×
10.04.2015
216.013.38e4

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ГИГА- И ТЕРАГЕРЦОВОГО ДИАПАЗОНА ЧАСТОТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нанотехнологиям, а именно к области физики твердого тела, и может быть использовано для создания приборов медицинской диагностики нового поколения, неразрушающего контроля материалов, сканирования багажа на транспорте, поиска взрывчатых веществ по их спектральному составу, а также для целей наномикроскопии. Технический результат заключается в расширении диапазона частот электромагнитного излучения. Указанный технический результат достигается тем, что в способе получения электромагнитного излучения гига- и терагерцового диапазона частот, включающем размещение по крайней мере одной однослойной углеродной нанотрубки в электрическом поле, направленном вдоль трубки, согласно решению выбирают трубку диаметром 1,39 нм и длиной не менее 6,16 нм, с одного края которой расположены как минимум три фуллерена C, связанные между собой и со стенкой нанотрубки, и свободный заряженный фуллерен C, расположенный в потенциальной яме нанотрубки, образованной за счет ван-дер-ваальсового взаимодействия между связанными фуллеренами, стенкой нанотрубки и свободным заряженным фуллереном. Для получения электромагнитного излучения гигагерцового диапазона частот нанотрубку размещают в электрическом поле величиной 1·10 до 9·10 В/см, причем заряд свободного фулерена выбирают от +1e до +3e. Для получения электромагнитного излучения терагерцового диапазона частот нанотрубку размещают в электрическом поле величиной 1·10 В/см, причем заряд свободного фулерена выбирают +3e. 2 з.п. ф-лы, 1 табл., 3 ил.

Изобретение относится к нанотехнологиям, а именно к области физики твердого тела, и может быть использовано для создания приборов медицинской диагностики нового поколения, неразрушающего контроля материалов, сканирования багажа на транспорте, поиска взрывчатых веществ по их спектральному составу, а также для целей наномикроскопии.

Известен способ индуцирования терагерцового (ТГц) излучения при помощи массива полых углеродных нанотрубок (УНТ), разогретых путем пропускания электрического тока через массив (см. Т. Nakanishi and Т. Ando, J. Phys. Soc. Japan 78, 114708 (2009); O.V. Kibis, M.E. Portnoi, Technical Physics Letters 31 (2005) 671). В известном способе используют хаотично ориентированные полые углеродные многослойные и однослойные нанотрубки разной киральности.

Однако известный способ позволяет генерировать излучение при помощи массива труб и не позволяет получить излучение от одной углеродной нанотрубки.

Известен способ индуцирования ТГц излучения при помощи массива однойслойных углеродных нанотрубок, установленных на металлической основе, под действием лазерного пучка Nd:YAG с длиной волны 1.06 мкм и мощностью 1015 Вт/см2 (см. Jetendra Parashar, HirdeshSharma Physica E 44 (2012) 2069-2071). Мощность терагерцового излучения массивом нанотрубок составляет 10-16 мкВт.

Однако данным метод получения терагерцового диапазона частот также является дорогостоящим в связи со сложностью создания такого лазера.

Наиболее близким к заявляемому является способ получения ТГц излучения при помощи одностенных УНТ длиной 1 мкм, помещенных в электрическое поле напряженностью 1-4 В при комнатной температуре (см. Martin Mutheea, Sigfrid К. Yngvesson Infrared, Millimeter and Terahertz Waves (IRMMW-THz), 2011 36th International Conference on, doi 10.1109/irmmw-THz.2011.6105081). Полученное излучение собирают посредством встроенных антенн и кремниевой линзы, причем частота излучения зависит от размеров линзы. Коллимированный пучок (ширина луча от ~2,5 до 3 градусов) имеет максимальную излучаемую мощность 450 нВт, что значительно превышает рассчитанное по Найквисту значение мощности теплового шума 8 нВт.

Однако данный способ труден в реализации из-за необходимости применения антенн и линз. Указанный способ принят за прототип.

Таким образом, идея получения электромагнитного излучения ТГц-диапазона частот с помощью углеродных наноструктур была выдвинута в начале 2000 годов. Перспектива получения терагерцового диапазона связывалась только с углеродными нанотрубками. Работы по излучению фуллерена, находящегося в нанопространстве углеродной нанотрубки, отсутствуют.

