×
27.03.2015
216.013.352d

Результат интеллектуальной деятельности: РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002545097
Дата охранного документа
27.03.2015
Аннотация: Изобретение относится к способу и системе для усовершенствованного планирования и доставки лучевой терапии. Сущность изобретения заключается в том, что создают план лучевой терапии, при этом план лучевой терапии включает в себя множество доз облучения; получают представление изображения целевого объема (30) и нецелевых объемов перед лечением; определяют контур и положение целевого объема (30) и, по меньшей мере, одного нецелевого объема на основе представления изображения перед лечением; подают дозу облучения, причем доза облучения включает в себя множество траекторий пучков излучения и, по меньшей мере, одну геометрию пучка излучения; определяют фактическую дозу облучения, доставленную в каждую область целевого объема (30) и, по меньшей мере, одного нецелевого объема, на основе их определенных контуров и положений, траекторий пучков излучения и, по меньшей мере, одной геометрии пучка излучения, причем способ дополнительно содержит этапы, на которых во время подачи дозы облучения получают множество одномерных представлений изображений целевого объема (30) и нецелевых объемов во время лечения; определяют контуры и положения целевого объема (30) и, по меньшей мере, одного нецелевого объема, на основе одномерных представлений изображений во время лечения; и определяют фактическую дозу облучения, доставленную в каждую область целевого объема (30) и, по меньшей мере, одного нецелевого объема на основе их определенных контуров и положений по представлениям изображений перед лечением и одномерных представлений изображений во время лечения, траекторий пучков излучения и, по меньшей мере, одной геометрии пучка излучения. Технический результат - усовершенствование планирования дозы лучевой терапии. 4 н. и 9 з.п. ф-лы, 6 ил.

Настоящее изобретение относится к способу и системе для усовершенствованного планирования и доставки лучевой терапии. В частности, изобретение находит применение в комбинированных системах магнитно-резонансной томографии (МРТ) и лучевой терапии, способных к одновременной МР (магнитно-резонансной) томографии и облучению, но может также находить применение в других способах визуализации или спектроскопии или при лечении других типов.

Лучевая терапия является распространенным терапевтическим методом в онкологии, при котором дозу высокоэнергетического гамма-излучения, пучка частиц или другого излучения доставляют в тело пациента для обеспечения терапевтического эффекта, т.е. уничтожения злокачественной ткани. По ряду причин дозу фракционируют или распределяют на протяжении периода нескольких недель. Поскольку пучок излучения проходит сквозь здоровую ткань на своем пути к цели, фракционирование позволяет здоровой ткани, пораженной во время сеансов лечения, восстановиться, не допуская восстановления менее продуктивной злокачественной ткани между фракционированными дозами.

Для минимизации нежелательного поражения с сохранением при этом терапевтического эффекта перед лечением создают план лечения, который уточняет график фракционирования, вместе с оптимизацией формы и направления пучка. Обычно получают статическое объемное изображение, например компьютерное томографическое (КТ) изображение, опухоли и окружающей ткани. Компьютерная система планирования автоматически или полуавтоматически устанавливает очертания контуров целевого объема, здоровой окружающей ткани и чувствительных зон с повышенным риском поражения, например, спинного мозга, желез и т.п., ткани, непроницаемой для излучения или ослабляющей излучение, например кости, и т.п. Затем с использованием данных контура система планирования определяет оптимальный план лечения, который уточняет распределение дозы облучения и график фракционирования, вместе с направлением и формой пучка излучения.

Перед лучевой терапией получают изображение, например флюороскопическое, рентгеновское или подобное изображение, целевого объема, для совмещения положения целевых объемов с системой координат лучевой терапии и проверки точности текущего плана лечения. План лечения может терять точность в процессе лечения из-за точности позиционирования, повседневных изменений положения органа, дыхания, сердцебиения, повышения/снижения размера опухоли и других физиологических процессов, например наполнения мочевого пузыря и т.п. Для учета упомянутых неопределенностей и обеспечения намеченного терапевтического эффекта современные способы включают в себя облучение объема, немного большего, чем целевой объем, определенный по статическому объемному изображению. Данный подход ведет к увеличению поражения здоровой ткани и может приводить к внешним побочным эффектам. Если текущий план лечения существенно изменяется, например, если размер целевого объема уменьшился вследствие лечения, то данный план можно отменить, и создается новый план лечения, что может занимать много времени.

