×
10.04.2015
216.013.3bc0

ПОДВОДНАЯ ОБСЕРВАТОРИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области геофизики и может быть использовано для измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов. Сущность: подводная обсерватория (1) содержит сейсмометр, состоящий из сейсмического и сейсмоакустического модулей, гидрофизический модуль, датчик магнитного поля, блок гидрохимических измерений, датчик обнаружения метана, датчик давления, датчик пространственной ориентации, датчик ядерно-магнитного резонанса, гидролокатор бокового обзора, соединенные с блоком регистрации и управления, а также средства связи с комплексом судовой аппаратуры, балласт, размыкатель балласта. Подводная обсерватория (1) выполнена в виде вертикально профилирующего модуля, размещенного на ходовом тросе (2) между верхней плавучестью (3) и нижней плавучестью (4). Ходовой трос (9) через заякоренный блок (5), закрепленный на балласте (6), и опорный блок (7), закрепленный на морском терминале (8), соединен с лебедкой (10), размещенной на морском терминале (8). Технический результат: расширение функциональных возможностей и повышение надежности при эксплуатации. 2 ил.
Основные результаты: Подводная обсерватория, сочлененная с диспетчерской станцией и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, балласт, размыкатель балласта, блок гидрохимических измерений, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, внутри корпуса подводной обсерватории размещен датчик ядерно-магнитного резонанса, соединенный своим выходом с входом блока регистрации и управления, отличающаяся тем, что подводная обсерватория выполнена в виде вертикально профилирующего модуля, размещенного на ходовом тросе между верхней плавучестью и нижней плавучестью, ходовой трос через заякоренный блок, закрепленный на балласте, и опорный блок, закрепленный на морском терминале, соединен с лебедкой, размещенной на морском терминале, а средства регистрации дополнительно содержат гидролокатор бокового обзора, соединенный своим входом-выходом с блоком регистрации и управления.
Реферат Свернуть Развернуть

Изобретение относится к области геофизики, а более конкретно к устройствам измерения геофизических и гидрофизических параметров в придонной зоне морей и океанов, и может быть использовано при оперативной оценке сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий катастрофических явлений природного и техногенного характера.

Известны автономные донные станции (RU №2270464 [1], RU №2276388 [2], RU №2294000 [3], Башилов И.П. и др. Донные геофизические обсерватории: методы конструирования и области применения / Научное приборостроение, 2008, т.18, №2, с.93-95 [4], RU 2009116092 A, 20.11.2010 [5], Подводная геофизическая обсерватория / ОКБ ОТ РАН / 2-я Международная специализированная выставка «SIMEXPO - Научное приборостроение». - М., 13.10.2008 [6], RU 2331876 С2, 20.08.2008 [7]).

Так, например, известные донные станции [1, 2, 3]) представляют собой цилиндрические или шарообразные корпусы, снабженные балластом для установки их на грунт, внутри и на корпусе которых установлены измерительные датчики и средства обработки первичной информации. В качестве измерительных датчиков используются, как правило, гидрофоны и геофоны. Зарегистрированная датчиками информация хранится на флеш-памяти донной станции, которая после подъема донных станций обрабатывается с помощью комплекса судовой аппаратуры или считывается по каналам гидроакустической связи. Известные донные станции предназначены в основном для регистрации сейсмических сигналов в морских акваториях. Так, устройство [3] представляет собой морскую автономную донную сейсмическую станцию, устанавливаемую на морское дно преимущественно с плавучих средств. Станция включает герметичный корпус, состоящий из двух полусфер, снабженных в месте сочленения уплотнительным кольцом. Внутри размещена геофизическая аппаратура, включающая измерительные датчики геофонного и гидрофонного типов, модули приема, регистрации, преобразования и хранения зарегистрированных сигналов, блоки сопряжения с бортовым модулем после всплытия и подъема устройства на борт, спутниковый и гидроакустический каналы связи, блок ориентации, блок синхронизации, блок управления размыкателем и блок питания. На внешней поверхности корпуса установлены гидроакустическая и спутниковая антенны, средства для поиска донной станции при всплытии, такелажные элементы и разъемы, устройство постановки на дно и обеспечения всплытия донной станции, выполненное в виде якоря-балласта. Технический результат - повышение точности измерений, снижение трудоемкости и изготовления донной станции, упрощение процессов ее постановки на дно и возвращения на борт после окончания работы.

Недостатком известных автономных донных станций является то, что они предназначены для регистрации только сигналов сейсмической природы. В то же время автономные донные станции могут применяться и при решении таких задач, как изучение строения земной коры, исследование совокупности проявления геофизических полей и тектонических разломов непосредственно на дне океана, геофизический мониторинг сложных гидротехнических сооружений.

Известные также подводные обсерватории (патент ЕР №0519031 [8], патент NO №911639 [9], патент ЕР №0516662 [10], кн.: Средства и методы океанологических исследований. Смирнов Г.В., Еремеев В.Н., Агеев М.Д. и др. - М., Наука, 2005 [11], патент AU №2002100749, 04.09.2002 [12]), которые включают донный сейсмометр, гидрофизический модуль, датчик магнитного поля, средства первичной обработки и хранения информации, средства связи с комплексом судовой аппаратуры, установленные на платформе, что позволяет регистрировать более полный спектр геофизических и гидрофизических параметров и, как следствие этого, расширить функциональные возможности донных станций.

Недостатком известных подводных обсерваторий является то, что состав их измерительных средств не позволяет решить задачу, связанную с комплексным исследованием параметров морской среды в придонной зоне, включая тектонические процессы, происходящие под морским дном, а также задачу геофизического мониторинга сложных гидротехнических сооружений.

Выявленных недостатков лишено устройство, представляющее собой подводную обсерваторию (патент RU №2348950 [13]), состоящую из герметичного корпуса, установленного на раме, и содержащую средства регистрации геофизических сигналов, включающие донный сейсмометр, гидрофизический модуль, датчик магнитного поля, блок оптических измерений, средства хранения информации, средства связи с диспетчерской станцией, датчик пространственной ориентации, радиобуй, балласт, размыкатель балласта, дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустический блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления.

Отличительные признаки по сравнению с известными устройствами [1-12], заключающиеся в том, что в известное устройство дополнительно введены блок гидрохимических измерений, спектроанализатор, сейсмоакустический блок, блок гидроакустического телеуправления, блок контроля радиоактивного загрязнения, блок регистрации и управления, модем кабельной линии связи, в котором блок гидрохимических измерений своими входами соединен с выходами блока контроля радиоактивного загрязнения, спектроанализатора, а своим выходом соединен с входом блока регистрации и управления, который другими выходами соединен с выходами донного сейсмометра, гидрофизического модуля, датчика магнитного поля, блока оптических измерений, модемом кабельной линии связи, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, позволяют решить техническую задачу не только оперативной оценки сейсмического состояния исследуемых районов, но и позволяют решить задачу оперативной оценки гидродинамического состояния на границе вода-грунт, обусловленных изменением окружающей среды под воздействием процессов природного и техногенного характера.

