×
27.03.2015
216.013.3526

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.
Основные результаты: Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Изобретение относится к технике измерения параметров нелинейных элементов электрических цепей с температурозависимой вольт-амперной характеристикой (ВАХ) и может быть использовано, например, при параметрическом контроле полупроводниковых диодов и полупроводниковых приборов с р-n-переходами.

Известен способ измерения дифференциального сопротивления полупроводниковых диодов (см. ГОСТ 18986.14-85 Диоды полупроводниковые. Методы измерения дифференциального и динамического сопротивлений), заключающийся в подаче постоянного тока I0 для задания рабочей точки и переменного гармонического тока малой амплитуды Im в качестве тестового сигнала на калибровочный резистор сопротивлением RK, в измерении амплитуды U переменного напряжения на калибровочном резисторе, в подключении к генератору тока вместо калибровочного резистора контролируемого диода и в измерении амплитуды U переменной составляющей напряжения на контролируемом диоде и определении дифференциального сопротивления диода по формуле

Условием точного измерения дифференциального сопротивления нелинейных двухполюсников является малость тестового сигнала. В ГОСТ 18986.14-85 условие малости тестового сигнала задается в виде ограничения амплитуды переменного тока, которая не должна превышать 10% значения постоянного тока.

Недостатком известного способа является большая погрешность, обусловленная саморазогревом p-n-перехода диода в процессе измерения рассеиваемой мощностью.

Известен способ определения дифференциального сопротивления температурозависимых двухполюсников по наклону изотермической ВАХ, измеренной в импульсном режиме путем подачи на контролируемый двухполюсник последовательности импульсов тока с нарастающей амплитудой, и в измерении амплитуды импульсов напряжения на контролируемом двухполюснике (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа. - 1975. - С.777). Способ измерения изотермической ВАХ путем подачи последовательности импульсов тока с линейно нарастающей амплитудой реализован ряде современных параметрических анализаторов (см., например, Keithley 420 SCS Parameter Analyzer: www.keithley.ru/products/semiconductors/dcac/carrentvoltage/420scs).

Недостатком способа является низкая точность, обусловленная большой погрешностью однократного измерения импульсного напряжения на контролируемом двухполюснике и необходимостью вычисления разности двух близких по значению напряжений. Известно, что погрешность разности двух близких по значению физических величин, измеренных даже с небольшой погрешностью, во много раз превышает погрешность измерения каждой из величин.

Технический результат - повышение точности измерения дифференциального сопротивления нелинейных двухполюсников с температурочувствительной ВАХ.

Технический результат достигается тем, что в известном способе, состоящем в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Формы сигналов на контролируемом двухполюснике, иллюстрирующие и поясняющие принцип измерения, показаны на фиг.1. При подаче на контролируемый двухполюсник амплитудно-модулированной по гармоническому закону последовательности импульсов тока импульсное напряжение на контролируемом двухполюснике будет также амплитудно-модулированным по закону, близкому к гармоническому, со средней амплитудой Uи, при этом, если глубина M модуляции импульсов тока мала, амплитуда Um огибающей импульсного напряжения на контролируемом двухполюснике будет пропорциональна дифференциальному сопротивлению двухполюсника При малой длительности τи и большой скважности Qи импульсов тока разогревом активной области контролируемого двухполюсника рассеиваемой мощностью можно пренебречь. Сущность изобретения состоит в том, что при амплитудно-импульсной модуляции тестовых импульсов тока и последующем измерении полезного сигнала на частоте модуляции за счет частотной фильтрации и многократного повторения измерительного сигнала существенно уменьшаются шумы и пульсации источника питания и измерительных цепей, что повышает помехоустойчивость способа и снижает погрешность измерения дифференциального сопротивления контролируемого двухполюсника по сравнению с известными способами.

Выбор временных параметров тестового сигнала, то есть длительности τи и скважности Qи импульсов тока, определяется теплофизическими параметрами двухполюсника: тепловой постоянной времени τT и тепловым сопротивлением RT. Для полупроводниковых приборов характерная тепловая постоянная времени кристалла составляет сотни микросекунд и длительность импульсов тока рекомендуется выбирать не более 100 мкс. Приращение температуры активной области полупроводникового прибора в импульсном режиме при малой глубине модуляции определяется по формуле ΔT=RTUиIи/Qи, то есть в Qи раз меньше, чем в статическом режиме. В большинстве практических случаев при тех параметрах электрического режима, при которых измеряются характеристики полупроводниковых приборов, перегрев их активной области в статическом режиме не превышает 40-50°C и уже при скважности Qи>30 перегрев активной области контролируемого двухполюсника в импульсном не будет превышать 1-2°C. Заметим, что частота модуляции Ω последовательности импульсов тока согласно теоремы Котельникова должна выбираться из условия Ω<(1/4τиQи).