Настоящая заявка предлагает новое и усовершенствованное планирование дозы лучевой терапии с управлением по изображениям на основе МРТ, с решением при этом вышеупомянутых и других проблем.

В соответствии с одним аспектом способ доставки дозы облучения содержит этапы, на которых создают план лучевой терапии, при этом план лучевой терапии включает в себя множество доз облучения. Получают представление изображения целевого объема и нецелевых объемов перед лечением и определяют контур и положение целевого объема и, по меньшей мере, одного нецелевого объема на основе представления изображения перед лечением. Подают дозу облучения, включающую в себя множество траекторий пучков излучения и, по меньшей мере, одну геометрию пучка излучения. Фактическую дозу облучения, доставленную в каждую область целевого объема и, по меньшей мере, одного нецелевого объема, определяют на основе их определенных контуров и положений, траекторий пучков излучения и, по меньшей мере, одной геометрии пучка излучения.

В соответствии с другим аспектом устройство лучевой терапии с магнитно-резонансным управлением содержит тоннельный магнит, который формирует статическое магнитное поле в области исследования, при этом магнит сконфигурирован с пропускающей излучение областью магнита, которая позволяет пучкам излучения проходить радиально через тоннельный магнит в субъект, расположенный внутри магнита, разъемную градиентную катушку, которая образует зазор, содержащий пропускающую излучение область градиентной катушки, совмещенную с пропускающей излучение областью магнита, при этом разъемная катушка выполнена с возможностью подачи выбранных градиентных импульсов магнитного поля через область визуализации. Радиочастотная (РЧ) катушка выполнена с возможностью возбуждения и управления магнитным резонансом в субъекте в области исследования и/или получения данных магнитного резонанса из области исследования. Источник излучения, расположенный латерально к тоннельному магниту, установлен с возможностью подачи пучков излучения сквозь пропускающие излучение области магнита и градиентной катушки в изоцентр тоннельного магнита, и контроллер сканера выполнен с возможностью управления градиентной катушкой и РЧ катушкой для формирования представления изображения.

Одно из преимуществ состоит в уменьшении воздействия излучения на здоровую ткань.

Другие дополнительные преимущества настоящего изобретения будут очевидны специалистам со средним уровнем компетентности в данной области техники по прочтению и изучению нижеследующего подробного описания.

Изобретение может принимать форму различных компонентов и схем расположения компонентов и различных этапов и схем расположения этапов. Чертежи предназначены только для иллюстрации предпочтительных вариантов осуществления и не подлежат истолкованию в смысле ограничения изобретения.

Фиг.1 - схематическое изображение комбинированной системы магнитно-резонансной (МР) томографии и лучевой терапии;

фиг.2 - блок-схема последовательности операций способа лучевой терапии;

фиг.3 - блок-схема последовательности операций другого способа доставки дозы облучения;

фиг.4 - блок-схема последовательности операций другого способа доставки дозы облучения;

фиг.5 - блок-схема последовательности операций другого способа доставки дозы облучения; и

фиг.6 - блок-схема последовательности операций другого способа доставки дозы облучения.

Как показано на фиг.1, комбинированная система 10 магнитно-резонансной (МР) томографии и лучевой терапии содержит основной магнит 12, который формирует постоянное по времени поле B0 через область 14 исследования. Основной магнит может быть кольцевым или тоннельным магнитом, C-образным магнитом открытого типа, магнитом открытого типа других конструкций и т.п. Магнит содержит пропускающую излучение область 16 магнита, которая позволяет пучку излучения, например гамма-излучения, рентгеновского излучения, пучкам частиц или подобного излучения, проходить через магнит. В одном варианте осуществления основной магнит 12 является тоннельным магнитом. Пропускающая излучение область 16 магнита расположена по окружности, чтобы позволять пучку излучения проходить радиально через изоцентр тоннеля. Градиентные магнитные катушки 18, расположенные вблизи основного магнита, предназначены, чтобы формировать градиенты магнитного поля вдоль выбранных осей относительно магнитного поля B0 для пространственного кодирования магнитно-резонансных сигналов, для создания градиентов поля разрушения намагниченности и т.п. Градиентная магнитная катушка 18 содержит пропускающую излучение область 20 градиентной катушки, совмещенную с пропускающей излучение областью 16 магнита, чтобы допускать прохождение пучка излучения через основной магнит 12 и катушки 18 возбуждения градиентного магнитного поля прогнозируемым образом в субъект 22 в области 14 исследования, т.е. поглощение по всем пропускающим излучение областям 16, 20 является постоянным. Градиентная магнитная катушка 18 может содержать части катушки, сконфигурированные с возможностью формирования градиентов магнитного поля в трех ортогональных направлениях, обычно в продольном или z-, поперечном или x- и вертикальном или y-направлениях.