Однако состав измерительных средств данного устройства не позволяет выполнить анализ на содержание метана в водной среде в зонах размещения нефтегазовых трубопроводов при наличии утечек, а также определение координат газового образования. Кроме того, при использовании сейсмических датчиков электромеханического типа возможны нарушения в их работе при наличии ударов при постановке геофизической обсерватории на грунт, а также при отклонении положения сейсмических датчиков от вертикали на угол, больший максимально допустимого. Также ввиду небольшой собственной плавучести и небольшого внутреннего пространства сферы на обсерваторию невозможно установить блоки автономного питания большой емкости и, как следствие, невозможно увеличить срок автономной работы устройства без потери способности самостоятельного всплытия на водную поверхность.

В то же время посредством данных устройств, при их усовершенствовании, возможно решение следующих фундаментальных задач, заключающихся в изучении строения земной коры в акваториях мирового океана: исследование совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана, исследование состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами, геофизический мониторинг сложных гидротехнических сооружений, оперативная оценка сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий.

Известное устройство (заявка RU №2009116092 [5] представляет собой подводную обсерваторию, состоящую из герметичного прочного корпуса, установленного на несущей раме, и содержащую средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, в которую дополнительно введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля. При этом известная подводная обсерватория сочленена с судовым комплексом и устройством типа "Data”-буй, которые используются для обеспечения функционирования подводной обсерватории по прямому назначению. Кроме того, герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль.

Благодаря новым отличительным признакам, заключающимся в том, что введены датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля; герметичный корпус сферической формы, установленный на несущей раме, выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35; несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, обеспечивается возможность выполнить анализ на содержание в водной среде метана за счет ввода в состав измерительных средств датчика метана. Ввод в состав измерительных средств донного датчик давления, соединенного своим выходом с блоком регистрации и управления, позволяет с высокой точностью регистрировать изменение уровня моря и тем самым определять приближение и фиксировать прохождение волны цунами. Выполнение сейсмометра из двух модулей расширяет функциональные возможности устройства и повышает надежность проводимых исследований. Выполнение герметичного прочного корпуса из титана с отношением плавучести к полной массе подводной обсерватории 1:1,35 обеспечивает большую положительную плавучесть обсерватории и возможность установки элементов электрического питания повышенной емкости, обеспечение глубоководных исследований. Снабжение несущей рамы анкерным устройством, на выносной штанге которого установлен сейсмический модуль, позволяет регистрировать сейсмические сигналы на границе раздела вода-грунт.

Однако при использовании данной подводной обсерватории имеется ряд проблем, связанных с влиянием придонных течений на аппаратные шумы, сцеплением ее с мягким дном, микросейсмическими шумами, генерируемыми гравитационными волнами, особенностями распространения сейсмических сигналов в коре океанического типа и др. В общем случае придонные течения могут носить как ламинарный, так и турбулентный характер (вследствие наличия неровностей дна). При этом в низкочастотной части диапазона сейсмометра возможно возникновение помех за счет турбулентных явлений на крупных неровностях дна (до 10 м). В связи с этим практически полностью исключается возможность использования сейсмических приемников с инерционной массой на упругой подвеске, несмотря на то, что они имеют высокую чувствительность, широкий динамический и частотный диапазоны.

Также необходимо отметить, что придонные течения, особенно с рельефом дна в виде крутых склонов подводных гор, являются некоррелированными с направлением и скоростью ветра, что не позволяет из результатов наблюдений исключать данные помехи. При этом квазигармонические помехи могут возникать на частотах 1,3 Гц, 3 Гц и 6 Гц и занимать до 40% всего времени регистрации. Причем амплитуды этих помех неустойчивы и могут меняться примерно на 35 дБ.

В качестве прототипа выбрана подводная обсерватория (патент RU №2468395 С1, 27.11.2012 [13], которая сочленена с судовым комплексом и устройством типа "Data”-буй и состоящая из герметичного прочного корпуса, установленного на несущей раме, и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, радиобуй, балласт, размыкатель балласта, блок гидрохимических измерений, блок гидроакустического телеуправления, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, а входом-выходом соединен с входом-выходом блока гидроакустического телеуправления, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, донный датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, при этом герметичный прочный корпус, установленный на несущей раме, имеет сферическую форму и выполнен из титана с отношением запаса плавучести к полной массе подводной обсерватории 1:1,35, несущая рама снабжена анкерным устройством, на выносной штанге которого установлен сейсмический модуль, отличается тем, что на несущей раме и в корпусе устройства типа "Data"-буй размещены датчики ядерно-магнитного резонанса, соединенные своими выходами с входом блока регистрации и управления, датчик ядерно-магнитного резонанса состоит из самарий-кобальтовых шайб, что позволяет устранить недостатки, присущие аналогам [1-12].

Однако известное устройство имеют сложную конструкцию, включающую несущую раму, что усложняет постановку их на дно, особенно при постановки такого устройства, например, с нефтегазовой платформы или терминала для контроля гидрологических и физико-химических характеристик водных масс в целях мониторинга экологического состояния морской среды непосредственно у стационарного сооружения.

Кроме того, при наличии несущей рамы остается проблема, связанная с влиянием придонных течений на аппаратные шумы, сцеплением их с мягким дном, микросейсмическими шумами, генерируемыми гравитационными волнами, особенностями распространения сейсмических сигналов в коре океанического типа и др. В общем случае придонные течения могут носить как ламинарный, так и турбулентный характер (вследствие наличия неровностей дна). При этом в низкочастотной части диапазона сейсмометра возможно возникновение помех за счет турбулентных явлений на крупных неровностях дна (до 10 м). В связи с этим практически полностью исключается возможность использования сейсмических приемников с инерционной массой на упругой подвеске, несмотря на то, что они имеют высокую чувствительность, широкий динамический и частотный диапазоны.

В окраинных морях Российской Федерации в шельфовых зонах активно ведутся сейсмоакустические исследования, использующие методы активного зондирования. Для этого используются, как правило, системы пневмопушек или спаркеры и бумеры, суммарная мощность которых превышает биологически допустимые нормы. Известны исследования экологов, опубликованные в последние годы, о необратимых воздействиях мощных акустических импульсов на природу океана, что дает основания сформировать различные меры, ограничивающие плановое проведение морских сейсмических исследований.

Преодоление ограничений за счет уменьшения мощности зондирующих сигналов в морской сейсморазведке до настоящего времени активно не рассматривалось, поскольку считалось, что в этом случае не обеспечивается решение главной задачи - получения качественных результатов сейсмопрофилирования.

С другой стороны, в смежной отрасли - в подводной гидролокации используются методы когерентного зондирования, которые могут представлять интерес для систем морской сейсморазведки. Излучатели, применяемые в подводной гидролокации, имеют существенно меньшую мощность, а качество зондирования достигается за счет использования когерентных методов обработки принимаемых эхо-сигналов.