Задачей предлагаемого решения является получение излучения в терагерцовом и гигагерцовом диапазонах с помощью однослойной нанотрубки, заполненной фуллеренами, и определение технических параметров излучающего устройства.

Технический результат заключается в расширении диапазона частот электромагнитного излучения.

Указанный технический результат достигается тем, что в способе получения электромагнитного излучения гига- и терагерцового диапазона частот, включающем размещение по крайней мере одной однослойной углеродной нанотрубки в электрическом поле, направленном вдоль трубки, согласно решению выбирают трубку диаметром 1,39 нм и длиной не менее 6,16 нм, с одного края которой расположены как минимум три фуллерена C60, связанные между собой и со стенкой нанотрубки, и свободный заряженный фуллерен C60, расположенный в потенциальной яме нанотрубки, образованной за счет ван-дер-ваальсового взаимодействия между связанными фуллеренами, стенкой нанотрубки и свободным заряженным фуллереном. Для получения электромагнитного излучения гигагерцового диапазона частот нанотрубку размещают в электрическом поле величиной 1·103 до 9·105 В/см, причем заряд свободного фулерена выбирают от +1e до +3e. Для получения электромагнитного излучения терагерцового диапазона частот нанотрубку размещают в электрическом поле величиной 1·106 В/см, причем заряд свободного фулерена выбирают +3е.

Изобретение поясняется чертежами, где на фиг.1 представлена модель наноизлучателя, на фиг.2 - вид топологии потенциальной ямы, на фиг.3 - траектории движения фуллерена C60 в потенциальной яме при различных значениях напряженности электрического поля для фуллерена, имеющего заряд +1e. Позициями на чертежах обозначены:

1 - нанотрубка;

2 - цепочка из фуллеренов C60, связанных химически между собой и со стенкой нанотрубки;

3 - свободный положительно заряженный фуллерен C60.

Осуществление заявляемого способа возможно благодаря известности способов инкапсулирования фуллеренов и манипулирования ими внутри нанотрубки. Способ получения нанотрубок с фуллеренами, которые связаны химическими связями друг с другом и со стенкой нанотрубки, заключается в обработке нанотрубок, заполненных фуллеренами, водородным газом (см. Talyzin А.V., LuzanI S.М, Anoshkin I.V., Nasibulin A.G., Jiang Н., Kauppinen Е.I. Hydrogen-driven collapse of C60 inside single-Walled Carbon nanotubes // Angew. Chem. - 2012 - V.124 - P.4511-4515). Этот газ проникает внутрь нанотрубки и при температуре 500-550°C наблюдается образование химических связей между фуллеренами и между нанотрубкой и фуллеренами, некоторые фуллерены при этом могут оставаться свободными, т.е. химически не связанными со стенкой нанотрубки и с другими фуллеренами. В данной работе в качестве нанотрубки, заполненной фуллеренами, используется нанотрубка заполненная фуллеренами C60. В связи с этим пример практической реализации способа излучения гига- и терагерцового диапазона демонстрируется на случае, когда в качестве полимеризованных фуллеренов и положительно заряженного фуллерена используются фуллерены C60.

Излучение гига- и терагерцового диапазона осуществляется индивидуальным положительно заряженным фуллереном, который располагается внутри углеродной нанотрубки, с одного из краев которой располагаются фуллерены, химически связанные друг с другом и со стенкой трубки. Углеродная нанотрубка, в которой протекает процесс излучения, может иметь любую атомную структуру, как некиральную (zigzag, armchair), так и киральную. Безусловным требованием к нанотрубке является наличие химически связанных друг с другом и со стенкой трубки фуллеренов, создающих для свободного заряженного фуллерена потенциальную яму, из которой он не может выйти без внешней вынуждающей силы, но в которой он может колебаться, управляемый внешним электрическим полем. В процессе образования химических связей между нанотрубкой и полимеризованными фуллеренами наблюдается деформация углеродной нанотрубки. Форма профиля потенциальной ямы в значительной степени определяется степенью деформации углеродной нанотрубки. Заряженный фуллерен преодолевает потенциальную яму, когда он приобретает дополнительную энергию во внешнем электрическом поле и его энергия становится достаточно большой. Во внешнем электрическом поле фуллерен движется с некоторым ускорением по силовым линиям, излучая электромагнитные волны.