Пучок излучения исходит из источника 24 излучения, например линейного ускорителя или подобного источника, расположенного латерально к основному магниту 12 и около пропускающих излучение областей 16, 20. Поглотитель 26 поглощает любое излучение от источника 24 излучения, проходящее в нежелательном направлении. Коллиматор 28 помогает формировать пучок излучения для локализации лечения в целевом объеме 30. В одном варианте осуществления коллиматор является регулируемым коллиматором, например многостворчатым коллиматором (MLC) или подобным коллиматором, который модулирует геометрию пучка излучения. Створки многостворчатого коллиматора (MLC) допускают конформное формирование пучка излучения для согласования с формой целевого объема 30 из каждого углового положения источника излучения вокруг субъекта.

Узел 32 источника излучения, состоящий из источника 24 излучения, поглотителя 26 и коллиматора 28, установлен на системе 34 направляющих, которая позволяет узлу источника излучения поворачиваться по окружности вокруг пропускающих излучение областей 16, 20, во множество положений, допускающих соответствующее число траекторий пучков излучения. В альтернативном варианте узел источника излучения может непрерывно перемещаться с также непрерывной модуляцией его поперечного сечения и интенсивности. Следует понимать, что предусмотрена также возможность применения других систем или способов позиционирования, например системы фиксированных направляющих, системы нефиксированных направляющих, системы с одной направляющей, системы из нескольких направляющих, C-образной консоли и т.п. В одном варианте осуществления узел источника излучения может поворачиваться на 360° вокруг тоннельного магнита 12; однако в клинической практике необходимость данного широкого диапазона отсутствует. В другом варианте осуществления множество узлов источников излучения расположено по окружности вокруг пропускающих излучение областей 16, 20, при этом каждый узел источника излучения характеризуется, по существу, фиксированной траекторией. Данная схема расположения допускает сокращение продолжительности сеанса лучевой терапии, что может быть полезно для более крупных или беспокойных субъектов. Следует отметить, что узел источника излучения и система направляющих могут быть выполнены из неферромагнитных материалов, чтобы не создавать помех основному магниту или катушкам возбуждения градиентного магнитного поля или не испытывать помех с их стороны.

Узел 40 радиочастотных (РЧ) катушек, например радиочастотная катушка для всего тела, расположен около области исследования. Узел РЧ катушек формирует радиочастотные импульсы для возбуждения магнитного резонанса в совмещенных диполях субъекта. Узел 40 радиочастотных катушек выполняет также функцию обнаружения магнитно-резонансных сигналов, исходящих из области визуализации. Катушка для всего тела может быть одиночной катушкой или множеством катушечных элементов в виде части группы. Узел РЧ катушек сконфигурирован так, что не загораживает излучение или пропускает излучение вблизи пропускающих излучение областей 16, 20.

Для сбора магнитно-резонансных данных субъекта субъект помещают внутри области 14 исследования, предпочтительно в изоцентре или вблизи изоцентра основного магнитного поля. Контроллер 42 сканирования управляет контроллером 44 градиентов, который обеспечивает посредством градиентных катушек передачу выбранных градиентных импульсов магнитного поля через область визуализации, в соответствии с выбранной последовательностью магнитно-резонансной визуализации или спектроскопии. Контроллер 42 сканирования управляет также, по меньшей мере, одним РЧ передатчиком 46, который возбуждает узел РЧ катушек для формирования магнитно-резонансного возбуждения и управления импульсами Β1. Контроллер сканирования управляет также РЧ приемником 48, который соединен с РЧ катушками для всего тела или локального типа, для получения магнитно-резонансных сигналов из этих катушек.

