×
20.03.2015
216.013.3491

Результат интеллектуальной деятельности: ПОЛИМЕРНАЯ ЖИДКОСТЬ С ИНИЦИИРУЕМЫМ ЗАГУСТЕВАНИЕМ ДЛЯ ЗАКАЧИВАНИЯ В ПЛАСТ И СПОСОБЫ ЕЕ ПРИМЕНЕНИЯ

Вид РИД

Изобретение

№ охранного документа
0002544932
Дата охранного документа
20.03.2015
Аннотация: Настоящее изобретение относится к эксплуатации углеводородсодержащих пластов или нагнетательных скважин. Способ для обработки подземных углеводородсодержащих пластов включает: a) обеспечение композицией, включающей инициатор загустевания, изменяющий pH, и полимер, способный гидратироваться в определенной области pH; b) закачивание композиции со значением pH, находящимся за пределами указанной области pH; с) активизацию действия инициатора загустевания pH для смещения pH композиции в указанную область его значений и d) обеспечение возможности увеличения вязкости композиции и формирования пробки. По другому варианту способ для обработки подземных углеводородсодержащих пластов включает: а) обеспечение композицией, содержащей полимер, способный гидратироваться в определенной области pH; b) закачивание композиции со значением pH, находящимся за пределами указанной области pH; с) обеспечение инициатора загустевания, изменяющего pH; d) активацию действия инициатора загустевания для смещения pH композиции в указанную область его значений и е) обеспечение возможности увеличения вязкости композиции и формирования пробки. Изобретение развито в зависимых пунктах формулы. Технический результат - повышение эффективности инициирования и контролирования образования пробок. 2 н. и 13 з.п. ф-лы, 5 пр., 3 ил.

Перекрестная ссылка на родственную заявку

[0001] В настоящей заявке испрашивается приоритет по дате подачи предварительной заявки на патент США серийного номера 12/976395, под названием «Полимерная жидкость с инициируемым загустеванием для закачивания в пласт и способы ее применения», поданной 22 декабря 2010 года, которая включена в настоящий документ путем ссылки в полном объеме.

Область техники

[0002] Настоящее изобретение относится, в основном, к эксплуатации углеводородсодержащих пластов или нагнетательных скважин. Более конкретно, настоящее изобретение относится к химическому разобщению или смещению пластов и основано на свойствах гидратации некоторых биополимеров, в основном, гуаровых производных.

Уровень техники

[0003] Описания в этой области дают лишь базовую информацию, связанную с настоящим описанием, и не могут составлять известный уровень техники.

[0004] Углеводороды (нефть, конденсат и газ) обычно добываются из скважин, которые бурятся в содержащие их пласты. По целому ряду причин, таких как низкая, по своей сути, проницаемость коллекторов или повреждение пласта, вызванное бурением и заканчиванием скважины, поток углеводородов в скважину находится на неприемлемо низком уровне. В этом случае скважину «стимулируют», например, при помощи гидравлического разрыва, химического (обычно кислотного) стимулирования или комбинацией этих двух способов (называемой кислотным разрывом или кислотным гидроразрывом).

[0005] Гидравлический разрыв включает закачивание жидкостей в пласт под высоким давлением и при высокой скорости, таким образом, чтобы пластовая порода разрушилась, образуя разрыв (или сеть разрывов). Для предотвращения смыкания трещин после снижения давления в разрывающие жидкости обычно вводятся после подушки расклинивающие агенты. При обработке химическим (кислотным) стимулированием, потокоемкость увеличивается за счет растворения материалов в пласте.

[0006] При гидравлическом и кислотном разрыве обычно в пласт сначала вводят вязкую жидкость, называемую «подушкой», для инициации и распространения разрыва. После этого вводят вторую жидкость, которая содержит расклинивающий агент для предотвращения смыкания трещин после снижения давления. Гранулированные расклинивающие агенты могут включать песок, керамические шарики или другие материалы. При «кислотном» разрыве вторая жидкость содержит кислоту или другое химическое вещество, такое как хелатирующий агент, которое может растворять часть породы, обуславливая неравномерное травление поверхности разрыва и удаление некоторого количества минерального вещества, приводя к тому, что разрыв не может полностью закрыться при остановке нагнетания. Иногда гидравлический разрыв выполняется без высоковязкой жидкости (то есть реагентом на водной основе) для минимизации расходов на полимеры или другие загустители.

[0007] При стимулировании гидравлическим разрывом или химическом стимулировании многопластовых нефтегазоносных зон желательно обрабатывать многопластовые зоны в несколько этапов. При разрыве многопластовой зоны разрывается первая продуктивная зона. Затем разрывающая жидкость отводится на следующий этап для разрыва следующей продуктивной зоны. Этот процесс повторяется до разрыва всех продуктивных зон. Альтернативно, несколько продуктивных зон могут быть разорваны одновременно, если они близко расположены и имеют похожие характеристики. Отвод может быть осуществлен различными способами, включая образование временной подушки при помощи полимерных гелей или твердых материалов, регулирующих водоотдачу.