Кроме того, использование, например, когерентного зондирования, посредством гидролокатора, позволит получить избыточную сейсмическую информацию, а также обеспечит исследование подводных конструкций морских терминалов, что позволит на ранней стадии выявить деформацию и трещины подводных конструкций.

Задачей предлагаемого технического решения является расширение функциональных возможностей и повышение надежности при эксплуатации сейсмических подводных обсерваторий.

Поставленная задача решается за счет того, что подводная обсерватория, сочлененная с диспетчерской станцией и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, балласт, размыкатель балласта, блок гидрохимических измерений, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, внутри корпуса подводной обсерватории размещен датчик ядерно-магнитного резонанса, соединенный своими выходами с входом блока регистрации и управления, в отличие от прототипа подводная обсерватория выполнена в виде вертикально профилирующего модуля, размещенного на ходовом тросе между верхней плавучестью и нижней плавучестью, ходовой трос через заякоренный блок, закрепленный на балласте и опорный блок, закрепленный на морском терминале, соединен с лебедкой, размещенной на морском терминале, а средства регистрации дополнительно содержат гидролокатор бокового обзора, соединенный своим входом-выходом с блоком регистрации и управления.

Выполнение подводной обсерватории в виде вертикально профилирующего модуля, размещенного на ходовом тросе между верхней плавучестью и нижней плавучестью, ходовой трос через блок, закрепленный на балласте, и опорный блок, закрепленный на морском терминале, соединен с лебедкой, размещенной на морском терминале, позволяет контролировать гидрологические и физико-химические характеристики водных масс в целях мониторинга экологического состояния морской среды непосредственно у стационарного сооружения. Решение этой задачи обеспечивает снижение рисков утраты или повреждения подводной обсерватории при ее постановке на дно, практически полное исключение влияния придонных течений на аппаратные шумы.

Ввод в состав средств регистрации подводной обсерватории, гидролокатора бокового обзора позволяет получить избыточную сейсмическую информацию, а также обеспечивает исследование подводных конструкций морских терминалов, что позволит на ранней стадии выявить деформацию и трещины подводных конструкций.

Кроме того, в связи с активным освоением шельфа для нефте- и газодобычи, прокладкой подводных трубопроводов и кабелей связи донные землетрясения и провоцируемые ими явления становятся чрезвычайно опасными как для самих морских сооружений, так и для экологии региона в целом.

Кроме того, имеется возможность появления наведенной сейсмичности при извлечении больших объемов нефти и газа из земных недр. Размещение подводной обсерватории непосредственно в зоне добычи и транспортировки углеводородов позволяет заблаговременно оценить возможную угрозу жизнедеятельности морских терминалов.

Сущность технического решения поясняется чертежами.

Фиг. 1. Схема размещения подводной обсерватории. Подводная обсерватория 1 выполнена в виде вертикально профилирующего модуля, размещенного на ходовом тросе 2 между верхней плавучестью 3 и нижней плавучестью 4. Блок 5 закреплен на балласте 6, посредством гидроакустического размыкателя. Через блок 5 и опорный блок 7, закрепленный на морском терминале 8, находится трос 9, соединенный с лебедкой 10, размещенной на морском терминале 8. Внутри подводной обсерватории установлены аппаратурные блоки 11.

Фиг. 2. Блок-схема подводной обсерватории. Блок-схема подводной обсерватории включает: сейсмический модуль 12, сейсмоакустический модуль 13, гидрофизический модуль 14, датчик магнитного поля 15, блок регистрации и управления 16, модемы 17 гидроакустического канала связи, блок гидроакустического телеуправления 18, блок пространственной ориентации 19, акустический доплеровский измеритель профиля течений 20, блок гидрохимических измерений 21, датчик метана 22, датчик давления 23, блок питания 24, датчик ядерно-магнитного резонанса 25, гидролокатор бокового обзора 26.

Гидрофизический модуль 14 включает датчик скорости течения, датчик электрической проводимости, датчик давления, датчик температуры.

Датчик магнитного поля 15, как и в прототипе [13], включает феррозондовый датчик, фазовый чувствительный усилитель ключевого типа, трехканальный АЦП, температурный датчик, выходной порт, цифроаналоговые преобразователи (ЦАП), микроконтроллер, интерфейс, преобразователь напряжение-ток, фильтр низких частот, обмотку компенсации, микрокомпьютер. Фазовый чувствительный усилитель, ЦАП и преобразователь напряжение-ток образуют канал обработки сигналов по горизонтальной составляющей магнитного поля. Аналогичные элементы образуют каналы, предназначенные для обработки сигналов по продольной и вертикальной составляющим магнитного поля соответственно.

Блок питания 24 предназначен для обеспечения возможности длительной автономной работы устройства.

Блок регистрации и управления 16 предназначен для сбора информации от датчиков подводной обсерватории, привязки ее к системе точного времени, для сжатия и записи информации на флеш-память в автономном режиме.

Для буксировки подводной обсерватории 1 от морского терминала, например, добычной платформы, достаточно маломерного плавсредства, например, резиновой лодки.

Подводная обсерватория 1 устанавливается на ходовом тросе 2, натянутом вертикально между верхней плавучестью 3 (приповерхностной плавучестью) и нижней плавучестью 4 (придонной плавучестью), которая в свою очередь закреплена на конце троса 9, идущего через заякоренный блок 5 через опорный блок 7 к лебедке 10 на морском терминале 8 (фиг. 1). Такая компоновка позволяет существенно облегчить выборку, снятие для технического обслуживания и повторную установку подводной обсерватории 1 на ходовом тросе 2.

После установки подводной обсерватории 1 на ходовом тросе 2 включается лебедка 10 на морском терминале 8, которая затягивает подводную обсерваторию 1 совместно с верхней и нижней плавучестями 3 и 4 на заданную глубину. Подводная обсерватория 1 начинает автоматически со скоростью около 0.2 м/с передвигаться по вертикально натянутому ходовому тросу 2 между верхней плавучестью 3 и нижней плавучестью 4.

Для снятия подводной обсерватории 1, имеющей незначительную до 10 Н положительную плавучесть, достаточно вытравить трос 9 с барабана лебедки 10, и подводная обсерватория 1 вместе с верхней плавучестью 3 поднимется на поверхность. Затем подводная обсерватория 1 снимается с помощью плавсредства и отбуксировывается к месту проведения технического обслуживания и замены батарей с целью продолжения мониторинга в дальнейшем.