Данные, получаемые из приемника 48, временно сохраняются в буфере 50 данных и обрабатываются процессором 52 магнитно-резонансных данных. Процессор магнитно-резонансных данных может выполнять различные функции, которые известны в данной области техники, включая реконструкцию изображений, магнитно-резонансную спектроскопию и т.п. Реконструированные магнитно-резонансные изображения, спектроскопические данные и другие обработанные МР данные сохраняются в памяти 56 изображений и отображаются на графическом пользовательском интерфейсе 58. Графический пользовательский интерфейс 58 содержит также устройство пользовательского ввода, которым врач может воспользоваться для управления контроллером 42 сканирования, чтобы выбирать последовательности и протоколы сканирования и т.п.

Перед лучевой терапией планирующий процессор 60, автоматически или под управлением пользователя, создает план фракционированной лучевой терапии; при этом каждый план лечения содержит множество фракций или доз облучения. Каждая доза облучения содержит предписанные дозы облучения, множество траекторий пучков излучений и, по меньшей мере, одну геометрию (поперечное сечение) пучка излучения. Количество излучения, используемое при лучевой терапии, измеряется в греях (Гр) и изменяется в зависимости от типа, размера и стадии облучаемой опухоли. Например, план лучевой терапии, который предписывает дозу облучения 60 Гр, можно фракционировать на 30 планов дозирования облучения по 2 Гр, при этом каждый план дозирования облучения выполняется пять дней в неделю в течение всего шести недель. В течение каждого сеанса облучение распределяется по множеству траекторий, например 20, по которым доставляются одинаковые или изменяющиеся порции дозы сеанса. Обычно план дозирования облучения для взрослого составляет 1,8-2,0 Гр и 1,5-1,8 Гр для ребенка.

Для определения траекторий и геометрии пучков излучения блок 62 обнаружения распознает целевой объем 30 и нецелевые объемы, что подробно поясняется в дальнейшем, посредством определения их контуров по 3-мерным изображениям с высоким разрешением, с использованием методов обработки изображений и/или моделей, которые описывают объемы. Методы обработки изображений могут включать в себя любое сочетание автоматической или полуавтоматической сегментации, выделения краев, анализа главных компонент или подобных методов и могут объединяться с моделью, которая описывает форму, текстуру, движение и т.п. объемов, чтобы дополнительно улучшить определения. Полученные контуры сохраняются в памяти внутри самого блока 62 обнаружения для последующего использования. В одном варианте осуществления представление 3-мерного изображения с высоким разрешением является представлением МР изображения, полученным из комбинированной системы 10 МР и лучевой терапии, и извлекается из памяти 56 изображений для установления очертаний контуров. В альтернативном варианте представление 3-мерного изображения с высоким разрешением может быть получено с использованием других способов визуализации, например компьютерной томографии (КТ), рентгенографии, рентгенофлюорографии, ультразвуковой визуализации и т.п.

Планирующий процессор 60 использует определенные контуры для формирования отдельных доз облучения и сохраняет их в памяти в самом процессоре. Некоторые нецелевые объемы, например ткань, непроницаемая для излучения или ослабляющая излучение, и чувствительная ткань, такая как ткань, органы, железы и т.п., не должны получить облучения. Планирующий процессор определяет траектории пучков, которые максимально увеличивают воздействие облучения на целевой объем при избавлении нецелевых объемов от нежелательного поражения. К сожалению, положение и форма упомянутых объемов может флуктуировать в течение суток вследствие ряда физиологических изменений, например дыхания, объема мочевого пузыря, наполнения/спадания легких, набора/потери веса, размера опухоли, суточных изменений положения органа и т.п. Вместо избыточной компенсации посредством облучения немного большей зоны или создания, в целом, нового плана лучевой терапии текущий план лучевой терапии можно корректировать путем определения дозы, доставляемой в каждую часть целевого объема и нецелевых объемов, после каждого сеанса лечения. Последующую дозу облучения или все последующие дозы можно изменять на основании доставленной дозы облучения.

