×
10.04.2015
216.013.36bb

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ

Вид РИД

Изобретение

№ охранного документа
0002545499
Дата охранного документа
10.04.2015
Аннотация: Предлагаемое техническое решение относится к измерительной технике. Техническим результатом заявляемого решения является расширение диапазона измерения. Технический результат достигается тем, в способе определения наружного объема цилиндрического изделия, использующим взаимодействие электромагнитных волн с контролируемым изделием, предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют корреляционные функции составляющих принятых первой и второй пар поляризованных волн, и объем изделия V определяют по формуле где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волны; Δn - разность показателей преломления волн; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия (первой и второй пар поляризованных волн), t - время распространения поляризованной волны по линии высоты цилиндрического изделия (первой и второй пар поляризованных волн). 1 ил.
Основные результаты: Способ определения наружного объема цилиндрического изделия, путем использования взаимодействия электромагнитных волн с контролируемым изделием, отличающийся тем, что предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных электромагнитных волн и объем V изделия определяют по формуле ,где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия, t - время распространения поляризованной волны по линии высоты цилиндрического изделия.

Изобретение относится к области измерительной техники и может быть использовано в системах управления технологическими процессами.

Известен способ измерения геометрических размеров различных изделий, реализуемый устройством (см. С.С. Савицкий «Методы и средства неразрушающего контроля», Минск, 2012 г., стр.180-182), содержащим в качестве чувствительного элемента короткозамкнутую катушку, в которой индуцируются вихревые токи. Согласно принципу действия этого устройства контролируемый объект помещают в электромагнитное поле катушки, которая питается переменным электрическим током. Измерение силы вихревых токов в данном случае дает возможность получить информацию о величине геометрического размера изделия.

Недостатком этого известного способа является погрешность, связанная с изменением магнитных свойств сердечника катушки и ее обмотки из-за температурных влияний.

Наиболее близким техническим решением к предлагаемому является принятый автором за прототип способ определения геометрического размера изделия, реализуемый устройством, содержащим в виде чувствительного элемента измерительный резонатор (см. С.С. Савицкий. «Методы и средства неразрушающего контроля», Минск, 2012 г., стр.57-59). Согласно этому устройству предварительно резонатор возбуждают электромагнитными колебаниями и потом в резонатор помещают контролируемое изделие. По измерению собственной резонансной частоты резонатора судят об изменении геометрического размера контролируемой среды.

Недостатком этого способа можно считать ограниченность диапазона измерения из-за зависимости объема измерительного резонатора от геометрических размеров контролируемой среды.

Техническим результатом заявляемого решения является расширение диапазона измерения.

Технический результат достигается тем, что в способе определения наружного объема цилиндрического изделия, использующим взаимодействие электромагнитных волн с контролируемым изделием, предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных волн и объем изделия V определяют по формуле:

,

где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; tpd - время распространения поляризованной волны по линии диаметра цилиндрического изделия (первой и второй пар поляризованных волн, tph - время распространения поляризованной волны по линии высоты цилиндрического изделия (первой и второй пар поляризованных волн).

Сущность заявляемого изобретения, характеризуемого совокупностью указанных выше признаков, состоит в том, что при зондировании искусственно поляризованного цилиндрического изделия первой и второй ортогонально направленными электромагнитными волнами вычисление корреляционных функций принятых первой и второй пар ортогонально поляризованных волн дает возможность определить наружный объем цилиндрического изделия.

Наличие в заявляемом способе совокупности перечисленных существующих признаков позволяет решить поставленною задачу определения наружного объема цилиндрического изделия на основе образования искусственной поляризации и вычисления корреляционных функций принятых первой и второй пар ортогонально поляризованных волн с желаемым техническим результатом, т.е. расширением диапазона измерения.

На чертеже представлена функциональная схема устройства, реализующего предлагаемый способ.

Устройство, реализующее данное техническое решение, содержит первый электрод первого электрического поля 1, первый источник излучения 2, первый приемник 3, второй приемник 4, соединенный с первым входом первого коррелятора 5, первый электрод второго электрического поля 6, второй источник излучения 7, третий приемник 8, второй электрод второго электрического поля 9, второй коррелятор 10, соединенный вторым входом с четвертым приемником 11, второй электрод первого электрического поля 12 и вычислитель 13. На чертеже цифрой 13 обозначено цилиндрическое изделие.

Суть предлагаемого способа заключается в следующем. В природе известны вещества, обладающие свойством анизотропии, и вещества, не обладающие этим свойством. Данный способ предусматривает измерение наружного объема цилиндрического изделия, не обладающего анизотропией.