[0008] Полимерные гели широко используются для выравнивания профиля приемистости природных трещиноватых/трещинных коллекторов. Обзор существующих полимерных композиций представлен в патентах США №№ 5486312 и 5203834, где перечислен также ряд патентов и других источников, относящихся к гелеобразующим полимерам.

[0009] Авторы настоящей заявки открыли способ инициирования и контролирования образования пробок.

Краткое описание сущности изобретения

[0010] В первом аспекте раскрыт способ. Этот способ включает обеспечение композиции, включающей инициатор загустения, изменяющий pH и полимер, способный гидратироваться в определенной области pH; закачивание композиции с pH, находящимся за пределами определенной области pH, активизацию действия инициатора загустения для смещения pH композиции в пределы указанной области pH; и обеспечение возможности повышения вязкости композиции и формирования пробки.

[0011] Во втором аспекте раскрыт способ обработки подземных пластов в стволе скважины. Этот способ включает получение композиции, содержащей полимер, способный гидратироваться в определенной области pH; закачивание композиции с рН, находящимся за пределами определенной области pH; доставку инициатора загустения, изменяющего pH; активизацию действия инициатора загустения для смещения pH композиции в пределы указанной области значений pH; и обеспечение возможности увеличения вязкости композиции и формирования пробки.

[0012] В третьем аспекте раскрыт способ разобщения или смещения пластов в стволе скважины. Этот способ включает обеспечение композицией, содержащей полимер, способный гидратироваться в определенной области pH; закачивание в скважину композиции с pH, находящимся за пределами определенной области pH; доставку инициатора загустевания, изменяющего pH; активацию действия инициатора загустевания для смещения pH композиции в указанную область его значений и обеспечение возможности увеличения вязкости композиции и формирования пробки.

Краткое описание графического материала

[0013] На фигуре 1 представлен график, изображающий скорости гидратации CMHPG при различных pH.

[0014] На фигуре 2 представлен график, изображающий гидратацию полимера по одному варианту, ускоренную высвобождением кислоты, инициированным воздействием температуры.

[0015] На фигуре 3 представлен график, изображающий гидратацию полимера по второму варианту, ускоренную высвобождением кислоты, инициированным воздействием температуры.

Подробное описание

[0016] Вначале следует отметить, что при разработке каких-либо реальных вариантов, необходимо принять многочисленные решения, зависящие от конкретного способа осуществления, для достижения определенных целей разработчика, таких как соответствие ограничениям системы и бизнеса, которые могут варьировать от одного воплощения к другому. Более того, следует понимать, что такие опытно-конструкторские работы могут быть сложными и затратными по времени, но, тем не менее, они должны быть выполнены в установленном порядке теми специалистами в данной области, для которых имеет преимущество настоящее описание.

[0017] Настоящее описание и примеры представлены лишь с целью иллюстрации вариантов настоящего изобретения и их не следует толковать как ограничение рамок и применимости настоящего изобретения. В сущности изобретения и подробном описании каждое числовое значение следует сначала читать как модифицированное термином «около» (если оно уже немодифицировано таким образом), а затем читать как не модифицированное таким образом, если в контексте не указано иное. Также в сущности настоящего изобретения и подробном описании следует понимать, что диапазоны концентраций, перечисленные или описанные как применимые, пригодные или подобное, означают, что любую или каждую концентрацию в пределах диапазона, включая граничные значения, следует рассматривать как заданную. Например, «диапазон от 1 до 10» следует читать как указывающий каждое и любое возможное число в непрерывном диапазоне от около 1 до 10. Так, даже если конкретные точки данных находятся внутри диапазона, или даже если внутри диапазона нет точек данных, однозначно указанных или упомянутых лишь для некоторых частных случаев, следует понимать, что авторы изобретения предполагают и рассматривают, что любые и все точки данных, находящиеся в этом диапазоне, следует считать указанными, и что авторам изобретения принадлежит полный диапазон всех точек в описанном диапазоне и они обладают правом на весь диапазон и все точки в пределах этого диапазона.

[0018] Следующие определения представлены для облегчения понимания специалистами в данной области подробного описания настоящего изобретения.

[0019] Термин «разрыв» относится к процессу и способам разрушения геологического пласта и создания разрыва, то есть горных пород вокруг ствола скважины, путем закачивания жидкости под очень высоким давлением, для увеличения отдачи из коллектора углеводородов. Во всем остальном в способах разрыва используются стандартные приемы, известные в данной области.

[0020] В соответствии с первым варрантом, способ включает обеспечение композицией, включающей инициатор загустения, изменяющий pH и полимер, способный гидратироваться в определенной области значений pH; закачивание композиции с pH, находящимся за пределами указанной области pH; активацию действия инициатора загустения для смещения pH композиции в указанную область его значений; и обеспечение возможности увеличения вязкости композиции и формирования пробки.