Заряд фуллерену может сообщить положительный ион калия или лития, помещенный внутрь. Допирование фуллеренов C60 атомами Li возможно, например, облучением фуллерита C60 пучком ионов лития с энергией до 30 эВ (см. N. Krawez, A. Gromov, R. Tellgmann, Е.Е.В. Campbell, Electronic properties of novel materials. - Progress in molecular nanostructures, XII International Winterschool, Kirchberg, Tyrol, Austria, 1998, p.368).

Заряженный фуллерен C60 не может излучать в гига- и терагерцовом диапазоне частот самопроизвольно, то есть под влиянием исключительно удерживающего потенциала трубки. Стимулировать процесс излучения можно, оказывая на заряженный фуллерен дополнительное воздействие с помощью внешнего электрического поля, Изменяя форму потенциальной ямы (глубину и ширину), в которой будет осуществляться колебательный процесс фуллерена, можно изменять диапазон излучения. Первоначальное положение заряженного фуллерена C60 моделируется в потенциальной яме, образованной в углеродной нанотрубке (диаметром 1,39 нм и длиной 6,16 нм), с одного края которой располагаются связанные между собой и со стенкой нанотрубки фуллерены C60. Потенциальная яма образуется за счет ван-дер-ваальсового взаимодействия между полимеризованными (связанными) фуллеренами и заряженным фуллереном. Для описания ван-дер-ваальсового взаимодействия был применен потенциал Морзе (см. Wang Y., Tomanek D., Bertsh G.F. Stiffness of a solid composed of C60 clusters. // Phys. Rev. B. - 1991. - V.44. - N.12. - P.6562-5665):

Пространственная топология потенциальной ямы представлена на фиг.2.

Атомная конфигурация системы рассчитывалась квантово-химическим методом сильной связи.

Для моделирования манипуляции свободным фуллереном в потенциальной яме внешним электрическим полем применяется молекулярная динамика в сочетании с квантово-химическим методом сильной связи.

Как только на электродах создается некоторая разность потенциалов, фуллерен C60 начинает совершать колебательные движения в потенциальной яме, излучая волны гига- и терагерцового диапазона. Движение заряженного и излучающего атома фуллерена описывается уравнением вида:

в котором F0 - радиационная сила, сила, действующая со стороны электрического поля ( - напряженность внешнего электрического поля, qi - заряд на атоме i). Радиационная сила излучения выражается формулой Лоренца (см. Н.А. Lorentz, La Th′eorie Electromagn′etique de Maxwell et son Application aux Corps Mouvants, Arch. Ne′erl. 25, 363-552 (1892), reprinted in Collected Papers (Martinus Nijhoff, The Hague, 1936), Vol.II, pp.64-343):

где ε0 - диэлектрическая постоянная, c - скорость света. Мощность излучения заряженным фуллереном при этом определяется формулой Лармора (см. McDonald K.Т. The Radiation Reaction Force and the Radiation Resistance of Small Antennas // Princeton University. 2006 (date accessed: 15.03.2013), Web site URL: http://puhep1.princeton.edu/~mcdonald/examples/resistance.pdf):

Проводилось исследование трех случаев, когда C60 имеет заряд +1e, +2e и +3e; и находится в электрическом поле, ориентированном вдоль оси трубки с напряженностью в интервале от 1·103 до 9·105 В/см. В ходе численного эксперимента установлено, что такое поле не позволяет молекуле покидать дно ямы, и при этом обеспечивает колебательное движение фуллерена в гигагерцовом диапазоне частот. Частота колебаний определяет частоту излучения электромагнитных волн.

Для фуллерена с зарядом +1e при различных значениях напряженности поля определены траектории движения в потенциальной яме и параметры затухания (фиг.3). Исследования проводились при наибольших значениях напряженности 3·105 В/см и 7·105 В/см в связи с тем, что время затухания при увеличении напряженности поля возрастает. Показано, что колебательный процесс будет изменяться по гармоническому закону. Установлено, что при напряженности внешнего электрического поля 7·105 В/см декремент затухания составляет 36,25, а при напряженности 3·105 В/см -39,38. Данные результаты показывают, что процесс затухания колебаний при напряженности 3·105 В/см наблюдается быстрее, в связи с тем, что декремент затухания характеризует число периодов, в течение которого происходит затухание колебаний, а не время такого колебания. Для того чтобы колебательный процесс не остановился необходимо осуществлять подачу внешнего электрического поля через 120 псек при напряженности внешнего электрического поля 7·105 В/см, через 8 псек - при напряженности внешнего электрического поля 3·105 В/см.