Подводная обсерватория 1 предназначена для решения следующих задач:

- изучения строения земной коры в акваториях Мирового океана;

- исследования совокупности проявления геофизических полей в зонах тектонических разломов непосредственно на дне океана;

- исследования состояния морской среды в придонной зоне и ее взаимодействие с тектоническими процессами;

- геофизического и геоэкологического мониторинга сложных гидротехнических сооружений;

- оперативной оценки сейсмического и гидродинамического состояния районов и прогноза возможных сейсмических и экологических последствий;

- раннего оповещения с существенным повышением точности прогноза землетрясений и цунами;

- выявления предвестников сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических землетрясений, очаги которых находятся под дном океана, осуществление среднесрочного и краткосрочного прогноза землетрясений с магнитудой 5,5 и выше;

- контроля изменений напряженно-деформированного состояния участков земной коры шельфовых зон вблизи разрабатываемых месторождений нефти и газа, вызванных извлечением углеводородов, законтурной закачкой воды и другими искусственными воздействиями на углеводородный пласт;

- выбора экологически безопасных режимов эксплуатации месторождений;

- прогноза развития деформаций земной коры и наведенной сейсмичности;

- прогноза небольших местных землетрясений, опасных повреждением скважин, нефтяных платформ/подводных трубопроводов;

- исследования месторождений морских газогидратов.

Применение предлагаемой подводной геофизической обсерватории позволит проводить исследования в придонной области океана на новом качественном уровне, дающем возможность не только регистрировать геофизические, гидрохимические, гидрофизические и гидроакустические параметры, но и оценивать взаимосвязи между этими параметрами, а также выявлять сейсмических, геодеформационных, геохимических, гидрофизических предвестников катастрофических землетрясений, очаги которых находятся под дном океана, и тем самым существенно повысить точность прогноза землетрясений и цунами.

Кроме того, применение предлагаемой конструкции подводной обсерватории позволяет также осуществлять контроль изменений напряженно-деформированного состояния участков земной коры шельфовых зон вблизи разрабатываемых месторождений нефти и газа, вызванных извлечением углеводородов, законтурной закачкой воды и другими искусственными воздействиями на углеводородный пласт, прогнозировать небольшие местные землетрясения, опасные повреждением скважин, нефтяных платформ/подводных трубопроводов, прогнозировать аварийные ситуации, тем самым способствовать снижению экологической опасности при эксплуатации морских промышленных объектов.

Гидрофизический модуль 14 состоит из двух основных компонент: акустического трехкомпонентного измерителя течений типа 3D-ACM модель 3ACM-CBP-S и измерителя электропроводности с датчиком температуры, выполненного на основе измерителя скорости течения типа CTS-C-1ED.

Акустический доплеровский измеритель профиля течений 20 измеряет три компоненты скорости течения на одном горизонте и включает в себя трехкомпонентный магнитный компас для измерения магнитного поля Земли в трех проекциях, двухосевой электролитический инклинометр для измерения отклонения от вертикали, твердотельный датчик температуры. Принцип измерения скорости течения основан на измерении разности времен пролета акустического импульса в прямом и обратном направлении («времяпролетный» измеритель). Он может быть также оснащен датчиком давления для измерения глубины погружения подводной обсерватории. Он также имеет интерфейс для подключения датчика солености и температуры и два входных канала постоянного тока для подключения внешних датчиков. Результаты измерений передаются в реальном времени в формате ASCII по последовательному интерфейсу RS-232 или RS-485 при скорости 19200 бит/сек либо записываются в стандартное статическое ОЗУ размером 0,5 МБ, питаемое литиевой батареей, для последующего считывания.

Программное обеспечение (программа 3DACM97) позволяет конфигурировать и настраивать датчик с использованием стандартного пользовательского интерфейса Windows. Данные могут передаваться в режиме реального времени или считываться из внутренней памяти прибора. Данные, передаваемые в режиме реального времени, могут быть представлены в графическом виде на экране дисплея. Программное обеспечение в режиме реального времени принимает и сохраняет данные о векторе скорости, данные с трехкомпонентного компаса, инклинометра, данные с дополнительных датчиков, включая датчик солености, температуры, давления.

Данные о векторе скорости и показания инклинометра усредняются с помощью алгоритма векторного осреднения по временному интервалу от 15 секунд до 60 минут. Программа ACMPost позволяет графически отображать прочитанные данные на дисплее и сохранять данные по измерениям солености, температуры, давления в файле стандарта DAT C00 и HDR. Эти форматы также могут читаться программой ACMPost.

Электронный интерфейс обеспечивает выход напряжения постоянного тока пропорционально электропроводности и температуре. Управление выходом напряжения достигается посредством двух управляемых пользователем логических линий. Датчики электропроводности основаны на датчике электропроводности с индуктивной связью. Индуктивные датчики демонстрируют естественную устойчивость в отличие от датчиков, основанных на незащищенных электродах, при изменении их геометрии, которая вызывается биообрастанием. Большой внутренний диаметр датчика электропроводности устраняет необходимость в насосе или других искусственных средствах проведения потока воды через датчик. Использование высококачественного платинового термометра сопротивления приводит к линейным измерениям температуры, характеризуемым высокой стабильностью. Электронный сигнал очень линеен, что устраняет необходимость использования комплексных уравнений для преобразования выходных сигналов в физические величины.

Коммуникационный протокол модуля включает в себя развитую систему команд, позволяющую организовать работу с модулем наиболее удобным для пользователя образом.

Модуль может работать в одном из четырех режимов:

- режим RUN MODE (normal).

В этом режиме модуль осуществляет измерения всех параметров:

- режим RUN MODE (fast pressure).

В этом режиме измерения осуществляются только для датчика давления и передается значение только величины давления.

Режимы OPEN MODE (изменение констант калибровки) и CAL MODE (проведение калибровки) являются вспомогательными и используются при проведении метрологического обслуживания прибора. Измеренные величины автоматически пересчитываются в физические значения и в таком виде (в ASCII-кодах) передаются пользователю, а также записываются в память, откуда могут быть считаны позднее в произвольный момент времени.

Блок пространственной ориентации 19 представляет собой датчик пространственной ориентации и предназначен для использования в составе сейсмического модуля (СМ) для определения точного положения в пространстве сейсмического модуля 12 и сейсмоакустического модуля 13.

В качестве датчика блока пространственной ориентации 19 используется модуль электронного компаса типа ТСМ 2.50, который представляет собой трехосевой курсовой компас с компенсатором наклона, конструктивно выполненный на одной плате с блоком электроники. Компас оснащен системой электронной компенсации, которая позволяет производить точные вычисления азимута, бортового наклона (крена) и килевого наклона (тангажа) при угловых положениях 50 градусов.?

Блок регистрации и управления 16 предназначен для синхронной оцифровки и регистрации сигналов от сейсмических и иных датчиков различного типа. Оцифровка сигналов производится с помощью 8-канального дельта-сигма АЦП с разрешением в 24 бита. Он имеет энергонезависимую память объемом 16 Гб, а также дополнительную энергонезависимую память для хранения служебной информации и данных калибровки времени с частотой квантования 100 Гц, емкостью памяти 16 Гб и продолжительностью непрерывной записи 160 суток.