[0021] Определенная область pH находится в пределах от около pH 0 до около pH 8,5, или от около pH 2 до около pH 8, или от около pH 3 до около pH 8, или от около pH 3,5, до около pH 7,5.

[0022] Увеличение вязкости свыше 150 сПз и образование пробки выполняется менее чем за 10 минут или даже менее чем за 5 минут, для обеспечения возможности быстрого образования пробки.

[0023] Композиция может быть получена в виде водного раствора. Водный раствор может быть раствором пресной воды или водным раствором, включающим соли одно-, двух- или трехвалентных металлов, аммония и их смеси. Соль может присутствовать естественным образом, если используется рапа, или может добавляться в водный раствор. Например, в воду можно добавлять любую соль, такую как соль щелочного металла или соль щелочноземельного металла (NaCO3, NaCl, KCl и так далее). Соль обычно содержится в весовой процентной концентрации от около 0,1% до около 5%, от около 1% до около 3% по весу. Одна из применимых концентраций составляет около 2% по весу. Для некоторых применений, в частности, если может ожидаться замораживание, водный раствор может дополнительно включать спирт, такой как метанол, этанол, пропанол или многоатомный спирт, такой как глицерин или полигликоли, или их смеси.

[0024] Полимер, способный гидратироваться, может быть любым сшитым полимером. Полимер может быть металл-сшитым полимером. Пригодные полимеры для получения металл-сшитых полимеров включают, например, полисахариды, такие как замещенные галактоманнаны, такие как гуаровые смолы, высокомолекулярные полисахариды, состоящие из сахаров маннозы и галактозы, или гуаровые производные, такие как катионные гуаровые производные, такие как гуар гидроксипропилтримоний хлорид и схожий гидроксипропил гуар (HPG), карбоксиметилгидроксипропил гуар (CMHPG) и карбоксилметил гуар (CMG), гидрофобно модифицированные гуары, гуар-содержащие соединения и синтетические полимеры. Для увеличения эффективного молекулярного веса полимера и улучшения их пригодности для применения в высокотемпературных скважинах обычно используются сшиваюшие агенты на основе комплексов бора, титана, циркония или алюминия.

[0025] Другие пригодные классы полимеров включают поливиниловые полимеры, полиметакриламиды, эфиры целлюлозы, лингосульфонаты, а также их соли аммония, хитозана, щелочных металлов и щелочноземельных металлов. Более конкретными примерами других стандартных водорастворимых полимеров являются сополимеры акриловой кислоты-акриламида, сополимеры акриловой кислоты-метакриламида, полиакриламиды, частично гидролизованные полиакриламиды, частично гидролизованные полиметакриламиды, поливиниловый спирт, полиалкиленоксиды, другие галактоманнаны, гетерополисахариды, полученные ферментацией крахмального сахара, а также их соли аммония и щелочных металлов.

[0026] В меньшей степени используются производные целлюлозы, такие как гидроксицеллюлоза (HEC) или гидроксипропилцеллюлоза (HPC), карбоксиметилгидроксиэтилцеллюлоза (CMHEC) и карбоксиметилцеллюлоза (CMC) со сшивающими агентами или без них. Было показано, что ксантан, диутан и склероглюкан, три биополимера, обладают превосходной способностью образовывать суспензии твердых частичек, несмотря на их более высокую стоимость по сравнению с гуаровыми производными и, следовательно, менее частое использование, за исключением возможного использования при более низких концентрациях.

[0027] В других вариантах полимер получают из сшиваемого, гидратируемого полимера и сшивающего агента замедленного действия, где сшивающий агент включает комплекс, включающий металл и первый лиганд, выбранный из группы, состоящей из аминокислот, фосфоновых кислот и их солей или производных. Сшитый полимер может быть также получен из полимера, включающего боковые ионные фрагменты, поверхностно-активного вещества, включающего противоположно заряженные фрагменты, антикоагулянта глин, источника бората и металлического сшивателя. Указанные варианты описаны в патентных публикациях США US2008-0280790 и US2008-0280788, соответственно, каждая из которых включена в настоящий документ путем ссылки.

[0028] Инициатор pH может быть органической или неорганической кислотой. Инициатор pH может быть жидкой, твердой или инкапсулированной кислотой. Инициатор pH может быть инкапсулирован в микросферы или быть в эмульсии или суспензии в некоторых жидких носителях.

[0029] В одном варианте инициатор pH является инкапсулированной кислотой с защитным покрытием. Защитное покрытие способно разрушаться при изменении температуры, по сути, не зависимо от времени. В другом варианте защитное покрытие способно разрушаться при изменении температуры и в зависимости от времени.

