×
20.03.2015
216.013.322c

Результат интеллектуальной деятельности: СПОСОБ ХИМИЧЕСКОГО НИКЕЛИРОВАНИЯ И РАСТВОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области химической металлизации поверхности металломатричных композиционных материалов, в частности металломатричного композиционного материала алюминий-карбид кремния. Способ включает обезжиривание, первую промывку, травление, вторую промывку, химическое осаждение никеля, третью промывку и сушку, при этом травление проводят в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 15-30 с, при температуре раствора от 10 до 40°C. Химическое осаждение никеля можно проводить при температуре от 55 до 70°C. Раствор для химического никелирования поверхности металломатричного композиционного материала алюминий-карбид кремния содержит, г/л: никель хлористый 6-водный или никель сернокислый 7-водный 10-20, лимонная кислота 10-50, молочная кислота 5-50, аммоний хлористый 15-35, аммоний фтористый 2-25, гипофосфит натрия 1-водный 10-45, водный аммиак в количестве, обеспечивающем pH раствора 7,0÷8,0, и воду. Изобретение позволяет получить сплошное и равномерное никелевое покрытия без осуществления стадий сенсибилизации и активации обрабатываемой поверхности, а также обеспечивает повышение стабильности раствора химического никелирования при работе и хранении. 2 н. и 1 з.п. ф-лы, 3 пр.

Изобретение относится к области химической металлизации поверхности металлов, металлокерамических материалов, металломатричных композиционных материалов, в частности металломатричного композиционного материала алюминий-карбид кремния (далее ММКМ AlSiC), и может быть использовано для получения как функциональных покрытий в радиоэлектронной промышленности, приборостроении, авиационной промышленности, так и для декоративных целей.

Поверхность ММКМ AlSiC представляет собой комбинацию чередующихся поверхностей алюминия и карбида кремния. При нанесении металлических покрытий на комбинированные поверхности возникают трудности, связанные с различными способами подготовки поверхности разных материалов перед химической металлизацией.

В известном способе химической металлизации алюминия с целью увеличения адгезии никелевого покрытия проводят двойную цинкатную обработку [Химические способы получения металлических покрытий. Никандрова Л.И. - Л.: Машиностроение, 1971, 104 стр. Табл.17, (стр.32-34)]. Однако при использовании данной обработки невозможно получить никелевое покрытие на участках карбида кремния ММКМ AiSiC, т.к. она не приводит к активации его поверхности.

Известен способ подготовки поверхности деталей из керамики под нанесение металлических покрытий, включающий в себя последовательные стадии предварительной обработки поверхности: обезжиривание, промывку, химическое травление, промывку, сенсибилизацию, промывку, активирование в растворе, содержащем PdCl2 и HCl, сушку и нанесение металлического покрытия [RU 2219284 C1 20.12.2003].

Известный способ подготовки комбинированной поверхности металл-диэлектрик (медь-полиимид) к химической металлизации заключается в проведении операций травления, сенсибилизации и активирования, в котором после операции травления дополнительно проводят обработку поверхности в растворе, содержащем гидроксид натрия, моноэтаноламин, триэтаноламин, активирование поверхности ведут в растворе, содержащем PdCl2, HCl и глицин [RU 2041575 C1 10.03.1992].

Известен способ химической металлизации комбинированных металлокерамических материалов, заключающийся в обработке поверхности деталей в сорбционном стабилизационном растворе, сенсибилизацию, а активирование в растворе, содержащем хлористый палладий и соляную кислоту, и нанесение металлического покрытия. Сорбционный стабилизационный раствор имеет состав, г/л: SiO2 - (35-45)·10-3, Al2O3 - (0,5-10)·10-3, MgO - (0,5-10)·10-3, HF - (0,5-l)·10-3, вода - остальное. Обработка деталей в сорбционном стабилизационном растворе на основе соединений кремния, алюминия, магния и фтора способствует образованию на поверхности детали пленки с ионообменными и восстановительными свойствами, что обеспечивает постоянную сорбцию металлов, образующих активационные центры кристаллизации [RU 2350687 C1 27.03.2009].