Подготовка блока регистрации и управления 16 к работе, а именнопроверка работоспособности, наличия необходимых сигналов, очистка и проверка памяти, установка и проверка внутренних часов реального времени - производится посредством соответствующей аппаратуры диспетчерской станции, размещенной на платформе 8 морского терминала, через последовательный интерфейс типа RS-232. Считывание зарегистрированных данных производится с помощью специального дополнительного устройства по интерфейсу USB.

Конструктивно блок регистрации и управления 16 содержит плату регистратора, плату памяти и платы электрических согласований и предварительной аналоговой обработки сигналов. Плата памяти оформлена в виде защищенного модуля, снабженного специальной скобой для удобства ее извлечения из контейнера и установки в устройство считывания информации. Другой контейнер служит для размещения стабилизированного по температуре кварцевого генератора типа «МАРИОН» и устройства считывания данных по шине USB.

Точная временная привязка измерений основана на использовании стабилизированного по температуре кварцевого генератора. В контроллере программно организован 6-байтный счетчик, который в непрерывном режиме производит подсчет импульсов опорного кварцевого генератора с предварительным делителем частоты. Предварительный делитель выбран таким образом, что время переполнения счетчика составляет примерно 1 год при разрешении порядка 0,01 мс.

Перед постановкой подводной обсерватории 1 контроллер блока регистрации и управления 16 подключается к спутниковому навигационному приемнику, установленному на диспетчерской станции на морском терминале 8 и имеющему выход сигнала PPS. По команде оператора с помощью специального программного обеспечения (программа FAST_PGK. exe) производится обнаружение положительного фронта сигнала PPS, после чего сразу производится фиксация накопленного значения счетчика. Далее из спутникового навигационного приемника читается сообщение об астрономическом времени, соответствующем фронту PPS. Данные счетчика и соответствующее сообщение о времени заносятся в служебную энергонезависимую память. Эта информация дополняется сообщением о дате момента калибровки, которое берется из часов реального времени, расположенных на плате контроллера. В ходе измерений и регистрации сигналов после приема первого 8-канального отсчета на странице памяти производится фиксация и регистрация значения счетчика. Каждая страница памяти содержит 87 восьмиканальных 3-байтных отсчетов. Таким образом, один раз на 87 отсчетов производится регистрация временной метки. После завершения процесса регистрации процедура временной привязки повторяется. Временную привязку можно производить произвольное число раз в пределах разумного, но достаточно по одному разу перед началом измерений и после их окончания.

Ввод зарегистрированных данных в компьютер диспетчерской станции после завершения процесса регистрации сигналов выполняется путем извлечения из контейнера платы памяти, размещенной в прочном корпусе подводной обсерватории 1 после ее поднятия, и вставляется в устройство считывания. Перекачка данных осуществляется блоками, по 64 страницы за один цикл. Для запуска процесса перекачки данных достаточно указать количество перекачиваемых блоков памяти (количество страниц, деленное на 64) и выбрать имя файла без расширения с помощью программы READER-exe. В процессе перекачки производится точное копирование памяти блока регистрации и управления в файл, без анализа содержания, при этом «плохие» блоки также копируются.

Блок регистрации и управления 16 имеет два режима работы - быстрый старт и работу по часам. В первом случае после нажатия кнопки "START" прибор сразу начинает регистрацию сигналов, во втором случае прибор ждет, пока не сработает заранее установленный будильник часов реального времени, после чего начинает регистрацию. Остановка регистрации в этом режиме производится либо вручную, либо по повторному срабатыванию заранее установленного таймера.

Датчик магнитного поля 15 изготовлен на базе чувствительного элемента феррозондового магнитометра типа LEMI-018B и предназначен для измерения 3-х компонент индукции магнитного поля Земли и их вариаций, а также температуры. В состав датчика магнитного поля входят: блок сенсоров, в котором находятся первичные измерительные преобразователи магнитного поля, и блок электроники, который имеет встроенный термометр для измерения температуры внутри блока. Блок электроники и блок датчиков размещены в прочных корпусах и соединены специальным кабелем. Феррозондовый магнитометр является полностью автономным автоматическим прибором, управляемым микропроцессорной системой, построенной на базе микроконтроллера. Микроконтроллер руководит работой магнитометра и передает данные о магнитном поле и температуре по UART порту. Магнитное поле измеряется феррозондовым датчиком, который располагается на расстоянии от 1 м и более от блока электроники. Феррозондовый датчик и блок электроники соединены между собой специальным тестовым кабелем.

Аппаратура гидроакустического канала 18 связи предназначена для обеспечения связи с комплексом обработки информации, установленным на диспетчерской стации.

Измерение сейсмических сигналов производится с помощью сейсмометра, который включает сейсмический модуль 12, который функционально объединен с сейсмоакустическим модулем 13 для компактности и обеспечения проведения измерений одновременно несколькими датчиками различных конструкций, что приводит к повышению точности и надежности проводимых измерений.

Сейсмометр предназначен для обеспечения непрерывного сейсмического мониторинга морского дна в широком частотном диапазоне и включает в себя датчики:

электрохимический велосиметр типа СМЕ-3011-3, представляющий собой трехкомпонентный сейсмический датчик, предназначенный для регистрации сейсмических колебаний донной поверхности вдоль трех ортогональных направлений;

датчик сильных движений, представляющий собой трехкомпонентный векторный сейсмометр; датчик пространственной ориентации.

Датчик сильных движений снабжен сенсором, который состоит из магнитоупругого кристаллического преобразователя, постоянного магнита высокой энергии, трех независимых электрических обмоток и единой инертной массы, а также предварительного усилителя и преобразует три компоненты вектора акустических колебаний донной поверхности по трем ортогональным направлениям в электрические сигналы. Он имеет велаксметрическую характеристику, которая, по сравнению с характеристиками традиционных приборов для измерения вибросмещений, имеет высокую частотно-зависимую чувствительность к смещениям. При этом чувствительность при увеличении частоты в 10 раз увеличивается в 1000 раз.

Для сравнения следует упомянуть, что при таком же увеличении частоты чувствительность обычных велосиметров увеличивается в 10 раз, а обычных акселерометров - увеличивается в 100 раз.

Собственные шумы магнитоупругого сенсора меньше собственных шумов сейсмометра и намного меньше собственных шумов акселерометра.

Магнитоупругий сенсор с крутой амплитудно-частотной характеристикой может одновременно регистрировать смещения в существенном диапазоне - более 240 дБ, что позволяет одновременно измерять амплитуды смещений менее 10-15 м на частотах более 1000 Гц и более 10-3 м на частотах менее 1 Гц.

Датчик обнаружения метана 22 представляет собой датчик типа METS ("CAPSUM"), который позволяют измерять концентрацию метана в водной толще. Датчик представляет собой полупроводниковый прибор, принцип работы которого заключается в том, что диффузия молекул углеводородов из воды через специальную силиконовую мембрану транслируется в камеру датчика. Адсорбция молекул углеводов на активном слое датчика приводит к электронному обмену с молекулами кислорода, таким образом, меняя сопротивление активного слоя, которое преобразуется в выходное (измеряемое) напряжение.