[0030] В одном варианте используемым полимером является биополимер гуарового производного. Для гидратации этих биополимеров необходим определенный диапазон pH. За пределами этого диапазона pH гидратация протекает очень медленно или вовсе отсутствует. В случае производной гуаровой смолы, зависимость скорости гидратации от pH может зависеть от конкретных условий производства. Один из этапов производственного процесса включает сшивание в мягких условиях гуаровых пластин с боратами. Реакция сшивания происходит при щелочном pH (обычно выше 9), а полученный полимер обладает основными свойствами. Боратные сшивки, которые остаются устойчивыми при pH свыше 8,5-9, удерживают молекулы гуара вместе, предотвращая проникновение молекул воды внутрь полимерных гранул и замедляя, таким образом, гидратацию. При химическом удалении сшивок за счет снижения pH, молекулы полимера разворачиваются и мгновенно происходит гидратация, приводя к набуханию полимерных зерен и резкому увеличению вязкости.

[0031] Пример зависимости гидратации от pH представлен на фигуре 1, где 1,25% (по весу) суспензии CMHPG в воде не гидратируется и, следовательно, не вызывает какого-либо увеличения вязкости при pH 10,5, 11,0 и 11,6. При снижении pH до 7,7 при помощи нескольких капель HCl, мгновенно происходит гидратация, приводящая к резкому увеличению вязкости.

[0032] Композиция может дополнительно включать разлагаемый материал. Разлагаемым материалом могут быть разлагаемые волокна или частички, полученные из разлагаемых полимеров. Различие молекулярных структур разлагаемых материалов обеспечивает большие возможности регулирования скорости разложения разлагаемого материала. При выборе соответствующего разлагаемого материала следует учитывать образующиеся продукты разложения. Например, некоторые могут образовывать при разложении кислоту, а присутствие кислоты может быть нежелательным; другие могут образовывать нерастворимые продукты разложения, которые могут быть нежелательными. Кроме того, эти продукты разложения не должны оказывать вредного воздействия на другие производственные процессы или компоненты.

[0033] Разлагаемость полимера зависит, по меньшей мере частично, от структуры его скелета. Одной из наиболее общих структурных характеристик является наличие гидролизующихся и/или окисляемых связей в скелете. Скорость разложения, например, сложных полиэфиров зависит от типа повторяющихся звеньев, состава, последовательности, длины, молекулярной геометрии, молекулярного веса, морфологии (например, кристалличности, размера и ориентации сферолитов), гидрофильности, площади поверхности и добавок. Кроме того, на разложение полимера могут влиять условия, которые воздействуют на полимер, например, температура, присутствие влаги, кислорода, микроорганизмов, ферментов, pH и тому подобное. Специалисты в данной области, для которых имеет преимущество настоящее изобретение, могут определить оптимальный полимер для данного применения с учетом характеристик используемого полимера и условий, которые на него воздействуют.

[0034] Пригодные примеры полимеров, которые могут использоваться, содержат, однако не ограничиваясь этим, гомополимеры, статистические сополимеры алифатических сложных полиэфиров, блок-сополимеры алифатических сложных полиэфиров, звездообразные сополимеры алифатических сложных полиэфиров или сверхразветвленные сополимеры алифатических сложных полиэфиров. Такие применимые полимеры могут быть получены реакциями поликонденсации, полимеризации с раскрытием кольца, свободно-радикальной полимеризации, анионной полимеризации, карбокатионной полимеризации, координационной полимеризации с раскрытием кольца, например, для лактонов, и любыми другими пригодными способами. Конкретные примеры применимых полимеров включают полисахариды, такие как декстран или целлюлоза, хитины; хитозаны; белки; алифатические сложные полиэфиры; поли(лактиды); поли(гликолиды); поли(ε-капролактоны); смешанные простые и сложные поли(гидроксиэфиры); поли(гидроксибутираты); полиангидриды; поликарбонаты; сложные поли(ортоэфиры); поли(ацетали); поли(акрилаты); поли(алкилакрилаты); поли(аминокислоты); поли(этиленоксид); смешанные простые и сложные полиэфиры; сложные полиэфир-амиды; полиамиды; полифосфазены; и их сополимеры и смеси. Могут применяться другие разлагаемые полимеры, которые могут подвергаться гидролитическому разложению. Одним руководством при выборе композитных частиц для использования в конкретном применении являются образующиеся продукты разложения. Другим руководством являются условия, присутствующие при конкретном применении.

