×
27.03.2015
216.013.3526

Результат интеллектуальной деятельности: СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к технике измерения электрических параметров нелинейных элементов цепей с температурозависимой вольт-амперной характеристикой, в частности полупроводниковых приборов, и может быть использовано на выходном и входном контроле их качества. Подают на контролируемый двухполюсник последовательность коротких импульсов тока большой скважности с изменяющейся амплитудой и измеряют амплитуды импульсов напряжения на контролируемом двухполюснике. При этом амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции М. На частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле Технический результат заключается в повышении точности измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой. 3 ил.
Основные результаты: Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Изобретение относится к технике измерения параметров нелинейных элементов электрических цепей с температурозависимой вольт-амперной характеристикой (ВАХ) и может быть использовано, например, при параметрическом контроле полупроводниковых диодов и полупроводниковых приборов с р-n-переходами.

Известен способ измерения дифференциального сопротивления полупроводниковых диодов (см. ГОСТ 18986.14-85 Диоды полупроводниковые. Методы измерения дифференциального и динамического сопротивлений), заключающийся в подаче постоянного тока I0 для задания рабочей точки и переменного гармонического тока малой амплитуды Im в качестве тестового сигнала на калибровочный резистор сопротивлением RK, в измерении амплитуды U переменного напряжения на калибровочном резисторе, в подключении к генератору тока вместо калибровочного резистора контролируемого диода и в измерении амплитуды U переменной составляющей напряжения на контролируемом диоде и определении дифференциального сопротивления диода по формуле

Условием точного измерения дифференциального сопротивления нелинейных двухполюсников является малость тестового сигнала. В ГОСТ 18986.14-85 условие малости тестового сигнала задается в виде ограничения амплитуды переменного тока, которая не должна превышать 10% значения постоянного тока.

Недостатком известного способа является большая погрешность, обусловленная саморазогревом p-n-перехода диода в процессе измерения рассеиваемой мощностью.

Известен способ определения дифференциального сопротивления температурозависимых двухполюсников по наклону изотермической ВАХ, измеренной в импульсном режиме путем подачи на контролируемый двухполюсник последовательности импульсов тока с нарастающей амплитудой, и в измерении амплитуды импульсов напряжения на контролируемом двухполюснике (см. Аронов В.Л., Федотов Я.А. Испытание и исследование полупроводниковых приборов. - М.: Высшая школа. - 1975. - С.777). Способ измерения изотермической ВАХ путем подачи последовательности импульсов тока с линейно нарастающей амплитудой реализован ряде современных параметрических анализаторов (см., например, Keithley 420 SCS Parameter Analyzer: www.keithley.ru/products/semiconductors/dcac/carrentvoltage/420scs).

Недостатком способа является низкая точность, обусловленная большой погрешностью однократного измерения импульсного напряжения на контролируемом двухполюснике и необходимостью вычисления разности двух близких по значению напряжений. Известно, что погрешность разности двух близких по значению физических величин, измеренных даже с небольшой погрешностью, во много раз превышает погрешность измерения каждой из величин.

Технический результат - повышение точности измерения дифференциального сопротивления нелинейных двухполюсников с температурочувствительной ВАХ.

Технический результат достигается тем, что в известном способе, состоящем в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой Iи и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду Um огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле

Формы сигналов на контролируемом двухполюснике, иллюстрирующие и поясняющие принцип измерения, показаны на фиг.1. При подаче на контролируемый двухполюсник амплитудно-модулированной по гармоническому закону последовательности импульсов тока импульсное напряжение на контролируемом двухполюснике будет также амплитудно-модулированным по закону, близкому к гармоническому, со средней амплитудой Uи, при этом, если глубина M модуляции импульсов тока мала, амплитуда Um огибающей импульсного напряжения на контролируемом двухполюснике будет пропорциональна дифференциальному сопротивлению двухполюсника При малой длительности τи и большой скважности Qи импульсов тока разогревом активной области контролируемого двухполюсника рассеиваемой мощностью можно пренебречь. Сущность изобретения состоит в том, что при амплитудно-импульсной модуляции тестовых импульсов тока и последующем измерении полезного сигнала на частоте модуляции за счет частотной фильтрации и многократного повторения измерительного сигнала существенно уменьшаются шумы и пульсации источника питания и измерительных цепей, что повышает помехоустойчивость способа и снижает погрешность измерения дифференциального сопротивления контролируемого двухполюсника по сравнению с известными способами.

Выбор временных параметров тестового сигнала, то есть длительности τи и скважности Qи импульсов тока, определяется теплофизическими параметрами двухполюсника: тепловой постоянной времени τT и тепловым сопротивлением RT. Для полупроводниковых приборов характерная тепловая постоянная времени кристалла составляет сотни микросекунд и длительность импульсов тока рекомендуется выбирать не более 100 мкс. Приращение температуры активной области полупроводникового прибора в импульсном режиме при малой глубине модуляции определяется по формуле ΔT=RTUиIи/Qи, то есть в Qи раз меньше, чем в статическом режиме. В большинстве практических случаев при тех параметрах электрического режима, при которых измеряются характеристики полупроводниковых приборов, перегрев их активной области в статическом режиме не превышает 40-50°C и уже при скважности Qи>30 перегрев активной области контролируемого двухполюсника в импульсном не будет превышать 1-2°C. Заметим, что частота модуляции Ω последовательности импульсов тока согласно теоремы Котельникова должна выбираться из условия Ω<(1/4τиQи).

