Номер охранного документа: 0002701915
Дата охранного документа: 02.10.2019
26.10.2019
№219.017.db19

Способ пастилляции селенида цинка

Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с...
Тип: Изобретение
Номер охранного документа: 0002704191
Дата охранного документа: 24.10.2019
Showing 51-60 of 72 items.
04.10.2019
№219.017.d285

Способ получения кристаллов cosns

Изобретение относится к технологии выращивания кристаллов CoSnS, которые могут быть использованы в области экспериментальной физики как полуметаллический ферромагнетик, обладающий также свойствами полуметалла Вейля. Способ получения кристаллов CoSnS в вакуумированной ампуле из расплава...
Тип: Изобретение
Номер охранного документа: 0002701915
Дата охранного документа: 02.10.2019
26.10.2019
№219.017.db19

Способ пастилляции селенида цинка

Изобретение относится к технологии получения селенида цинка – широкозонного полупроводника, применяемого в технике в виде объемных поли- и монокристаллов, а также тонких пленок, получаемых термическим распылением кристаллической крошки, для которого наиболее подходящим является материал с...
Тип: Изобретение
Номер охранного документа: 0002704191
Дата охранного документа: 24.10.2019
19.12.2019
№219.017.ef3e

Устройство для измерения поверхностного натяжения расплавов сталагмометрическим методом

Устройство относится к измерительной технике для физических исследований свойств жидкостей. Устройство позволяет измерять поверхностное натяжение химически агрессивных расплавов тугоплавких веществ с высокими (больше 0,1 МПа) давлениями собственных паров над жидкой фазой, находящихся в инертной...
Тип: Изобретение
Номер охранного документа: 0002709422
Дата охранного документа: 17.12.2019
21.12.2019
№219.017.f00f

Способ электроэрозионной обработки поверхности молибдена

Изобретение относится к электроэрозионной обработке поверхности металлов и сплавов, используемой для повышения твердости, жаропрочности и коррозионной стойкости деталей машин. Предложен способ получения покрытия из карбида молибдена на детали из молибдена, включающий электроэрозионную обработку...
Тип: Изобретение
Номер охранного документа: 0002709548
Дата охранного документа: 18.12.2019
06.02.2020
№220.017.ff42

Способ пространственной стабилизации дуги

Изобретение относится к области электрометаллургии и может быть использовано для прецизионной сварки, наплавки и изготовления деталей способом 3D-печати. Техническим результатом явяляется повышение эффективности способа пространственной стабилизации дуги. Способ пространственной стабилизации...
Тип: Изобретение
Номер охранного документа: 0002713186
Дата охранного документа: 04.02.2020
13.03.2020
№220.018.0b07

Тигель для выращивания кристаллов на затравку

Изобретение относится к устройствам для выращивания кристаллов на затравку методами Бриджмена, вертикальной зонной плавки, температурного градиента, а также их модификациями. Тигель состоит из корпуса 1 и хвостовика 2 с затравочной камерой 3, выполненной в виде сквозного отверстия в...
Тип: Изобретение
Номер охранного документа: 0002716447
Дата охранного документа: 11.03.2020
21.03.2020
№220.018.0e3a

Сверхпроводящая цепь с участком слабой связи

Использование: для сверхпроводящих логических элементов вычислительной техники. Сущность изобретения заключается в том, что сверхпроводящая цепь с участком слабой связи включает два последовательно расположенных металлических сверхпроводящих контакта, нанесенных на поверхность...
Тип: Изобретение
Номер охранного документа: 0002717253
Дата охранного документа: 19.03.2020
25.03.2020
№220.018.0f34

Способ изготовления холодного катода

Изобретение относится к нанотехнологии и может быть использовано при изготовлении электронных приборов, а также для инжекции зарядов в объём конденсированных сред при криогенных температурах. Слой углеродных нанотрубок наносят на металлическую подложку осаждением в дуговом разряде. После этого...
Тип: Изобретение
Номер охранного документа: 0002717526
Дата охранного документа: 23.03.2020
28.03.2020
№220.018.115d

Коллинеарный электрод

Изобретение относится к плазменной технике, применяемой в электрометаллургии, и может быть использовано для инициирования высокочастотной плазмы на промышленной частоте 2,45 ГГц для плавления металлических порошков и изготовления деталей сложной геометрической формы в атмосфере защитных газов....
Тип: Изобретение
Номер охранного документа: 0002717841
Дата охранного документа: 26.03.2020
20.05.2020
№220.018.1dcf

Неорганический фотохромный материал с пространственно-селективным эффектом памяти

Изобретение относится к области неорганических материалов для твердотельных индикаторов ультрафиолетового излучения. Неорганический фотохромный материал с пространственным эффектом памяти содержит Сu - 0,012-0,015 мас.%, Gd - 0,0004-0,0006 мас.% и ZnS – остальное. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002721095
Дата охранного документа: 15.05.2020
+ добавить свой РИД