[0035] Из этих применимых полимеров предпочтительными являются алифатические, сложные полиэфиры. Из применимых алифатических сложных полиэфиров предпочтительными являются сложные полиэфиры α или β гидроксикислот. Наиболее предпочтительным является поли(лактид). Поли(лактид) синтезируется из молочной кислоты реакцией конденсации или, более часто, полимеризацией циклического лактидного мономера с раскрытием кольца. Лактидный мономер обычно существует в трех различных формах: два стереоизомера, L- и D-лактид; и D,L-лактид (мезо-лактид). Хиральность лактидных звеньев обеспечивает возможность регулировать, помимо прочего, скорость разложения, а также физические и механические свойства после полимеризации лактида. Поли(L-лактид), например, является полукристаллическим полимером с относительно низкой скоростью гидролиза. Это может быть желательным в тех применениях, где требуется низкое разложение разлагаемого материала. Поли(D,L-лактид) является аморфным полимером с гораздо более высокой скоростью гидролиза. Стереоизомеры молочной кислоты могут использоваться по отдельности или комбинироваться для применения в композициях и способах вариантов настоящего изобретения. Кроме того, они могут быть сополимеризованы, например, с гликолидом или другими мономерами, такими как ε-капролактон, 1,5-диоксепан-2-он, триметиленкарбонат, или другим пригодным мономерами для получения полимеров с другими свойствами или временем разложения. Кроме того, стереоизомеры молочной кислоты могут быть модифицированы смешиванием с высокомолекулярным или низкомолекулярным полилактидом или смешиванием полилактида с другими алифатическими сложными полиэфирами. Например, скорость разложения полимолочной кислоты может зависеть от смешивания, например, с высокомолекулярными или низкомолекулярными полилактидами; смесями полилактида и лактидного мономера; или от смешивания полилактида с другими алифатическими сложными полиэфирами.

[0036] Физические свойства разлагаемых полимеров могут зависеть от нескольких факторов, таких как состав повторяющихся звеньев, гибкость цепи, наличие полярных групп, молекулярная масса, степень разветвления, кристалличность, ориентация и так далее. Например, короткие ответвления снижают степень кристалличности полимеров, тогда как длинные ответвления снижают вязкость расплава и придают, помимо прочего, продольную вязкость с характеристиками жесткости при растяжении. Свойства используемого материала могут быть дополнительно скорректированы смешиванием и сополимеризацией с другим полимером или изменением макромолекулярного строения (например, сверхразветвленные полимеры, звездообразные или дендримеры и так далее). Свойства любых таких применимых разлагаемых полимеров (такие как гидрофильность, скорость биоразложения и так далее) могут быть скорректированы внедрением функциональных групп вдоль полимерных цепей. Специалисты в данной области, для которых имеет преимущество настоящее описание, могут определить соответствующие функциональные группы, которые нужно внедрить в полимерные цепи для достижения желаемого эффекта.

[0037] В некоторых вариантах разлагаемые материалы представлены в форме гранул, порошка, сфер, лент, пластин, волокон, чешуек или любой другой форме с соотношением размеров равным или более единицы. В некоторых вариантах разлагаемые материалы включают частицы, имеющие размерное соотношение более 10, более 100, более 200, более 250 или тому подобное, такие как пластины или волокна, или тому подобные. Смесевые материалы могут принимать любую форму композитов, например, биоразлагаемые материал с покрытием или каркасной структурой из других материалов, диспергированных в нем. Кроме того, разлагаемые частицы могут быть нано-, микро- или мезопористыми структурами, которые являются фрактальными или нефрактальными.

[0038] В соответствии со следующим вариантом, композиция может дополнительно включать добавки, такие как разжижители, антиоксиданты, ингибиторы коррозии, замедляющие агенты, биоциды, буферы, регулирующие водоотдачу добавки, pH-регуляторы, твердые кислоты, предшественники твердых кислот, органические ингибиторы солевых отложений, неорганические ингибиторы солевых отложений, деэмульгирующие агенты, ингибиторы парафиноотложения, ингибиторы коррозии, ингибиторы образования гидратов газа, химические вещества для очистки асфальтенов, вспенивающие агенты, регулирующие водоотдачу агенты, водозащитные агенты, агенты для повышения нефтеотдачи или тому подобные. Добавка может также быть биологическим агентом.

[0039] Композиция совместима с другими жидкостями или материалами, такими как, например, углеводороды, такие как минеральное масло, расклинивающие агенты или добавки, обычно используемые при стимулировании скважины. Варианты настоящего изобретения могут использоваться в различных применениях, включая временное создание пробок, уничтожение пробок или многократные этапы разрыва для обработки подземных пластов, имеющих множество зон различной проницаемости.

[0040] Способ включает закачивание в ствол скважины композиции и обеспечение возможности увеличения вязкости композиции для создания пробки. Это применение может использоваться для работ по стимулированию разрывов в новых или переделанных горизонтальных или вертикальных скважинах для достижения околошурфного отвода за счет открытия совершенно новых зон для обработки или повторного стимулирования, которые эффективно увеличивают предыдущую стимуляцию существующей более старой зоны разрыва.

[0041] Для облегчения более полного понимания некоторых вариантов представлены следующие примеры вариантов. Следующие примеры никоим образом не следует считать ограничивающими или определяющими рамки вариантов, описанных в настоящем документе.

Примеры

[0042] Для демонстрации свойств композиций и способов, описанных выше, был выполнен ряд экспериментов.