Наиболее близким аналогом предлагаемого способа является способ подготовки поверхности деталей из ферритов, керамики и ферритокерамики под нанесение металлических покрытий, включающий обезжиривание, промывку в горячей проточной воде, промывку в холодной горячей воде, химическое травление, промывку в холодной проточной воде, сенсибилизацию, промывку в холодной проточной воде, промывку в холодной дистиллированной воде, активирование в растворе палладия хлористого и кислоты соляной при температуре +12-+15°C, сушку и нанесение металлического покрытия химическим способом, причем травление проводят в растворе состава: кислота фтористоводородная - 1 об.ч., кислота серная (ρ=1,84 г/см3) - 2 об.ч., кислота соляная (ρ=1,19 г/см3) - 1 об.ч., дистиллированная вода - 1 об.ч.; сенсибилизацию проводят в растворе состава: олово двухлористое - 40-50 г/л, кислота соляная (ρ=1,19 г/см3) - 40 мл/л; активирование производят в растворе состава: палладий хлористый - 1,0-2,0 г/л, кислота соляная (ρ=1,19 г/см3) - 1,0-2,0 мл/л, в течение 5-10 мин; а сушку осуществляют при +30-+50°C до полного высыхания [RU 2219284 C1 20.12.2003].

Недостатки описанных способов заключаются в следующем. Они включают большое количество технологических операций предварительной обработки поверхности, таких как сенсибилизация и активация. В растворе активации используется дорогостоящая соль палладия, что приводит к значительному удорожанию процесса металлизации. В качестве сенсибилизирующего раствора используется система на основе солей олова, отличающаяся высокой нестабильностью при работе, в результате чего раствор необходимо часто менять. Описанные технологические схемы невозможно использовать для активирования комбинированной поверхности ММКМ AlSiC и осаждения на нее покрытия. Это связано с тем, что в результате контактного выделения олова и палладия на поверхности алюминия резко снижается сцепление осажденного никелевого покрытия с подложкой. Кроме того, обработкой карбида кремния раствором соли благородного металла (палладия или золота) затруднительно произвести активацию поверхности вследствие ее высокой химической инертности.

Большинство известных щелочных растворов химического никелирования в своем составе содержат органические лиганды, предотвращающие выпадение гидроокисей никеля. В качестве лигандов вводят соли органических кислот, таких как лимонной, янтарной, молочной, пропионовой, аминоуксусной. На практике наибольшее распространение получили соли лимонной кислоты, что связано с их доступностью, низкой стоимостью и простотой приготовления растворов с их применением.

Известен щелочной раствор химического никелирования, содержащий, г/л: сульфат или хлорид никеля 20-50, гипофосфит натрия 10-25, хлорид аммония 35-55, цитрат натрия 35-55; условия процесса pH=7,5-9,0, температура +78-+88°C [ГОСТ 9.305-84]. Недостатками раствора являются высокие концентрации солей никеля и высокая температура эксплуатации.

Известен щелочной раствор химического никелирования, содержащий, г/л: никель сернокислый 25, никель хлористый 25, натрий лимоннокислый 50, аммоний хлористый 35, гипофосфит натрия 30, аммиак (до pH 8-9). Химическое никелирование в данном растворе проводят при температуре +80-+88°C [Химические способы получения металлических покрытий. Л.И. Никандрова. - Л.: Машиностроение, 1971, 104 стр., Табл.17., Ил.10., Библ.64 назв. Стр.34]. К недостаткам этого раствора можно отнести высокие концентрации никеля в растворе, высокие значения температуры и pH раствора, что приводит к плохому сцеплению покрытия и обрабатываемой поверхности и, как следствие, необходимости предварительной цинкатной подготовки поверхности алюминия перед химическим никелированием.

Наиболее близким аналогом предложенного раствора является раствор для химического никелирования магния, содержащий, г/л: никель сернокислый 10-20, гипофосфит натрия 10-20, натрий фтористый 10-15, натрий лимоннокислый 10-20 и в качестве стабилизирующей добавки - натриевую соль м-нитробензол сульфокислоты (лудигол) 0,01-0,20. Параметры процесса для данного раствора: +18-+25°C и pH 9,8-10 [SU 1336616 A1 10.01.1996]. Недостатком этого раствора является сильно щелочная среда, влекущая снижение сцепления никеля с алюминием, и низкая производительность при обработке алюминия. Это связано с тем, что данный раствор рассчитан на работу при низких температурах.

К общему недостатку приведенных растворов относится возможность осаждения никелевого покрытия лишь на металлическую поверхность. Для обеспечения осаждения никеля на поверхность карбида кремния без удаления пленки оксида кремния с поверхности необходима дополнительная подготовка поверхности, например, такая как сенсибилизация и/или активация.

Технической задачей предложенной группы изобретений является выбор и оптимизация состава раствора травления и режима травления для эффективной активации комбинированной поверхности алюминия и карбида кремния, для полного удаления загрязнений с поверхности ММКМ AlSiC, в частности после шлифования, а также выбор и оптимизация раствора химического никелирования, позволяющего получить качественное никелевое покрытие на поверхности ММКМ AlSiC (на участках алюминия и карбида кремния).