Как показано на фиг.2, в соответствии с одним аспектом после того, как доза облучения доставлена, определяют фактическую дозу, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе изображения перед лечением. Перед подачей дозы облучения контроллер 42 сканера управляет МР системой, чтобы получить представление 3-мерного изображения целевого объема 30 и нецелевых объемов перед лечением. Изображение перед лечением может быть представлением 3-мерного изображения с низким разрешением, по которому блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов. Планирующий процессор 60 совмещает текущее положение целевого объема 30 с системой координат узла 32 источника излучения. По желанию для облегчения совмещения можно применить хирургически имплантированные маркеры и/или ориентиры. Контроллер 64 облучения управляет узлом 32 источника излучения, т.е. его угловым положением, створками многостворчатого коллиматора (MLC) 28 и источником 24 излучения, для проведения сеанса лечения, с траекториями и геометрией пучков в соответствии с текущей дозой облучения. После лечения блок 66 дозирования использует текущие траектории пучков, текущую геометрию пучка и контуры и/или положения, определенные по представлению изображения перед лечением, чтобы определить фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов. Планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, в соответствии с фактическим излучением, доставленным в целевой объем 30 и нецелевые объемы.

Как показано на фиг.3, в соответствии со вторым аспектом после того, как доза облучения доставлена, определяют фактическую дозу, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе изображения перед лечением и изображения после лечения. После подачи дозы облучения, контроллер 42 сканера управляет МР системой для получения представления изображения целевого объема 30 и нецелевых объемов после лечения. Блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов. Блок 66 дозирования определяет фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе текущих траекторий пучков, текущей геометрии пучка и изменений определенных контуров и/или положений между представлениями изображений перед лечением и после лечения. Посредством сравнения положения целевого объема 30 и нецелевых объемов в представлениях изображений перед лечением и после лечения точность определения фактической дозы можно повысить. Планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, в соответствии с фактическим излучением, доставленным в целевой объем 30 и нецелевые объемы.

Как показано на фиг.4, в соответствии с третьим аспектом после того, как доза облучения доставлена, определяют фактическую дозу, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе изображения перед лечением и модели движения. Перед подачей дозы облучения контроллер 42 сканирования управляет МР системой для получения представления 3-мерного изображения целевого объема 30 и нецелевых объемов перед лечением и для получения сигнала движения из внешнего датчика 68, например датчика дыхания, датчика ЭКГ и т.п. Блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов и определяет параметры модели движения на основе сигнала из внешнего датчика. Модель движения прогнозирует положения целевого объема 30 и нецелевых объемов во время сеанса лечения. Планирующий процессор 60 совмещает текущее положение целевого объема 30 с системой координат узла 32 источника излучения. По желанию для упрощения совмещения можно применить хирургически имплантированные маркеры и/или ориентиры. Контроллер 64 облучения управляет узлом 32 источника излучения, т.е. его угловым положением, створками многостворчатого коллиматора (MLC) 28 и источником 24 излучения, для проведения сеанса лечения, с траекториями и геометрией пучков в соответствии с текущей дозой облучения. После лечения блок 66 дозирования использует текущие траектории пучков, текущую геометрию пучка и контуры и/или положения, определенные по представлению изображения перед лечением, и полученную модель движения, чтобы определить фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов. Посредством прогнозирования положений целевого объема 30 и нецелевых объемов во время лечения точность определения фактической дозы можно повысить. Планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, в соответствии с фактическим излучением, доставленным в целевой объем 30 и нецелевые объемы.

Как показано на фиг.5, в соответствии с четвертым аспектом после того, как доза облучения доставлена, определяют фактическую дозу, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе изображения перед лечением и множества 3-мерных изображений во время лечения. Перед подачей дозы облучения, контроллер 42 сканирования управляет комбинированной системой 10 МР и лучевой терапии для получения представления 3-мерного изображения целевого объема 30 и нецелевых объемов перед лечением. Блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов, на основе которых планирующий процессор 60 совмещает текущее положение целевого объема 30 с системой координат узла 32 источника излучения. По желанию для упрощения совмещения можно применить хирургически имплантированные маркеры и/или ориентиры. Контроллер 64 облучения управляет узлом 32 источника излучения, т.е. его угловым положением, створками многостворчатого коллиматора (MLC) 28 и источником 24 излучения, для проведения сеанса лечения, с траекториями и геометрией пучков в соответствии с текущей дозой облучения. Во время лечения контроллер 42 сканера управляет комбинированной системой 10 МР и лучевой терапии, чтобы получить множество представлений 3-мерных изображений целевого объема 30 и нецелевых объемов во время лечения. После лечения блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов по представлениям изображений во время лечения. Блок 66 дозирования использует текущие траектории пучков, текущую геометрию пучка и контуры и/или положения, определенные по представлениям изображений перед лечением и во время лечения, чтобы определить фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов. Посредством периодического контроля фактического положения целевого объема 30 и нецелевых объемов во время лечения точность определения фактической дозы можно повысить. Более растянутая временная шкала представления 3-мерного изображения во время лечения может учесть дыхательное движение. Планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, в соответствии с фактическим излучением, доставленным в целевой объем 30 и нецелевые объемы.