Структурная схема устройства, реализующего способ, показана на фиг.2, а эпюры, поясняющие работу устройства, - на фиг.3.

Устройство содержит клеммы 1 для подключения контролируемого двухполюсника, генератор импульсов тока 2, генератор низкой частоты 3, модулятор 4, демодулятор 5 и селективный вольтметр 6. При этом одна из клемм для подключения контролируемого двухполюсника соединена с общей шиной (землей) устройства, а вторая клемма - с выходом модулятора 4, сигнальный вход которого соединен с выходом генератора импульсов тока 2, а модулирующий вход модулятора соединен с выходом генератора низкой частоты 3, вторая клемма для подключения контролируемого двухполюсника соединена также со входом демодулятора 5, выход которого подключен ко входу селективного вольтметра 6.

Устройство работает следующим образом. После подключения контролируемого двухполюсника к клеммам 1 и подачи сигнала пуск на генератор импульсов тока 2 и генератор низкой частоты 3 на входы модулятора 4 поступает последовательность коротких импульсов тока большой скважности и модулирующее гармоническое напряжение заданной низкой частоты, с выхода модулятора амплитудно-модулированная последовательность импульсов тока со средней амплитудой Iи и глубиной модуляции M (фиг.3а) подается на контролируемый двухполюсник, импульсное напряжение на контролируемом двухполюснике, которое также является импульсно модулированным (фиг.3б) подается на вход демодулятора 5 и с выхода демодулятора огибающая импульсного напряжения (фиг.3в) поступает на вход селективного вольтметра 6, настроенного на частоту модуляции. По показанию Aпок селективного вольтметра определяем амплитуду Um огибающей импульсного напряжения по формуле Um=kAпок, где коэффициент k определяется типом преобразователя переменного напряжения в постоянное селективного вольтметра, и далее рассчитываем дифференциальное сопротивление контролируемого двухполюсника по формуле

Заметим, что если глубину М модуляции тока при заданной средней амплитуде импульсов тока задать в выбранной системе единиц из условия MIи=k×10n, где n - целое число, то показания селективного вольтметра будут равны дифференциальному сопротивлению контролируемого двухполюсника.

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
Источник поступления информации: Роспатент

Showing 161-170 of 259 items.
10.04.2016
№216.015.2b99

Тепловая электрическая станция

Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях. Тепловая электрическая станция содержит паровой котел, турбогенератор, связанный с электрическими сетями через трансформатор, и распределительное устройство с элегазовыми...
Тип: Изобретение
Номер охранного документа: 0002579415
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f75

Способ мягкого декодирования блоковых кодов

Изобретение относится к технике связи и может быть использовано в системах передачи дискретной информации. Техническим результатом является повышение скорости декодирования и достоверности принимаемой информации. Способ содержит этапы, на которых: для всех разрешенных кодовых комбинаций...
Тип: Изобретение
Номер охранного документа: 0002580797
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2f9f

Логический преобразователь

Изобретение относится к вычислительной технике и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является уменьшение аппаратурных затрат и повышение быстродействия. Устройство содержит одиннадцать мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002580798
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.2fa2

Способ контроля герметичности вакуумных систем турбоустановок

Изобретение относится к области теплоэнергетики. Способ контроля герметичности вакуумных систем турбоустановок, по которому по местам истечения пара избыточного давления визуально определяют неплотности вакуумной системы, опрессовку паром цилиндра среднего давления теплофикационной...
Тип: Изобретение
Номер охранного документа: 0002580850
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3016

Способ работы теплогенерирующей установки

Способ работы теплогенерирующей установки, по которому в котле вырабатывают пар, подпиточную воду готовят в вакуумном деаэраторе, в который подают исходную воду и греющий агент, в качестве которого используют перегретую относительно вакуума в деаэраторе воду, исходную воду перед подачей в...
Тип: Изобретение
Номер охранного документа: 0002580844
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3069

Котельная установка

Изобретение относится к области теплоэнергетики и может быть использовано на паровых котлах для повышения экономичности их работы за счет более эффективного охлаждения воды непрерывной продувки и возвращения ее теплоты в цикл котельной. Котельная установка содержит паровой котел с барабаном, к...
Тип: Изобретение
Номер охранного документа: 0002580852
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3088