Структурная схема устройства, реализующего способ, показана на фиг.2, а эпюры, поясняющие работу устройства, - на фиг.3.

Устройство содержит клеммы 1 для подключения контролируемого двухполюсника, генератор импульсов тока 2, генератор низкой частоты 3, модулятор 4, демодулятор 5 и селективный вольтметр 6. При этом одна из клемм для подключения контролируемого двухполюсника соединена с общей шиной (землей) устройства, а вторая клемма - с выходом модулятора 4, сигнальный вход которого соединен с выходом генератора импульсов тока 2, а модулирующий вход модулятора соединен с выходом генератора низкой частоты 3, вторая клемма для подключения контролируемого двухполюсника соединена также со входом демодулятора 5, выход которого подключен ко входу селективного вольтметра 6.

Устройство работает следующим образом. После подключения контролируемого двухполюсника к клеммам 1 и подачи сигнала пуск на генератор импульсов тока 2 и генератор низкой частоты 3 на входы модулятора 4 поступает последовательность коротких импульсов тока большой скважности и модулирующее гармоническое напряжение заданной низкой частоты, с выхода модулятора амплитудно-модулированная последовательность импульсов тока со средней амплитудой Iи и глубиной модуляции M (фиг.3а) подается на контролируемый двухполюсник, импульсное напряжение на контролируемом двухполюснике, которое также является импульсно модулированным (фиг.3б) подается на вход демодулятора 5 и с выхода демодулятора огибающая импульсного напряжения (фиг.3в) поступает на вход селективного вольтметра 6, настроенного на частоту модуляции. По показанию Aпок селективного вольтметра определяем амплитуду Um огибающей импульсного напряжения по формуле Um=kAпок, где коэффициент k определяется типом преобразователя переменного напряжения в постоянное селективного вольтметра, и далее рассчитываем дифференциальное сопротивление контролируемого двухполюсника по формуле

Заметим, что если глубину М модуляции тока при заданной средней амплитуде импульсов тока задать в выбранной системе единиц из условия MIи=k×10n, где n - целое число, то показания селективного вольтметра будут равны дифференциальному сопротивлению контролируемого двухполюсника.

Способ измерения дифференциального сопротивления нелинейного двухполюсника с температурозависимой вольт-амперной характеристикой, состоящий в подаче на контролируемый двухполюсник последовательности коротких импульсов тока большой скважности с изменяющейся амплитудой и измерении амплитуды импульсов напряжения на контролируемом двухполюснике, отличающийся тем, что амплитуду импульсов тока изменяют по гармоническому закону с заданной частотой Ω со средней амплитудой I и глубиной модуляции M, на частоте модуляции Ω измеряют амплитуду U огибающей импульсного напряжения на контролируемом двухполюснике и дифференциальное сопротивление рассчитывают по формуле
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
СПОСОБ ИЗМЕРЕНИЯ ДИФФЕРЕНЦИАЛЬНОГО СОПРОТИВЛЕНИЯ НЕЛИНЕЙНОГО ДВУХПОЛЮСНИКА С ТЕМПЕРАТУРОЗАВИСИМОЙ ВОЛЬТАМПЕРНОЙ ХАРАКТЕРИСТИКОЙ
Источник поступления информации: Роспатент

Showing 141-150 of 259 items.
20.10.2015
№216.013.8736

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида молибдена. Затем наносят верхний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002566217
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8737

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к области металлургии, в частности, к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана,...
Тип: Изобретение
Номер охранного документа: 0002566218
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8738

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, хрома и ниобия при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002566219
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.8739

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, кремния и хрома при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002566220
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.873a

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002566221
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.873b

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, алюминия и хрома при их соотношении,...
Тип: Изобретение
Номер охранного документа: 0002566222
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.873c

Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида молибдена. Затем наносят верхний слой из нитрида соединения...
Тип: Изобретение
Номер охранного документа: 0002566223
Дата охранного документа: 20.10.2015
27.11.2015
№216.013.9574

Безопасное сиденье транспортного средства

Изобретение относится к устройствам для обеспечения пассивной безопасности пассажирских транспортных средств. Безопасное сиденье транспортного средства содержит механизм его автоматического освобождения от стационарно зафиксированного состояния в момент аварийного торможения транспортного...
Тип: Изобретение
Номер охранного документа: 0002569879
Дата охранного документа: 27.11.2015
27.11.2015
№216.013.9575

Система безопасности пользователя сиденьем транспортного средства

Изобретение относится к средствам пассивной безопасности пассажирских транспортных средств. Система безопасности пользователя сиденьем транспортного средства включает механизм управления ограниченным перемещением в направлении действия сил инерции и фиксацией в начальном и конечном положениях...
Тип: Изобретение
Номер охранного документа: 0002569880
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.959e