Из теории анизотропных веществ известно, что при локации (облучении) анизотропного вещества электромагнитной волной, благодаря анизотропии, в веществе формируются ортогонально поляризованные волны, распространяющихся по веществу с разными скоростями. Ввиду того, что данное техническое решение направлено на измерение объема неанизотропного изделия, предварительно для приобретения контролируемым изделием анизотропией его необходимо поместить в электрическое поле.

Согласно данному способу изделие помещают в первое и второе электрические поля, силовые линии которых взаимно перпендикулярны. После этого искусственно анизотропное контролируемое изделие зондируют первой и второй электромагнитными волнами, силовые линии электромагнитных полей которых взаимно перпендикулярны. В результате все этого получаем первую и вторую пару ортогонально поляризованных волн, распространяющихся по веществу с разными скоростями из-за эффекта двойной искусственной поляризации в веществе.

Обозначим первой парой ортогонально поляризованных двух волн, обусловленных вследствие приложенного к изделию первого электрического поля и зондирования вещества первой электромагнитной волной, а второй - за счет приложенного к изделию второго электрического поля и зондирования изделия второй электромагнитной волной.

В рассматриваемом случае, если предположить, что силовые линии первой электромагнитной волны совпадают (параллельны) с силовыми линиями первого электрического поля и они направлены по линии высоты цилиндрического изделия, то в этом случае из-за анизотропии одна составляющая первой пары анизотропных волн будет распространяться по линии высоты цилиндрического изделия, а вторая - по линии диаметра цилиндрического изделия, т.е. будем иметь ортогонально поляризованных двух волн. При этом составляющая, распространяющаяся параллельно силовым линиям первого электрического поля, будет отставать в скорости распространения от составляющей, распространяющейся перпендикулярно силовым линиям первого электрического поля.

При приложении к уже искусственно анизотропному первым электрическим полем, цилиндрическому изделию и зондированному первой электромагнитной волной второго электрического поля и зондирования этого изделия второй электромагнитной волной с учетом выше приведенных условий ортогональности силовых линий, как электрических полей, так и электромагнитных полей первой и второй волн, можно указать на существование второй пары ортогонально поляризованных волн (силовые линии второго электрического поля параллельны силовым линиям второй электромагнитной волны). При этом составляющая из этой пары, распространяющаяся параллельно силовым линиям второго электрического поля (по линии диаметра цилиндрического изделия), будет отставать в скорости распространения от составляющей, распространяющейся перпендикулярно силовым линиям второго электрического поля (по линии высоты цилиндрического изделия).

В данном случае для времен распространения ортогонально поляризованных первой и второй пар электромагнитных волн можно записать:

t1h=h/υ1; t1d=d/υ2;

t2h=h/υ2; t2d=d/υ1,

где t1h и t1d - времена распространения первой пары ортогонально поляризованных волн; th2 и t2d - времена распространения второй пары ортогонально поляризованных вол; h - высота цилиндрического изделия; d - диаметр цилиндрического изделия; υ1 - скорость распространения поляризованных волн, распространяющихся параллельно силовым линиям первого и второго электрических полей; υ2 - скорость распространения поляризованных волн, распространяющихся перпендикулярно силовым линиям первого и второго электрических полей. При этом из-за двойной анизотропии в контролируемом цилиндрическом изделии скорость υ2 опережает скорость υ1. Следовательно, для скоростей υ1 и υ2 можно написать:

υ1=c/n; υ2=c/nΔn,

где c - скорость распространения электромагнитных волн в свободном пространстве, n - показатель преломления волн при отсутствии проложенных электрических полей, Δn - разность показателей преломления волн из-за анизотропии изделия (Δn=rn3Eвн/2, где r - линейный электрооптический эффект, Eвн - напряженность внешнего электрического поля). С учетом последних формул выражения (1) могут быть переписаны как t1h=hn/c; t1d=dnΔn/c;t2h=hnΔn/c; t2d=dn/c.

В рассматриваемом случае допускается, что h>d. Кроме того, принимается, что характеристики приложенных к изделию первого и второго электрических полей и зондируемых изделие первой и второй электромагнитных волн одинаковы.

Определение наружного объема данного цилиндрического изделия согласно предлагаемому техническому решению сводится к определению высоты и диаметра (радиуса) цилиндрического изделия. Для этого предложено использование взаимно-корреляционной обработки сигналов, описывающих зависимости времен распространения ортогонально поляризованных первой и второй пар электромагнитных волн от диаметра, высоты цилиндрического изделия и показателя преломления (n) и разности показателей преломления (Δn) электромагнитных волн.