Как показано на фиг.6, в соответствии с пятым аспектом после того, как доза облучения доставлена, определяют фактическую дозу, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, на основе изображения перед лечением и множества 2-мерных/1-мерных изображений во время лечения. Более короткий временной интервал между 2-мерными изображениями во время лечения и еще более короткий временной интервал между 1-мерными, так называемыми, навигационными импульсами может учитывать более быстрое пульсирующее движение объемов. Перед подачей дозы облучения, контроллер 42 сканирования управляет комбинированной системой 10 МР и лучевой терапии для получения представления 3-мерного изображения целевого объема 30 и нецелевых объемов перед лечением. Блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов, на основе которых планирующий процессор 60 совмещает текущее положение целевого объема 30 с системой координат узла 32 источника излучения. По желанию для упрощения совмещения можно применить хирургически имплантированные маркеры и/или ориентиры. Контроллер 64 облучения управляет узлом 32 источника излучения, т.е. его угловым положением, створками многостворчатого коллиматора (MLC) 28 и источником 24 излучения, для проведения сеанса лечения, с траекториями и геометрией пучков в соответствии с текущей дозой облучения. Во время лечения контроллер 42 сканера управляет комбинированной системой 10 МР и лучевой терапии, чтобы получить множество представлений 2-мерных/1-мерных изображений целевого объема 30 и нецелевых объемов во время лечения. После лечения блок 62 обнаружения определяет контуры и положения целевого объема 30 и нецелевых объемов по представлениям 2-мерных/1-мерных изображений во время лечения. Блок 66 дозирования использует текущие траектории пучков, текущую геометрию пучка и контуры и/или положения, определенные по представлениям изображений перед лечением и во время лечения, чтобы определить фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов. Посредством контроля фактического положения целевого объема 30 и нецелевых объемов во время лечения с более высоким временным разрешением точность определения фактической дозы можно повысить. Планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, в соответствии с фактическим излучением, доставленным в целевой объем 30 и нецелевые объемы. В альтернативном варианте блок 62 обнаружения определяет модель движения по представлениям 2-мерных/1-мерных изображений во время лечения, и модель движения применяется для определения фактической дозы облучения.

В одном варианте осуществления планирующий процессор 60 корректирует остающийся план лучевой терапии, т.е., по меньшей мере, одну или все последующие дозы облучения, автоматически. В другом варианте осуществления план облучения корректируется под руководством пользователя, например, врача или клинициста. Врач проверяет обнаружение контуров и положений целевого объема 30 и нецелевых объемов на графическом пользовательском интерфейсе 58. Представление изображения с высоким разрешением, использованное при определении плана лечения, представления изображений перед лечением, представления изображений во время лечения и представления изображений после лечения отображаются на графическом пользовательском интерфейсе 58 вместе с полученными контурами и положениями объемов. Врач с помощью устройства ввода может идентифицировать целевой объем 30 и нецелевые объемы, т.е. чувствительные ткани, органы и т.п.

В другом варианте осуществления планирующий процессор 60 совмещает все представления изображений целевого объема 30 и нецелевых объемов и отображает совмещенные представления изображений на графическом пользовательском интерфейсе 58 для оценки врачом. Тогда по изменениям объемов по всем моментам времени в течение плана лечения врач может выбрать, продолжать ли выполнение текущего плана лечения, корректировать ли остающиеся дозы облучения плана лечения или отменить план лечения. В альтернативном варианте, планирующий процессор 60 отображает фактическую дозу облучения, доставленную в каждый воксель целевого объема 30 и нецелевых объемов, в виде интенсивности цветной карты, совмещенной с одним из представления изображения с высоким разрешением, использованного при определении плана лечения, представлений изображений перед лечением, представлений изображений во время лечения или представлений изображений после лечения для оценки врачом.