Основные характеристики датчика:

10 мкм силиконовая мембрана;

рабочая глубина 0-3500 м;

рабочая температура 2-20 градусов С;

время измерения от 1 до 3 сек;

время стабилизации диффузии до 5 минут, в зависимости от турбулентности;

входное напряжение 9-36 В;

расход энергии 160 мА/ч;

выходной сигнал - аналоговый 0-5 В и цифровой RS - 485;

метан 50 нмоль/л - 10 мкмоль/л.

Блок гидрохимических измерений 21 предназначен для измерения спектров комбинационного рассеяния оптического излучения в составе подводной обсерватории посредством спектроанализатора. По спектрам комбинационного рассеивания получают информацию о составе морской воды. Основные технические характеристики спектроанализатора: спектральный диапазон 0,52-0,78 мкм, полоса пропускания 0,54 нм на 0,783 мкм, точность позиционирования по спектру 0,2 нм, число спектральных каналов 4096.

Блок гидрохимических измерений 21 содержит модуль контроля радиационного загрязнения, который предназначен для определения in situ содержания гамма-излучающих радионуклидов (как техногенного, так и естественного происхождения) в морской воде.

Основные технические характеристики модуля контроля радиационного загрязнения: диапазон регистрируемых энергий 0,2-3,0 мэВ, энергетическое разрешение по линии цезия 137 13%, число уровней квантования спектра 256, максимальное число отсчетов в канале 65000, максимальная скорость регистрации не менее 1000 1/с.

Блок гидрохимических измерений 21 также содержит классификатор для классификации загрязнений морской воды по спектральным характеристикам и молекулярному составу морской воды. Аналогами датчиков блока гидрохимических измерений являются устройства, приведенные в источниках (1. Основные процессы и аппаратура химической технологии. Под ред. Дытнерского Ю.Н. - М.: Химия, 1983. 2. Химико-аналитические комплексы фирмы Agilent Technologies (US), http://www.chem.agilent.com. 3. Химико-аналитические комплексы фирмы SRI Instruments (US), http://www.perichrom.com. 4. Химико-аналитические комплексы ЗАО "Хроматэк" (RU), http://www.chronomatec.ru).

Датчик ядерно-магнитного резонанса 25 представляет собой мини-магнитную систему, состоящую из самарий-кобальтовых шайб с большой постоянной намагниченностью и большой энергоемкостью. При массе магнита 9 кг удается достигнуть значения индукции магнитного поля в его зазоре до 1,5 Т. Таким образом, при плавной механической регулировке междуполюсного расстояния магнитной системы рабочая частота может изменяться в пределах от 12 до 60 МГц для протонов при сохранении достаточно высокой однородности. Магнит функционирует без потребления энергоресурсов и предназначен для выявления распределения температуры морской воды, солености, наличие кислорода на фиксированном разрезе. Известно, что в морской воде содержится большое количество парамагнитных примесей в виде парамагнитных ионов переходных металлов и их комплексных соединений в парамагнитном состоянии. Изучение их распределения в морской воде представляет большой научный интерес. Парамагнитные примеси могут служить в качестве трассеров для изучения динамики водных масс. Исследование динамики концентрационных полей парамагнитных примесей дает дополнительную информацию о степени и масштабе влияния внешних источников парамагнитных примесей (речной сток, глубинные гидротермы, вулканическая деятельность, сброс промышленных отходов и т.д.) на компонентный и структурный состав морских и океанических вод. По сигналам с датчика ядерно-магнитного резонанса 25 строят графики распределения времени спин-решеточной релаксации (T1) (так называемые изолинии T1) в поверхностном и в придонном слоях воды. Полученные изолинии позволяют "оконтурить" зоны влияния на компонентный состав приповерхностной и придонной морской воды таких источников парамагнитных примесей, как речной сток и области геохимической аномалии, приуроченные к геологическому разлому.

По выявленным трассерам устанавливают динамику водных масс в зоне установки подводной обсерватории. По концентрационным полям парамагнитных примесей определяют степень загрязнения техногенного характера.

Датчик ядерно-магнитного резонанса 25 может быть конструктивно установлен как на подводной обсерватории 1, так и в корпусах нижней и верхней плавучестях, который используется для обеспечения функционирования подводной обсерватории по прямому назначению или в двух вариантах, что существенно повышает информативность устройства в целом.

В гидролокаторе бокового обзора 26 в качестве метода обзора применен секторный обзор со сканированием характеристики направленности в режиме излучения параметрической антенны. Используются два режима сканирования. При внутриимпульсном сканировании в каждом направлении излучаются одновременно со сканированием характеристики направленности в течение длительности зондирующего импульса. В приеме в этом случае используется многоканальная обработка. В случае межпериодного сканирования в каждом направлении излучается либо тональный радиоимпульс, либо линейный частотно-модулированный сигнал. В последнем случае в приемном тракте используется обработка на базе фильтра, согласованного с зондирующим сигналом.

Гидролокатор бокового обзора 26 позволяет получить избыточную сейсмическую информацию, а также обеспечивает исследование подводных конструкций морских терминалов, что позволит на ранней стадии выявить деформацию и трещины подводных конструкций.

При обработке сигналов в качестве решающей статистики использовалась сумма квадратов амплитуд, имеющая максимальное значение для сигнала ожидаемой структуры. Вычисления выполнялись для каждого момента времени для получения временной зависимости для каждого поля. Присутствие в ней максимума означает наличие в источнике ожидаемой структуры возбуждения того или иного поля. Глобальный максимум соответствует времени прихода совокупного принятого сигнала. При достижении величины глобального максимума, равного среднему значению между амплитудами, характеризующими уровни состояния естественного геофизического и гидрофизического полей, судят о возможности наступления катастрофического явления.

Выделение из спектра горизонтальных составляющих нечетных гармоник 0,003 и 0,005 Гц, а из спектра вертикальных составляющих четных гармоник 0,002, 0,004, 0,006 и 0,008 Гц с регистрацией уровня моря на береговых станциях позволяет исключить влияние микросейшевых составляющих, обусловленных в основном влиянием приливных колебаний.

Балласт 6 с гидроакустическим размыкателем предназначен для проведения спусковых и подъемных работ подводной обсерватории 1.

Управляющий компьютер диспетчерской станции и программно-математическое обеспечение, служба реального времени предназначены для управления оборудованием подводной обсерватории, диагностирования ее неисправностей, приема данных, получаемых с подводной обсерватории, и размещения получаемых данных на устройствах накопления информации. Функционирование всего аппаратно-программного комплекса определяется файлом конфигурации, который создается специальной программой и задает наличие подводных обсерваторий, тип используемых геофизических каналов, параметры каналов, а также наличие или отсутствие аппаратуры синхронизации времени (приемник GPS).