Теплофикационная турбоустановка

Изобретение относится к энергетике. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, трубопровод основного конденсата турбины с включенными в него охладителем основных эжекторов и...
Тип: Изобретение
Номер охранного документа: 0002580848
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.3093

Паровой котел

Изобретение относится к теплоэнергетике и может быть использовано в котельных установках. Сущность изобретения заключается в том, что в паровом котле, содержащем экранные трубы, установленные в топке котла, и горелки, снабженные регулятором угла раскрытия факела, регулятор угла раскрытия факела...
Тип: Изобретение
Номер охранного документа: 0002580845
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31c1

Способ контроля герметичности вакуумных систем турбоустановок

Изобретение относится к энергетике. Способ контроля герметичности вакуумных систем турбоустановок, по которому по местам истечения пара избыточного давления визуально определяют неплотности вакуумной системы, причём опрессовку паром цилиндров низкого и среднего давления теплофикационной...
Тип: Изобретение
Номер охранного документа: 0002580847
Дата охранного документа: 10.04.2016
10.04.2016
№216.015.31f1

Теплофикационная турбоустановка

Изобретение относится к области теплоэнергетики. Теплофикационная турбоустановка содержит теплофикационную турбину с отборами пара, подключенными к регенеративным и сетевым подогревателям, конденсатор, трубопровод основного конденсата турбины с включенными в него охладителем пара уплотнений...
Тип: Изобретение
Номер охранного документа: 0002580849
Дата охранного документа: 10.04.2016
Showing 161-170 of 431 items.
27.11.2014
№216.013.0b11

Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением

Устройство относится к установкам для отверждения полимерных материалов на основе полиэфирных смол ультрафиолетовым излучением и может быть использовано при изготовлении изделий со сложной поверхностью. Устройство для отверждения изделий из полимерных материалов ультрафиолетовым излучением...
Тип: Изобретение
Номер охранного документа: 0002534241
Дата охранного документа: 27.11.2014
10.01.2015
№216.013.17cb

Способ определения напряжения локализации тока в мощных вч и свч биполярных транзисторах

Изобретение относится к технике измерения предельных параметров мощных биполярных транзисторов и может использоваться на входном и выходном контроле их качества. Способ основан на использовании известного эффекта резкого изменения крутизны зависимости напряжения на эмиттерном переходе при...
Тип: Изобретение
Номер охранного документа: 0002537519
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1854

Способ работы тепловой электрической станции

Изобретение относится к энергетике. Способ работы тепловой электрической станции, по которому в котле вырабатывают пар, подают его в турбину, пар отборов турбины используют для нагрева сетевой воды в нижнем и верхнем сетевых подогревателях, подпиточную воду деаэрируют в деаэраторе, для чего в...
Тип: Изобретение
Номер охранного документа: 0002537656
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1906

Ворота с повышенной противотаранной прочностью

Ворота с повышенной противотаранной прочностью относятся к устройствам, предназначенным для защиты неподвижных и подвижных объектов от воздействия ударных нагрузок. Ворота содержат две плоские створки 1, 2, размещенные внутри прямоугольной стальной рамы 3, жестко прикрепленной по контуру к...
Тип: Изобретение
Номер охранного документа: 0002537834
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.197f

Устройство для пуска и компенсации реактивной мощности асинхронного двигателя

Изобретение относится к области электротехники и может быть использовано для пуска и компенсации реактивной мощности асинхронных двигателей большой мощности с вентиляторной нагрузкой или пускаемых без нагрузки. Технический результат - уменьшение потерь в рабочем режиме за счет исключения...
Тип: Изобретение
Номер охранного документа: 0002537955
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1981

Электропривод автономного объекта с вентильным двигателем

Изобретение относится к области электротехники и может быть использовано в вентильном электроприводе автономных объектов. Техническим результатом является повышение энергоэффективности за счет оптимизации в режиме пуска и использования режима рекуперативного торможения. Электропривод...
Тип: Изобретение
Номер охранного документа: 0002537957
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19ac

Тепловая электрическая станция

Изобретение относится к энергетике. Тепловая электрическая станция, содержащая паровой котел, теплофикационную турбину с отборами пара, подключенными к регенеративным подогревателям, деаэратор добавочной питательной воды с подключенными к нему трубопроводом исходной воды и патрубками подвода и...
Тип: Изобретение
Номер охранного документа: 0002538000
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e3

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании,...
Тип: Изобретение
Номер охранного документа: 0002538055
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e4

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002538056
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.19e5

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании, в мас.%:...
Тип: Изобретение
Номер охранного документа: 0002538057
Дата охранного документа: 10.01.2015
+ добавить свой РИД