Пример 1

[0043] 5% (по весу) суспензию CMHPG в воде приготовили смешиванием 10 г CMHPG с 200 мл обессоленной воды. Затем pH довели до 10 добавлением 2 капель 10% раствора NaOH. Вязкость полученной смеси не увеличилась за 24 часа при комнатной температуре.

[0044] К свежеприготовленной 5% суспензии CMHPG добавили несколько капель концентрированной HCl, так что pH снизился до 6,6. При добавлении кислоты вязкость системы моментально увеличилась. За несколько секунд она полностью затвердела.

Пример 2

[0045] 5% (по весу) суспензию катионного гуара (Ecopol 14) в воде приготовили смешиванием 10 г порошка Ecopol 14 с 200 мл обессоленной воды. Затем pH довели до 10 добавлением 2 капель 10% раствора NaOH. Вязкость полученной смеси не увеличилась за 24 часа при комнатной температуре.

[0046] К свежеприготовленной 5% суспензии Ecopol 14 добавили грамм фумаровой кислоты, так что pH снизился до 3,2. При добавлении кислоты вязкость системы мгновенно увеличилась. За несколько секунд она полностью затвердела.

Пример 3

[0047] 5% (по весу) суспензию катионного гуара (Ecopol 14) в воде приготовили смешиванием 10 г порошка Ecopol 14 с 200 мл обессоленной воды. К смеси добавили 0,2 г инкапсулированного персульфата аммония. Затем pH довели до 10 добавлением нескольких капель 10% раствора NaOH. Вязкость полученной смеси не увеличилась за 24 часа при комнатной температуре.

[0048] К свежеприготовленной 5% суспензии Ecopol 14 добавили грамм фумаровой кислоты, так что pH снизился до 3,0. При добавлении кислоты вязкость системы мгновенно увеличилась. За несколько секунд она полностью затвердела.

[0049] Затем систему поместили в печь при 150°F для облегчения высвобождения персульфата аммония из инкапсуляции. Через 24 часа загущенная полимерная жидкость полностью разрушилась с образованием жидкости с консистенцией воды.

Пример 4

[0050] 1,5% (по весу) суспензию катионного гуара (Ecopol 14) в воде приготовили смешиванием 3 г порошка Ecopol 14 с 200 мл обессоленной воды. Затем pH довели до 10 добавлением нескольких капель 10% раствора NaOH. Полученную смесь испытывали на реометре Grace 5600 при 100 c-1 и температурах 70-180°F. Через 3 часа не было обнаружено увеличения вязкости.

[0051] Таким же образом приготовили еще два образца 1,5% (по весу) суспензии катионного гуара (Ecopol 14).

[0052] Перед испытанием их на приборе Grace 5600, в чашки реометра добавили 0,2 и 0,5 грамм инкапсулированной фумаровой кислоты (содержанием активного вещества 60%), соответственно. Для испытания использовали такую же программу температур. В обоих случаях как только температура инициировала высвобождение фумаровой кислоты из инкапсуляции, наблюдалась быстрая гидратация с моментальным увеличением вязкости. Результаты этих испытаний представлены на фигуре 2.

Пример 5

[0053] 5% (по весу) суспензию катионного гуара (Ecopol 17) в воде приготовили смешиванием 10 г порошка Ecopol 17 с 200 мл обессоленной воды. Затем pH довели до 10 добавлением нескольких капель 10% раствора NaOH. Полученную смесь испытывали на реометре Grace 5600 при 100 с-1 и температурах 70-180°F. Через 3 часа не было обнаружено увеличения вязкости.

[0054] Таким же образом приготовили еще два образца 5% (по весу) суспензии катионного гуара (Ecopol 17).

[0055] Перед испытанием их на приборе Grace 5600, в чашки реометра добавили 0,2 и 0,5 грамм инкапсулированной лимонной кислоты (содержание активного вещества 70%), соответственно. Для испытания использовали такую же программу температур. В обоих случаях, как только температура инициировала высвобождение лимонной кислоты из инкапсуляции, наблюдалась быстрая гидратация с моментальным увеличением вязкости. Результаты этих испытаний представлены на фигуре 3.

[0056] Конкретные варианты, описанные выше, являются лишь иллюстративными, поскольку настоящее изобретение может быть модифицировано и осуществлено на практике другими, но эквивалентными способами, понятными специалистам в данной области, для которых имеют преимущество представленные в настоящем документе указания. Кроме того, подробности, описанные в настоящем документе, не предназначены для каких-либо ограничений, помимо описанных ниже в формуле изобретения. Поэтому понятно, что конкретные варианты, описанные выше, могут изменяться или модифицироваться, и все такие изменения входят в рамки вариантов, описанных в настоящем документе, Соответственно, в настоящем документе испрашивается защита изложенной ниже формулы изобретения.