Для определения высоты цилиндрического изделия корреляционно обрабатываются сигналы, имеющие виды: t1h=hn/c и t2h=hnΔn/c. Здесь так как t2h>t1h, то с учетом теории взаимно-корреляционных двух функций, для того чтобы найти отставание во времени между этими сигналами, надо задержать во времени опережающий сигнал, т.е. t2h. Тогда временное отставание, определяемое посредством корреляционной обработки, должно удовлетворить условие:

tph=hn(Δn-1)/c,

где tph - отставание во времени t1h от t2h, измеренное после корреляционной обработки. В результате решение последней формулы по h дает возможность вычислить высоту следующим образом:

.

Аналогичным образом после корреляционной обработки сигналов, соответствующих t1d и t2d, можно сначала измерить временное отставание между этими сигналами tpd, а затем вычислить диаметр цилиндрического изделия как

.

Совместное решение уравнений (1) и (2) с учетом особенности измерения цилиндрических изделий дает возможность определить наружный объем V цилиндрического изделия по формуле:

.

В предлагаемом техническом решении двойная искусственная анизотропия цилиндрического изделия 13 организуется первым 1, вторым 12 электродами первого электрического поля и первым 6, вторым 9 электродами второго электрического поля. После этого изделие зондируют одновременно электромагнитными колебаниями первого источника излучения 2 и второго источника излучения 7. При этом местом ввода электромагнитных колебаний в изделие следует выбрать край изделия таким образом, чтобы образованные ортогонально поляризованные волны распространялись по линиям высоты и диаметра цилиндрического изделия. Далее составляющие из первой пары ортогонально поляризованных волн принимаются вторым 4 и четвертым 11 приемниками. Составляющие из второй пары ортогонально поляризованных волн, принимаются третьим 8 и первым 3 приемниками. Выходной сигнал второго приемника, улавливающего составляющую из первой пары поляризованных волн с силовыми линиями, перпендикулярными с силовыми линями первой зондирующей волны, поступает на первый вход первого коррелятора 5. На второй вход первого коррелятора подают выходной сигнал третьего приемника, улавливающего составляющую из второй пары поляризованных волн с силовыми линиями, параллельными с силовыми линиями второго электрического поля. Выходной сигнал первого приемника, улавливающего составляющую из второй пары поляризованных волн с силовыми линиями, перпендикулярными с силовыми линиями второй зондирующей волны, подают на первый вход второго коррелятора 10. На второй вход второго коррелятора поступает выходной сигнал четвертого приемника, улавливающего составляющую из первой пары поляризованных волн с силовыми линиями, параллельными с силовыми линиями первой зондирующей волны. Выходные сигналы первого и второго корреляторов соответственно поступают на первый и второй входы вычислителя 13, где отражается информация об определении наружного объема цилиндрического изделия.

Таким образом, на основе взаимно-корреляционных обработок двух пар ортогонально поляризованных волн, возникающих в цилиндрическом изделии за счет его двойной искусственной анизотропии, можно обеспечить расширение диапазона измерения геометрического размера контролируемой среды.

Способ определения наружного объема цилиндрического изделия, путем использования взаимодействия электромагнитных волн с контролируемым изделием, отличающийся тем, что предварительно изделие помещают в первое и второе электрические поля, зондируют изделие первой и второй ортогонально направленными электромагнитными волнами, принимают первую и вторую пары ортогонально поляризованных электромагнитных волн, вычисляют взаимно-корреляционные функции составляющих принятых первой и второй пар поляризованных электромагнитных волн и объем V изделия определяют по формуле ,где c - скорость распространения электромагнитной волны в свободном пространстве; n - показатель преломления волн при отсутствии приложенных электрических полей; Δn - разность показателей преломления волн из-за анизотропии изделия; t - время распространения поляризованной волны по линии диаметра цилиндрического изделия, t - время распространения поляризованной волны по линии высоты цилиндрического изделия.
СПОСОБ ОПРЕДЕЛЕНИЯ НАРУЖНОГО ОБЪЕМА ЦИЛИНДРИЧЕСКОГО ИЗДЕЛИЯ
Источник поступления информации: Роспатент

Showing 261-270 of 282 items.
02.03.2020
№220.018.07d1

Свч - мостовой измеритель температуры

Изобретение относится к устройствам для измерения температуры и может применяться в различных областях техники. Заявлен СВЧ - мостовой измеритель температуры, содержащий термопреобразователь, усилитель и первый источник питания, введены первый СВЧ-генератор с варакторной перестройкой частоты,...
Тип: Изобретение
Номер охранного документа: 0002715496
Дата охранного документа: 28.02.2020
02.03.2020
№220.018.0827