В Таблице 1 представлены значения КПД нанотрубки.

Таблица 1.
КПД наноизлучателя в зависимости от заряда излучающего фуллерена и подаваемой напряженности электрического поля
заряд 1e Напряженность, В/см КПД
3·105 10%
5·105 0,4%
7·105 0,1%
8·105 0,07%
8·106 0,06%
заряд 2e
3·105 3%
5·105 0,8%
7·105 0,6%
4·106 0,08%
заряд 3e
5·105 1,9%
9·105 0,8%
1·106 10%

Найден режим, при котором наноизлучатель будет излучать волны терагерцового диапазона. Этот режим был подобран для модели фуллерена C60+3, находящегося во внешнем электрическом поле напряженностью 106 В/см. Частота колебаний составляет 0,36 ТГц. Излучаемая мощность составляет 6,89·10-23 Вт. С учетом сообщаемой энергии электрическим полем подвижному фуллерену, которая в секунду составляет ~6,62·10-22 Вт, можно оценить коэффициент полезного действия - 9,6%.

В заявляемом способе можно использовать кремневую линзу, если генерировать терагерцовый диапазон частот не с одной нанотрубки, заполненной фуллеренами, как предлагается, а с помощью массива нанотрубок. Однако данный метод получения терагерцового излучения является сложным и дорогостоящим за счет необходимости использования встроенных антенн и кремниевой линзы, поэтому лучше для получения терагерцового диапазона частот использовать одну нанотрубку.


СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ГИГА- И ТЕРАГЕРЦОВОГО ДИАПАЗОНА ЧАСТОТ
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ГИГА- И ТЕРАГЕРЦОВОГО ДИАПАЗОНА ЧАСТОТ
СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ ГИГА- И ТЕРАГЕРЦОВОГО ДИАПАЗОНА ЧАСТОТ
Источник поступления информации: Роспатент

Showing 1-10 of 53 items.
10.01.2013
№216.012.1896

Средство терапии раковых заболеваний

Изобретение относится к новым соединениям, соответствующим общим формулам, указанным ниже, в свободном виде либо в виде фармацевтически приемлемых солей, которые обладают противоопухолевой активностью и могут быть использованы в медицинской практике как терапевтическое средство для лечения...
Тип: Изобретение
Номер охранного документа: 0002471786
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.20eb

Способ поиска залежей нефти и газа

Изобретение относится к области геофизики и может быть использовано при поиске месторождений нефти и газа. Согласно заявленному способу поиска залежей углеводородов пробы образцов отбирают по определенной системе профилей и определяют в них концентрацию тяжелых металлов (Со). Далее измеряют...
Тип: Изобретение
Номер охранного документа: 0002473928
Дата охранного документа: 27.01.2013
20.05.2013
№216.012.4095

Способ получения этана из газового конденсата в промысловых условиях

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002482103
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.426a

Способ получения катодного материала со структурой оливина для литиевой автономной энергетики

Изобретение относится к химической технологии и используется для получения катодных материалов со структурой оливина для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.). Способ включает смешение соли лития LiCO, оксида железа (III)...
Тип: Изобретение
Номер охранного документа: 0002482572
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49c0

Способ обнаружения лизина в смеси α-аминокислот

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. Технический результат заключается в упрощении, ускорении и удешевлении процедуры определения лизина при сохранении высоких метрологических параметров...
Тип: Изобретение
Номер охранного документа: 0002484460
Дата охранного документа: 10.06.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5819

Устройство перестановок и сдвигов битов данных в микропроцессорах

Изобретение относится к средствам перестановок и сдвигов битов данных в микропроцессорах. Технический результат заключается в увеличении скорости выполнения операций. Устройство содержит n-разрядный вход данных X-X, n-разрядный выход данных Y-Y, n-разрядный вход битов маскирования F-F,...
Тип: Изобретение
Номер охранного документа: 0002488161
Дата охранного документа: 20.07.2013
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.93aa

Гранулированный модифицированный наноструктурированный сорбент, способ его получения и состав для его получения

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5,...
Тип: Изобретение
Номер охранного документа: 0002503496
Дата охранного документа: 10.01.2014
Showing 1-10 of 58 items.
10.01.2013
№216.012.1896