ПОЛИМЕРНАЯ ЖИДКОСТЬ С ИНИЦИИРУЕМЫМ ЗАГУСТЕВАНИЕМ ДЛЯ ЗАКАЧИВАНИЯ В ПЛАСТ И СПОСОБЫ ЕЕ ПРИМЕНЕНИЯ
ПОЛИМЕРНАЯ ЖИДКОСТЬ С ИНИЦИИРУЕМЫМ ЗАГУСТЕВАНИЕМ ДЛЯ ЗАКАЧИВАНИЯ В ПЛАСТ И СПОСОБЫ ЕЕ ПРИМЕНЕНИЯ
ПОЛИМЕРНАЯ ЖИДКОСТЬ С ИНИЦИИРУЕМЫМ ЗАГУСТЕВАНИЕМ ДЛЯ ЗАКАЧИВАНИЯ В ПЛАСТ И СПОСОБЫ ЕЕ ПРИМЕНЕНИЯ
Источник поступления информации: Роспатент

Showing 151-160 of 324 items.
20.01.2016
№216.013.a028

Системы и способы с применением настраиваемого дифференциального гравиметра

Использование: для определения плотности геологической формации. Сущность изобретения заключается в том, что предложены системы и способы для определения свойства, например, плотности геологической формации на основе гравитационной теории Эйнштейна. Разность гравитационного потенциала...
Тип: Изобретение
Номер охранного документа: 0002572642
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a102

Система погружной концевой кабельной муфты для использования в скважинном применении

Изобретение относится к средствам соединения в скважине электрического кабеля с погружным электродвигателем. Техническим результатом является повышение герметичности и прочности соединения. Предложена система формирования электрического соединения в подводной среде, содержащая: погружной...
Тип: Изобретение
Номер охранного документа: 0002572860
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a23f

Максимальная глубина исследования замеров в подземной формации

Настоящее изобретение относится к области геофизики и может быть использовано для определения объема интервала формации, окружающей ствол скважины, подлежащего исследованию. Для реализации заявленного изобретения используется каротажный прибор, который может устанавливаться на каротажном...
Тип: Изобретение
Номер охранного документа: 0002573177
Дата охранного документа: 20.01.2016
27.01.2016
№216.014.bc8f

Многомасштабное цифровое моделирование породы для моделирования пласта

Изобретение относится к способам получения характеристик трехмерных (3D) образцов породы пласта, в частности к укрупнению масштаба данных цифрового моделирования. Технический результат - более точное моделирование потока. Модели в масштабе скважины используют МТС (многоточечную статистику) для...
Тип: Изобретение
Номер охранного документа: 0002573739
Дата охранного документа: 27.01.2016
27.02.2016
№216.014.c019

Система и способ для получения опережающих измерений в процессе операции бурения

Изобретение относится к направленному бурению скважин, в частности к средствам каротажа удельного сопротивления пород в реальном времени. Техническим результатом является повышение точности и информативности о наборе слоев перед буровым долотом по мере перемещения компоновки низа бурильной...
Тип: Изобретение
Номер охранного документа: 0002576043
Дата охранного документа: 27.02.2016
10.03.2016
№216.014.c083

Способы построения 3-мерных цифровых моделей пористой среды с использованием комбинации данных высокого и низкого разрешения и многоточечной статистики

Изобретение относится к компьютерным системам визуализации пористых пород. Техническим результатом является повышение точности сегментации данных при построении модели образца пористой среды. Предложен способ построения модели образца пористой среды. Способ включает в себя этап приема данных...
Тип: Изобретение
Номер охранного документа: 0002576501
Дата охранного документа: 10.03.2016
10.02.2016
№216.014.c4a1

Определение характеристик составляющих пласта на месте проведения работ

Использование: для измерений качественных показателей пластов. Сущность изобретения заключается в том, что выполняют сбор множества моментальных снимков ядерного магнитного резонанса (ЯМР) из ствола скважины, показывающих изменения в геологическом пласте и определяющих данные ядерного...
Тип: Изобретение
Номер охранного документа: 0002574329
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4b3

Клапаны, компоновки низа бурильной колонны и способы избирательного приведения в действие двигателя

Группа изобретений относится к клапанам, используемым при бурении скважин, к компоновкам низа бурильной колонны и к способам избирательного приведения в действие забойного двигателя. Технический результат заключается в повышении надежности и точности управления работой забойного двигателя....
Тип: Изобретение
Номер охранного документа: 0002574429
Дата охранного документа: 10.02.2016
20.03.2016
№216.014.c91a

Способ изготовления вставки статора для забойного двигателя

Изобретение относится к области бурения. Способ изготовления вставки статора для забойного двигателя, в котором обеспечивают шпиндель, имеющий наружную геометрию, комплементарную с необходимой внутренней геометрией статора; осуществляют наложение гибкого рукава поверх шпинделя; устанавливают...
Тип: Изобретение
Номер охранного документа: 0002578066
Дата охранного документа: 20.03.2016
20.03.2016
№216.014.ca6f