При запуске программы регистрации считывается конфигурация всей сети подводной обсерватории и производится привязка времени по Гринвичу с точностью до нескольких десятков микросекунд и расчет поправок к частоте кварца компьютера для поддержания функционирования комплекса в случае кратковременного отказа приемника GPS. Синхронизация времени осуществляется каждую секунду от приемника GPS.

Вслед за синхронизацией происходит опрос, программирование, синхронизация и запуск оборудования подводной обсерватории 1. Запрашивается состояние оборудования подводной обсерватории 1 (ее исправность, наличие каналов, исправность каналов и т.д.). В случае возникших проблем на экран выдается соответствующее сообщение (оно также записывается в файл протокола функционирования). В блок регистрации и управления 16 подводной обсерватории 1 передается программа работы для каждого измерительного канала, частота опроса и коэффициент усиления.

Перед запуском блок управления и регистрации 16 синхронизируется по времени компьютера диспетчерской станции (в дальнейшем синхронизация проводится каждые 10 сек). При синхронизации учитывается время прохождения сигнала от компьютера диспетчерской станции до синхронизируемого блока регистрации и управления 16. После этого блок регистрации и управления 16 запускается и начинает сбор данных с измерительных каналов. Блок регистрации и управления 16 в подводной обсерватории 1 всю информацию сжимает и складывает в буферную память.

Управляющий компьютер диспетчерской станции циклически запрашивает у блока управления и регистрации 16 данные, о зарегистрированных датчиками сигналах и, в случае их наличия, принимает их и записывает в свои буфера в оперативной памяти. После накопления достаточного количества данных для канала они переписываются в файл, соответствующий типу канала. Обычно эти файлы расположены на другом компьютере и доступны по локальной сети, хотя для кратковременных экспериментов система может быть сконфигурирована таким образом, что будет использоваться локальный диск. При кратковременных разрывах связи (до 10 мин) данные не теряются в силу наличия у каждого блока управления и регистрации достаточно большого собственного буфера. В процессе обмена данными оператором может быть проведена калибровка любого измерительного канала, входящего в состав сети диспетчерской станции. При возникновении нештатных ситуаций (разрыв связи с подводной обсерваторией, ее поломка, отказ отдельных каналов либо восстановление вышеперечисленного), а также некоторых штатных ситуаций - возникновение события или запуск калибровки соответствующего измерительного канала, выдается сообщение на экран, включающее время по Гринвичу наступления ситуации, имена подводных обсерваторий и канала и само сообщение. Сообщения также записываются в буфер размером 100 строк и в файл протокола. Буфер может быть просмотрен оператором в любое время.

Измерительные датчики подводной обсерватории после ее постановки на дно функционируют по прямому назначению. Зарегистрированные датчиками сигналы записываются на средства хранения информации, при сеансах связи передаются на диспетчерскую станцию, где выполняется полный анализ оценки сейсмического и гидродинамического состояния исследуемых районов, по результатам которого делается прогноз о возможных сейсмических и экологических последствиях природного и техногенного характера.

Реализация устройства технической сложности не представляет, так как устройство реализовано на серийно выпускаемых датчиках и элементах микроэлектроники, что позволяет сделать вывод о соответствии заявляемого технического решения условию патентоспособности "промышленная применимость".

Источники информации

1. Патент RU №2270464.

2. Патент RU №2276388.

3. Патент RU №2294000.

4. Башилов И.П. и др. Донные геофизические обсерватории: методы конструирования и области применения / Научное приборостроение, 2008, т.18, №2, с.93-95.

5. Патент RU 2009116092 А, 20.11.2010.

6. Подводная геофизическая обсерватория / ОКБ ОТ РАН / 2-я Международная специализированная выставка «SIMEXPO - Научное приборостроение». - М., 13.10.2008.

7. Патент RU №2331876 С2, 20.08.2008.

8. Патент ЕР №0519031.

9. Патент NO №911639.

10. Патент ЕР №0516662 [10].

11. Средства и методы океанологических исследований. Смирнов Г.В., Еремеев В.Н., Агеев М.Д. и др. - М., Наука, 2005.

12. Патент AU №2002100749, 04.09.2002.

13. Патент RU №2468395 C1, 27.11.2012.

Подводная обсерватория, сочлененная с диспетчерской станцией и содержащая средства регистрации геофизических и гидрофизических данных, включающие сейсмометр, гидрофизический модуль, датчик магнитного поля, средства связи с комплексом судовой аппаратуры, балласт, размыкатель балласта, блок гидрохимических измерений, блок регистрации и управления, в котором блок гидрохимических измерений своим выходом соединен с входом блока регистрации и управления, который другими входами соединен с выходами сейсмометра, гидрофизического модуля, датчика магнитного поля, дополнительно содержащая датчик обнаружения метана, соединенный своим выходом с блоком регистрации и управления, датчик давления, соединенный своим выходом с блоком регистрации и управления, датчик пространственной ориентации, соединенный своим входом-выходом с входом-выходом блока регистрации и управления; сейсмометр состоит из сейсмического модуля и сейсмоакустического модуля, внутри корпуса подводной обсерватории размещен датчик ядерно-магнитного резонанса, соединенный своим выходом с входом блока регистрации и управления, отличающаяся тем, что подводная обсерватория выполнена в виде вертикально профилирующего модуля, размещенного на ходовом тросе между верхней плавучестью и нижней плавучестью, ходовой трос через заякоренный блок, закрепленный на балласте, и опорный блок, закрепленный на морском терминале, соединен с лебедкой, размещенной на морском терминале, а средства регистрации дополнительно содержат гидролокатор бокового обзора, соединенный своим входом-выходом с блоком регистрации и управления.
ПОДВОДНАЯ ОБСЕРВАТОРИЯ
ПОДВОДНАЯ ОБСЕРВАТОРИЯ
Источник поступления информации: Роспатент

Showing 1-10 of 497 items.
10.01.2013
№216.012.17ac

Катализатор для получения сверхвысокомолекулярного полиэтилена

Изобретение относится к катализатору для получения сверхвысокомолекулярного полиэтилена. Описан катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ при повышенных температурах полимеризации (≥80°C) в среде углеводородного разбавителя, например гептан, гексан, изопентан,...
Тип: Изобретение
Номер охранного документа: 0002471552
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.190e

Способ получения хлопчатобумажной ткани технического назначения с комплексом защитных свойств от кислот и нефтепродуктов

Изобретение относится к текстильной промышленности, в частности к отделке хлопчатобумажных текстильных материалов с комплексом защитных свойств от кислот и нефтепродуктов. Способ получения хлопчатобумажной ткани технического назначения включает расшлихтовку, отварку, беление, крашение активными...
Тип: Изобретение
Номер охранного документа: 0002471906
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a25

Способ геохимической разведки

Изобретение относится к области геохимической разведки и может быть использовано при поиске нефтяных и газовых месторождений. Сущность: выявляют на дне акватории участки с черными и белыми «курильщиками». Размещают на нескольких горизонтах буйковые станции, оснащенные измерительным комплексом....
Тип: Изобретение
Номер охранного документа: 0002472185
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1bc8