Средство терапии раковых заболеваний

Изобретение относится к новым соединениям, соответствующим общим формулам, указанным ниже, в свободном виде либо в виде фармацевтически приемлемых солей, которые обладают противоопухолевой активностью и могут быть использованы в медицинской практике как терапевтическое средство для лечения...
Тип: Изобретение
Номер охранного документа: 0002471786
Дата охранного документа: 10.01.2013
10.01.2013
№216.012.1a8a

Цифровой генератор хаотического сигнала

Изобретение относится к области радиотехники и может быть использовано в современных, помехозащищенных и конфиденциальных системах связи, в системах защиты информации для создания шумового сигнала, в контрольно-измерительных системах для измерения частотных характеристик, а также в системах...
Тип: Изобретение
Номер охранного документа: 0002472286
Дата охранного документа: 10.01.2013
27.01.2013
№216.012.20eb

Способ поиска залежей нефти и газа

Изобретение относится к области геофизики и может быть использовано при поиске месторождений нефти и газа. Согласно заявленному способу поиска залежей углеводородов пробы образцов отбирают по определенной системе профилей и определяют в них концентрацию тяжелых металлов (Со). Далее измеряют...
Тип: Изобретение
Номер охранного документа: 0002473928
Дата охранного документа: 27.01.2013
20.05.2013
№216.012.4095

Способ получения этана из газового конденсата в промысловых условиях

Изобретение относится к газовой промышленности и может быть использовано на газоконденсатных месторождениях, непосредственно на объектах подготовки газа к транспорту или на централизованных объектах по подготовке нестабильного газового конденсата к транспорту или переработке. Изобретение...
Тип: Изобретение
Номер охранного документа: 0002482103
Дата охранного документа: 20.05.2013
20.05.2013
№216.012.426a

Способ получения катодного материала со структурой оливина для литиевой автономной энергетики

Изобретение относится к химической технологии и используется для получения катодных материалов со структурой оливина для литиевой автономной энергетики (гибридного транспорта, электромобилей, буферных систем хранения энергии и т.д.). Способ включает смешение соли лития LiCO, оксида железа (III)...
Тип: Изобретение
Номер охранного документа: 0002482572
Дата охранного документа: 20.05.2013
10.06.2013
№216.012.49c0

Способ обнаружения лизина в смеси α-аминокислот

Изобретение относится к аналитической химии, а именно к способам обнаружения биологически активного соединения - лизина, в сложных смесях. Технический результат заключается в упрощении, ускорении и удешевлении процедуры определения лизина при сохранении высоких метрологических параметров...
Тип: Изобретение
Номер охранного документа: 0002484460
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b4e

Способ повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи и, в частности, при низкоинтенсивной лазерной и фотодинамической терапии. Облучают поверхность кожи световым пучком на длине волны 575 нм при полуширине спектра не более 5 нм. Способ...
Тип: Изобретение
Номер охранного документа: 0002484860
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4b4f

Способ локального повышения концентрации молекулярного кислорода в дерме кожной ткани

Способ относится к медицине и может быть использован при лечении патологий приповерхностных участков кожи, в частности при низкоинтенсивной лазерной и фотодинамической терапии. Определяют глубину нахождения патологического участка дермы. При глубине меньше 0.22 мм облучение световым пучком...
Тип: Изобретение
Номер охранного документа: 0002484861
Дата охранного документа: 20.06.2013
27.06.2013
№216.012.4f3e

Способ измерения внутриглазного давления

Изобретение относится к области медицины, в частности к области офтальмологии для измерений внутриглазного давления. Способ заключается в том, что на глаз воздействуют пневмоимпульсом, с одновременным освещением его поверхности лазером. Далее преобразуют отраженный сигнал в автодинный сигнал,...
Тип: Изобретение
Номер охранного документа: 0002485879
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5819

Устройство перестановок и сдвигов битов данных в микропроцессорах

Изобретение относится к средствам перестановок и сдвигов битов данных в микропроцессорах. Технический результат заключается в увеличении скорости выполнения операций. Устройство содержит n-разрядный вход данных X-X, n-разрядный выход данных Y-Y, n-разрядный вход битов маскирования F-F,...
Тип: Изобретение
Номер охранного документа: 0002488161
Дата охранного документа: 20.07.2013
+ добавить свой РИД