Способ интерпретации измерений скважинного дебита во время скважинной обработки

Изобретение относится к обработке скважин и разработке месторождений и, в частности, системе и способу интерпретации дебита потока во время скважинной обработки. Технический результат заключается в эффективности стимуляционной обработки за счет получения знаний о распределении потока на...
Тип: Изобретение
Номер охранного документа: 0002577568
Дата охранного документа: 20.03.2016
Showing 151-160 of 236 items.
20.11.2015
№216.013.9292

Электрическая насосная система и способ перекачки текучей среды из подземной скважины с использованием данной системы

Группа изобретений относится к электрическим насосным системам с погружными электрическими центробежными насосами для перекачивания сред из скважин. Система содержит центробежный насос (18), размещенный в скважине, емкость (6) моторного масла, размещенную на поверхности вне скважины, и...
Тип: Изобретение
Номер охранного документа: 0002569139
Дата охранного документа: 20.11.2015
27.11.2015
№216.013.9387

Способ улучшения волоконного тампонирования

Изобретение относится к способу улучшения волоконного тампонирования и таким образом управления поглощением бурового раствора во время бурения скважины. Способ тампонирования геологической формации включает введение в скважину состава, который содержит текучую среду, имеющую исходную вязкость...
Тип: Изобретение
Номер охранного документа: 0002569386
Дата охранного документа: 27.11.2015
10.12.2015
№216.013.96be

Способ формирования пазов в обсадной колонне ствола скважины

Способ формирования пазов в обсадной колонне ствола скважины осуществляется с помощью системы для формирования пазов и содержит обеспечение по меньшей мере одного режущего инструмента, содержащего по меньшей мере сборку кумулятивного перфорирования и сборку дискретного позиционирования,...
Тип: Изобретение
Номер охранного документа: 0002570210
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.96bf

Обнаружение притока газа в стволе скважины

Изобретение относится к средствам для обнаружения притока газа в скважину в процессе бурения. Техническим результатом является повышение точности определения расположения притока газа в скважине. Предложен способ обнаружения притока газа в буровую скважину, содержащий: развертывание буровой...
Тип: Изобретение
Номер охранного документа: 0002570211
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.997a

Система зацепления с низким напряжением

Способ зацепления инструмента в скважине, обеспечивающий сцепление со скважинным компонентом без создания концентраций высокого напряжения, которые ослабляют скважинный компонент. Крепежное устройство содержит крепежные элементы, которые являются избирательно перемещаемыми в расширенную...
Тип: Изобретение
Номер охранного документа: 0002570915
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a3b

Скважинный перфоратор и способ его взведения

Группа изобретений относится к области добычи жидких и газообразных текучих сред из буровых скважин. Скважинный перфоратор содержит загрузочную трубу, включающую заряд взрывчатого вещества, электрический проводник и детонационный шнур; взводящее устройство, включающее детонатор и электрический...
Тип: Изобретение
Номер охранного документа: 0002571108
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9a71

Система и способ измерения дебита отдельных нефтяных скважин, входящих в состав куста скважин

Предлагаются система и способ динамической калибровки, предназначенные для измерения дебита скважинного флюида отдельных нефтяных скважин, входящих в состав куста скважин. Отличительной особенностью системы и способа динамической калибровки является то, что они включают в себя средство,...
Тип: Изобретение
Номер охранного документа: 0002571162
Дата охранного документа: 20.12.2015
27.12.2016
№216.013.9e0f

Оптимизированное бурение

Изобретение относится к способу оптимизации скорости бура, приводимого в действие от ротора и статора гидравлически или пневматически, при бурении им ствола скважины в толще пород. Причем способ включает: (a) измерение первого набора эксплуатационных параметров ротора и статора, включая...
Тип: Изобретение
Номер охранного документа: 0002572093
Дата охранного документа: 27.12.2015
20.01.2016
№216.013.a01b

Способ оптимизации бурения с забойным бескомпрессорным двигателем

Описывается оптимизация работы бура, приводимого в действие от ротора и статора гидравлически, при бурении им ствола скважины в земле. Оптимизация бурения предусматривает измерение первого набора эксплуатационных параметров ротора и статора, включая скорость вращения ротора и крутящий момент...
Тип: Изобретение
Номер охранного документа: 0002572629
Дата охранного документа: 20.01.2016
20.01.2016
№216.013.a028

Системы и способы с применением настраиваемого дифференциального гравиметра

Использование: для определения плотности геологической формации. Сущность изобретения заключается в том, что предложены системы и способы для определения свойства, например, плотности геологической формации на основе гравитационной теории Эйнштейна. Разность гравитационного потенциала...
Тип: Изобретение
Номер охранного документа: 0002572642
Дата охранного документа: 20.01.2016
+ добавить свой РИД