Координатный стол

Изобретение относится к области машиностроения, а именно к высокоточным координатным устройствам на линейных электродвигателях. Координатный стол содержит модули продольного и поперечного перемещения. Каждый из них выполнен в виде основания с направляющими, каретки, размещенной на направляющих,...
Тип: Изобретение
Номер охранного документа: 0002472606
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1bce

Стенд для контроля точности контурных перемещений промышленного робота

Изобретение относится к измерительной технике и может быть использовано для проверки параметров контурного движения роботов, таких как точность, повторяемость, вибрация. Стенд для контроля точности контурных перемещений промышленного робота, содержащего манипулятор 1 с закрепленным на фланце 6...
Тип: Изобретение
Номер охранного документа: 0002472612
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ca8

Эпоксиполиэфирная лакокрасочная композиция

Изобретение предназначается для нанесения на рулонный металл в качестве лакокрасочного материала. Эпоксиполиэфирная лакокрасочная композиция содержит (мас.%.): эпоксидную диановую смолу с эпоксидным эквивалентным весом 1550-4000 г/экв. 18,0-40,0, полиэфирную смолу на основе продукта...
Тип: Изобретение
Номер охранного документа: 0002472830
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1e17

Способ сбора штормовых выбросов морских водорослей

Изобретение относится к промышленному сбору штормовых выбросов морских водорослей и может быть использовано для прибрежного промысла и в прибойной полосе. Способ сбора штормовых выбросов морских водорослей включает переход мореходного средства на место сбора выбросов, подбор водорослей и...
Тип: Изобретение
Номер охранного документа: 0002473204
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e2

Устройство для преобразования изменения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью одиночных тензорезисторов без применения компенсационных тензорезисторов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002473919
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20ed

Способ и устройство прогноза возможности возникновения цунами и определения его эпицентра

Изобретение относится к области геофизики и может быть использовано для прогнозирования возможности возникновения цунами и определения его эпицентра. Сущность: устройство для осуществления способа включает сейсмостанцию, пространственно распределенные подводные каналы с гидрофонами, связанный с...
Тип: Изобретение
Номер охранного документа: 0002473930
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.214b

Устройство для защиты емкостного накопителя энергии

Изобретение относится к области высоковольтной импульсной техники. Технический результат заключается в повышении надежности устройства путем уменьшения вероятности взрыва конденсаторов в динамическом режиме работы устройства. Устройство содержит зарядное устройство, n параллельно соединенных...
Тип: Изобретение
Номер охранного документа: 0002474024
Дата охранного документа: 27.01.2013
Showing 1-10 of 412 items.
10.01.2013
№216.012.17ac

Катализатор для получения сверхвысокомолекулярного полиэтилена

Изобретение относится к катализатору для получения сверхвысокомолекулярного полиэтилена. Описан катализатор для получения сверхвысокомолекулярного полиэтилена - СВМПЭ при повышенных температурах полимеризации (≥80°C) в среде углеводородного разбавителя, например гептан, гексан, изопентан,...
Тип: Изобретение
Номер охранного документа: 0002471552
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.190e

Способ получения хлопчатобумажной ткани технического назначения с комплексом защитных свойств от кислот и нефтепродуктов

Изобретение относится к текстильной промышленности, в частности к отделке хлопчатобумажных текстильных материалов с комплексом защитных свойств от кислот и нефтепродуктов. Способ получения хлопчатобумажной ткани технического назначения включает расшлихтовку, отварку, беление, крашение активными...
Тип: Изобретение
Номер охранного документа: 0002471906
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a25

Способ геохимической разведки

Изобретение относится к области геохимической разведки и может быть использовано при поиске нефтяных и газовых месторождений. Сущность: выявляют на дне акватории участки с черными и белыми «курильщиками». Размещают на нескольких горизонтах буйковые станции, оснащенные измерительным комплексом....
Тип: Изобретение
Номер охранного документа: 0002472185
Дата охранного документа: 10.01.2013
20.01.2013
№216.012.1bc8

Координатный стол

Изобретение относится к области машиностроения, а именно к высокоточным координатным устройствам на линейных электродвигателях. Координатный стол содержит модули продольного и поперечного перемещения. Каждый из них выполнен в виде основания с направляющими, каретки, размещенной на направляющих,...
Тип: Изобретение
Номер охранного документа: 0002472606
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1bce

Стенд для контроля точности контурных перемещений промышленного робота

Изобретение относится к измерительной технике и может быть использовано для проверки параметров контурного движения роботов, таких как точность, повторяемость, вибрация. Стенд для контроля точности контурных перемещений промышленного робота, содержащего манипулятор 1 с закрепленным на фланце 6...
Тип: Изобретение
Номер охранного документа: 0002472612
Дата охранного документа: 20.01.2013
20.01.2013
№216.012.1ca8

Эпоксиполиэфирная лакокрасочная композиция

Изобретение предназначается для нанесения на рулонный металл в качестве лакокрасочного материала. Эпоксиполиэфирная лакокрасочная композиция содержит (мас.%.): эпоксидную диановую смолу с эпоксидным эквивалентным весом 1550-4000 г/экв. 18,0-40,0, полиэфирную смолу на основе продукта...
Тип: Изобретение
Номер охранного документа: 0002472830
Дата охранного документа: 20.01.2013
27.01.2013
№216.012.1e17

Способ сбора штормовых выбросов морских водорослей

Изобретение относится к промышленному сбору штормовых выбросов морских водорослей и может быть использовано для прибрежного промысла и в прибойной полосе. Способ сбора штормовых выбросов морских водорослей включает переход мореходного средства на место сбора выбросов, подбор водорослей и...
Тип: Изобретение
Номер охранного документа: 0002473204
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.1f95

Фотохромная регистрирующая среда для трехмерной оптической памяти

Изобретение относится к фотохромным полимерным регистрирующим средам на основе нового семейства термически необратимых диарилэтенов, а именно арил-замещенных циклопентеновых бензтиенил производных диарилэтенов, для использования в многослойных оптических дисках нового поколения с информационной...
Тип: Изобретение
Номер охранного документа: 0002473586
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e2

Устройство для преобразования изменения сопротивления в напряжение

Изобретение относится к измерительной технике и может быть использовано в авиационной промышленности, машиностроении, строительстве и т.д. для исследования прочности конструкций с помощью одиночных тензорезисторов без применения компенсационных тензорезисторов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002473919
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.214b

Устройство для защиты емкостного накопителя энергии

Изобретение относится к области высоковольтной импульсной техники. Технический результат заключается в повышении надежности устройства путем уменьшения вероятности взрыва конденсаторов в динамическом режиме работы устройства. Устройство содержит зарядное устройство, n параллельно соединенных...
Тип: Изобретение
Номер охранного документа: 0002474024
Дата охранного документа: 27.01.2013
+ добавить свой РИД