Инвертирующий масштабный усилитель с регулируемой степенью

Изобретение относится к области электронных устройств для усиления непрерывных сигналов с заданным масштабным коэффициентом. Технический результат заключается в повышении точности масштабирования инвертирующего усилителя на операционных усилителях с ограниченными частотными свойствами за счет...
Тип: Изобретение
Номер охранного документа: 0002715471
Дата охранного документа: 28.02.2020
04.03.2020
№220.018.085f

Устройство для внутрипластового горения

Изобретение относится к устройствам для извлечения смеси углеводородов, в частности смеси тяжелых углеводородов, из подземного пласта путем внутрипластового горения. Устройство для внутрипластового горения содержит измельчитель алюминиевой стружки, сепаратор и датчик температуры, размещенный в...
Тип: Изобретение
Номер охранного документа: 0002715572
Дата охранного документа: 02.03.2020
14.05.2020
№220.018.1c54

Способ организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного р-ичного гиперкуба

Изобретение относится к способу организации системной сети в виде отказоустойчивого неблокируемого трехмерного разреженного p-ичного гиперкуба для многопроцессорных систем с сотнями абонентов-процессоров. Техническим результатом изобретения является повышение отказоустойчивости системной сети,...
Тип: Изобретение
Номер охранного документа: 0002720553
Дата охранного документа: 12.05.2020
15.07.2020
№220.018.3249

Способ определения покомпонентного расхода газожидкостной среды

Изобретение относится к измерительной технике и может использоваться для контроля расхода и определения массы компонента газожидкостной среды (ГЖС), извлекаемой, например, из буровой скважины. Способ определения покомпонентного расхода газожидкостной среды характеризуется тем, что периодически...
Тип: Изобретение
Номер охранного документа: 0002726304
Дата охранного документа: 13.07.2020
15.07.2020
№220.018.3295

Устройство для диагностики состояния высоковольтных изоляторов

Изобретение относится к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных изоляторов. Технический результат: упрощение процесса диагностики. Сущность: устройство для диагностики состояния высоковольтных изоляторов...
Тип: Изобретение
Номер охранного документа: 0002726305
Дата охранного документа: 13.07.2020
12.04.2023
№223.018.4a44

Устройство для энергоснабжения привязного беспилотного летательного аппарата

Устройство для энергоснабжения привязного беспилотного летательного аппарата содержит наземный источник питания, силовой кабель, два бортовых понижающих преобразователя, управляющий ШИМ-контроллер, два формирователя сигнала ошибки. Обеспечивается повышение эффективности энергоснабжения...
Тип: Изобретение
Номер охранного документа: 0002793830
Дата охранного документа: 06.04.2023
20.04.2023
№223.018.4ac8

Способ и система автономного децентрализованного коллективного определения положения движущихся на трассе объектов автотранспорта

Изобретение относится к области вычислительной техники и направлено на разработку способа и системы определения местоположения движущихся объектов автономно, без привлечения внешних средств, и децентрализованно, без выделения в системе центра управления. Способ автономного децентрализованного...
Тип: Изобретение
Номер охранного документа: 0002778861
Дата охранного документа: 26.08.2022
20.04.2023
№223.018.4b66

Способ экспериментальных исследований аэромеханики и динамики полёта беспилотных летательных аппаратов и устройство для его осуществления

Изобретение относится к области авиационной испытательной техники, в частности к методам и средствам исследования аэромеханики и динамики полета беспилотных летательных аппаратов. При реализации способа экспериментально исследуют характеристики беспилотного летательного аппарата при заданном...
Тип: Изобретение
Номер охранного документа: 0002767584
Дата охранного документа: 17.03.2022
20.04.2023
№223.018.4bb6

Беспилотный летательный аппарат

Изобретение относится к малогабаритным авиационным системам с дистанционно пилотируемыми летательными аппаратами. Беспилотный летательный аппарат содержит крестовину с закрепленным в ее центре корпусом с боковыми стенками и крышкой, на которой установлена аккумуляторная батарея. На концах лучей...
Тип: Изобретение
Номер охранного документа: 0002760832
Дата охранного документа: 30.11.2021
Showing 191-191 of 191 items.
09.05.2019
№219.017.4faf

Устройство для измерения влажности почвы

Предлагаемое изобретение относится к измерительной технике. Устройство содержит генератор электромагнитных колебаний с перестраиваемой частотой 1, чувствительный элемент, выполненный в виде круглого волноводного резонатора 2, детектор 3, соединенный выходом со входом измерителя...
Тип: Изобретение
Номер охранного документа: 0002433393
Дата охранного документа: 10.11.2011
+ добавить свой РИД