В другом варианте осуществления в субъект 22 вводят вещество для повышения контраста, например вещество на основе гадолиния (Gd), на основе суперпарамагнитного оксида железа (SPIO) и сверхмалых частиц SPIO (USPIO), марганца (Mn) или подобного материала, чтобы повысить контраст представлений MR изображений. Вещество для повышения контраста может повышать точность обнаружения контуров и параметра модели. Вещество для повышения контраста вводят до получения представления объемного изображения с высоким разрешением для создания плана лучевой терапии и вводят до получения представления изображения перед лечением для коррекции плана лучевой терапии.

Выше изобретение описано со ссылкой на предпочтительные варианты осуществления. После прочтения и изучения вышеприведенного подробного описания специалистами могут быть созданы модификации и внесены изменения. Предполагается, что изобретение следует интерпретировать как включающее в себя все упомянутые модификации и изменения в той мере, насколько они содержатся в объеме притязаний прилагаемой формулы изобретения или ее эквивалентов.


РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
РЕТРОСПЕКТИВНОЕ ВЫЧИСЛЕНИЕ ДОЗЫ ОБЛУЧЕНИЯ И УСОВЕРШЕНСТВОВАННОЕ ПЛАНИРОВАНИЕ ЛЕЧЕНИЯ
Источник поступления информации: Роспатент

Showing 11-15 of 15 items.
13.01.2017
№217.015.7269

Способ реконструкции изображений для отфильтрованной обратной проекции в томографии с ограниченным углом обзора объекта

Использование: для томографии с ограниченным углом обзора объекта. Сущность изобретения заключается в том, что получают данные p проекций томографии с ограниченным углом обзора объекта O (S1), причем данные p проекций описывают N проекций объекта O, причем излучающий источник перемещается по...
Тип: Изобретение
Номер охранного документа: 0002598159
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.8e4c

Мрт с коррекцией движения с помощью навигаторов, получаемых с помощью метода диксона

Использование: для МР-томографии по меньшей мере части тела. Сущность изобретения заключается в том, что выполняют следующие этапы: подвергание части тела (10) воздействию визуализирующей последовательности, содержащей один или несколько РЧ-импульсов и переключаемых градиентов магнитного поля,...
Тип: Изобретение
Номер охранного документа: 0002605517
Дата охранного документа: 20.12.2016
25.08.2017
№217.015.afb8

Магнитно-резонансная (mr) визуализация с в1-отображением

Использование: для магнитно-резонансной (MR) визуализации. Сущность изобретения заключается в том, что участок тела, размещенный в объеме обследования MR-устройства, подвергается воздействию визуализирующей последовательности RF-импульсов и переключаемых градиентов магнитного поля....
Тип: Изобретение
Номер охранного документа: 0002611082
Дата охранного документа: 21.02.2017
19.01.2018
№218.016.0e5d

Система магнитно-резонансного обследования с предпочтительными настройками на основе интеллектуального анализа данных

Группа изобретений относится к медицинской технике и может быть использована для осуществления сканирования во время магнитно-резонансной томографии с использованием МР-сканера. Способ осуществления сканирования для магнитно-резонансной (MP) томографии с использованием MP-сканера и система МР...
Тип: Изобретение
Номер охранного документа: 0002633283
Дата охранного документа: 11.10.2017
13.02.2018
№218.016.202f

Специализированный пользовательский интерфейс для интерстициальных вмешательств с магнитно-резонансным наведением

Группа изобретений относится к медицинской технике, а именно к медицинским диагностическим магнитно-резонансным системам. Магнитно-резонансная система для наведения трубки или иглы на цель субъекта содержит пользовательский интерфейс, включающий в себя рамку, выполненную с возможностью...
Тип: Изобретение
Номер охранного документа: 0002641374
Дата охранного документа: 17.01.2018
Showing 91-100 of 1,345 items.
10.07.2013
№216.012.557d

Способ и система для кодирования сигнала трехмерного видео, инкапсулированный сигнал трехмерного видео, способ и система для декодера сигнала трехмерного видео