Способ определения теплового сопротивления переход-корпус цифровых интегральных микросхем

Изобретение относится к технике измерения тепловых параметров полупроводниковых приборов и интегральных микросхем и может быть использовано для контроля качества и оценки температурных запасов цифровых интегральных микросхем на выходном и входном контроле. Сущность: нечетное число (n>1)...
Тип: Изобретение
Номер охранного документа: 0002569922
Дата охранного документа: 10.12.2015
Showing 141-150 of 431 items.
27.05.2014
№216.012.c86e

Способ торможения роста усталостных трещин в толстолистовом материале

Изобретение относится к ремонту широкого класса техники, содержащей толстолистовые элементы конструкции и изделия с поверхностными трещинами, и может быть использовано при восстановлении авиационной, сельскохозяйственной и автотракторной техники. В способе осуществляют создание структурного...
Тип: Изобретение
Номер охранного документа: 0002517076
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.c870

Обтяжной пуансон, минимизирующий усилие, затраченное на растяжение образца в процессе гибки с растяжением по рабочей части обтяжного пуансона

Изобретение относится к области обработки металлов давлением, в частности к обтяжным пуансонам. Обтяжной пуансон содержит основание и рабочую часть в виде подшипников качения, наружные кольца которых повторяют формообразующую поверхность рабочей части обтяжного пуансона, по которой осуществляют...
Тип: Изобретение
Номер охранного документа: 0002517078
Дата охранного документа: 27.05.2014
27.05.2014
№216.012.caf2

Логический преобразователь

Устройство предназначено для реализации любой из пяти простых симметричных булевых функций, зависящих от пяти аргументов - входных двоичных сигналов, и может быть использовано в системах цифровой вычислительной техники как средство преобразования кодов. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002517720
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.d00a

Карниз крыши здания

Изобретение относится к области строительства, в частности к карнизу крыши здания. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Карниз крыши содержит выступающую за его кромку упругую полосу из стали, выполненную с возможностью задержания снега,...
Тип: Изобретение
Номер охранного документа: 0002519029
Дата охранного документа: 10.06.2014
20.06.2014
№216.012.d378

Система обеспечения микроклимата

Изобретение относится к вентиляции и может быть использовано в гражданских зданиях. Система обеспечения микроклимата содержит ветрогенератор 1 с трансмиссией 2, тормозной системой 3 и лопастями 4, сопряженный с ресивером 5, соединенным с одной стороны с пневматическим пусковым двигателем 6,...
Тип: Изобретение
Номер охранного документа: 0002519907
Дата охранного документа: 20.06.2014
10.07.2014
№216.012.daaf

Цифровой измерительный преобразователь индуктивного типа с повышенным быстродействием

Изобретение относится к измерительной технике. Цифровой измерительный преобразователь индуктивного типа, включающий в себя микроконтроллер, подключенный к блоку формирования импульсов, выход которого подключен к входам усилителей тока измерительного и опорного плеч преобразователя, выходы...
Тип: Изобретение
Номер охранного документа: 0002521761
Дата охранного документа: 10.07.2014
10.07.2014
№216.012.dacb

Способ определения теплового импеданса сверхбольших интегральных схем - микропроцессоров и микроконтроллеров

Способ предназначен для использования на выходном и входном контроле качества сверхбольших интегральных схем (СБИС) - микропроцессоров и микроконтроллеров - и оценки их температурных запасов. В контролируемую СБИС, установленную на теплоотводе и подключенную к источнику питания, загружают...
Тип: Изобретение
Номер охранного документа: 0002521789
Дата охранного документа: 10.07.2014
10.09.2014
№216.012.f3d3

Способ настройки тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности с учетом положительной нелинейности температурной характеристики выходного сигнала датчика

Изобретение относится к измерительной технике и может быть использовано при настройке тензорезисторных датчиков с мостовой измерительной цепью по мультипликативной температурной погрешности. Сущность: при сопротивлении нагрузки R≥500 кОм определяют температурный коэффициент чувствительности...
Тип: Изобретение
Номер охранного документа: 0002528242
Дата охранного документа: 10.09.2014
20.09.2014
№216.012.f56d

Устройство для удаления сосулек

Изобретение относится к области строительства, в частности к устройству для удаления сосулек с крыш зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Устройство для удаления сосулек закреплено под карнизом крыши с водосточными трубами и...
Тип: Изобретение
Номер охранного документа: 0002528662
Дата охранного документа: 20.09.2014
20.10.2014
№216.013.00c3

Твердый смазочный материал для абразивной обработки

Настоящее изобретение относится к твердому смазочному материалу для абразивной обработки, содержащему стеариновую кислоту, дисульфид молибдена, при этом он дополнительно содержит ультрадисперсный порошок диатомита, пропитанный минеральным маслом с поверхностно-активными веществами и...
Тип: Изобретение
Номер охранного документа: 0002531587
Дата охранного документа: 20.10.2014
+ добавить свой РИД