Изобретение относится к области кодирования и декодирования сигнала трехмерного видео. Техническим результатом является повышение эффективности кодирования и предоставление способа для кодирования данных трехмерного изображения на стороне передачи, причем видимые дефекты вокруг разрывов глубины...
Тип: Изобретение
Номер охранного документа: 0002487488
Дата охранного документа: 10.07.2013
20.07.2013
№216.012.579b

Осветительное устройство с отражающим электроактивным полимерным приводом

Изобретение относится к области осветительных устройств и осветительных модулей, содержащих осветительный элемент в качестве источника света. Заявленное устройство содержит, по меньшей мере, частично отражающий электроактивный полимерный привод и осветительный элемент, освещающий...
Тип: Изобретение
Номер охранного документа: 0002488035
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.583a

Сид на фотонных кристаллах

Полупроводниковый светоизлучающий диод (СИД) (1), содержащий первый и второй электроды (40, 11) для приложения напряжения к активной области (4), расположенной между слоем (21) полупроводника первого типа и слоем (30) полупроводника второго типа для генерирования света, светоизлучающую...
Тип: Изобретение
Номер охранного документа: 0002488194
Дата охранного документа: 20.07.2013
20.07.2013
№216.012.586a

Устройство и способ ввода выбора цвета

Изобретение относится к вводу выбора цвета, например, посредством дисков или клавишных панелей выбора цвета, в особенности для системы освещения. Вариант осуществления изобретения обеспечивает устройство (10) ввода выбора цвета, содержащее - средство (12) выбора цветового тона, представляющее...
Тип: Изобретение
Номер охранного документа: 0002488242
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.58b9

Подставка с двойной опорной поверхностью для чашек и других емкостей в машинах для приготовления напитков

Изобретение относится к области приготовления напитков. Подставка для емкости, принимающей напитки, в машине для приготовления напитков содержит первую опорную поверхность и вторую опорную поверхность, которые могут быть установлены поверх друг друга на разных высотах. Причем указанные первая и...
Тип: Изобретение
Номер охранного документа: 0002488334
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.58c1

Узел рукоятки для всасывающего узла

Изобретение относится к всасывающему узлу (1), узлу рукоятки и вакуумному пылесосу. Изобретение направлено на создание всасывающего узла с рукояткой, имеющего улучшенное эргономическое управление и снижающего риск возникновения проблем со спиной пользователя. Всасывающий узел (1) для вакуумного...
Тип: Изобретение
Номер охранного документа: 0002488342
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.58ca

Визуализация васкуляризации

Группа изобретений относится к медицине, визуализации сосудов и их связей с патологическим изменением. Создают данные пространственного изображения, отражающие пространственно изменяющуюся степень связи сосудов между областями данных в пространственном изображении и патологическим изменением....
Тип: Изобретение
Номер охранного документа: 0002488351
Дата охранного документа: 27.07.2013
27.07.2013
№216.012.5adf

Способ коррекции движения для выравнивания динамического объема без временных ограничений

Изобретение относится к сканирующим системам, в частности к коррекции ошибок в медицинских сканирующих системах. Техническим результатом является сокращение времени сканирования и улучшение качества сканирования с оперативной коррекцией движения в реальном времени. При выполнении повторных...
Тип: Изобретение
Номер охранного документа: 0002488884
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5bc8

Устройство стыковки головки щетки и ручки для электрической зубной щетки

Изобретение относится к области гигиены полости рта и может быть использовано для чистки зубов. Устройство стыковки головки щетки и ручки для электрической зубной щетки (10) содержит узел (20) головки щетки, приводной вал (14), соединительный элемент (22) и пружинный элемент (34). Узел (20)...
Тип: Изобретение
Номер охранного документа: 0002489117
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5e13

Микроэлектронное сенсорное устройство сенсора для детектирования целевых частиц

Изобретение относится к микроэлектронному сенсорному устройству для исследования целевых частиц (1), которые связаны с местами (3) связывания на поверхности (12) связывания носителя (11). Входной пучок (L1) света передается на носитель (11), где имеет место фрустрированное полное внутреннее...
Тип: Изобретение
Номер охранного документа: 0002489704
Дата охранного документа: 10.08.2013
+ добавить свой РИД