Технический результат предлагаемого изобретения состоит в обеспечении сплошности и равномерности никелевого покрытия, его сцепления с комбинированной поверхностью ММКМ AlSiC, повышении стабильности раствора химического никелирования при работе и хранении, а также упрощении технологического процесса за счет исключения стадий сенсибилизации и активации и снижении себестоимости процесса за счет исключения использования дорогостоящей соли палладия и сокращения количества стадий.

Указанный технический результат достигается за счет того, что способ химического никелирования поверхности металломатричного композиционного материала алюминий-карбид кремния включает обезжиривание, первую промывку, травление, вторую промывку, химическое осаждение никеля, третью промывку и сушку, при этом травление проводят в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 15-30 с при температуре раствора от 10 до 40°C.

Указанный технический результат достигается также за счет того, что раствор химического никелирования металломатричного композиционного материала алюминий-карбид кремния содержит никель хлористый 6-водный или никель сернокислый 7-водный, лимонную кислоту, молочную кислоту, аммоний хлористый, аммоний фтористый, гипофосфит натрия 1-водный и водный аммиак при следующем соотношении компонентов, г/л:

Никель хлористый 6-водный или 10÷20
никель сернокислый 7-водный
Лимонная кислота 10÷50
Молочная кислота 5÷50
Аммоний хлористый 15÷35
Аммоний фтористый 2÷25
Гипофосфит натрия 1-водный 10÷45
Водный аммиак в количестве, обеспечивающем
pH раствора 7,0÷8,0
Вода остальное

Химическое осаждение никеля из вышеуказанного раствора проводят при температуре от 55 до 70°C.

В качестве водного аммиака можно использовать раствор любой концентрации.

Затруднение осаждения никеля химическим способом на карбид кремния вызвано наличием плотной окисной пленки оксида кремния, что приводит к высокой химической инертности поверхности. Обработка карбида кремния водным раствором, содержащим 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, способствует растворению инертного слоя оксида кремния, и таким образом обеспечивается активация поверхности карбида кремния. Участки поверхности алюминия при этом подвергаются достаточному удалению окисной пленки и загрязнений для последующей металлизации.

Поскольку на поверхности ММКМ AlSiC алюминий является наиболее химически активным компонентом, операцию обезжиривания поверхности можно проводить любым известным способом обезжиривания алюминия, в частности по ГОСТу 9.305-84. После обезжиривания изделие тщательно отмывается от остатков раствора обезжиривания. Операцию травления проводят в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 15-30 с при температуре раствора +10-+40°C. Вышеуказанные раствор и режим травления позволяют эффективно подготавливать комбинированную поверхность из алюминия и карбида кремния перед химическим осаждением никеля. Это связано с тем, что высокая концентрация фтористоводородной кислоты обеспечивает бурное газовыделение во время операции травления, что способствует эффективному удалению загрязнений, залипших во время шлифования заготовок. Использование раствора, содержащего меньшее количество фтористоводородной кислоты, приводит к необходимости увеличения времени операции травления для удаления пленки оксида кремния с поверхности карбида кремния, что в свою очередь приводит к перетравливанию участков поверхности алюминия и при этом недостаточному удалению залипших загрязнений после шлифования. Наличие в растворе аммония фтористого повышает концентрацию ионов фтора в растворе, что, в свою очередь, способствует удалению пленки оксида кремния с поверхности карбида кремния. Таким образом, время процесса травления 15-30 с не приводит к излишнему стравливанию алюминия и вместе с тем позволяет полностью удалить загрязнения как с участков алюминия, так и с участков карбида кремния. Последующей промывкой после травления с поверхности изделия удаляются остатки раствора травления и продукты травления. После этого следует операция химического осаждения никеля, которую осуществляют при температуре +55-+70°C в щелочном растворе при следующем соотношении компонентов, г/л:

Никель хлористый 6-водный или 10÷20
никель сернокислый 7-водный
Лимонная кислота 10÷50
Молочная кислота 5÷50
Аммоний хлористый 15÷35
Аммоний фтористый 2÷25
Гипофосфит натрия 1-водный 10-45
Водный аммиак в количестве, обеспечивающем
pH раствора 7,0÷8,0
Вода остальное

В заключение изделие промывают и высушивают.

Использование сочетания лимонной и молочной кислоты позволяет повысить стабильность раствора при работе и хранении. Наличие в растворе ионов фтора позволяет поддерживать поверхность карбида кремния в активном состоянии, что способствует осаждению сплошного никелевого покрытия как на участки поверхности с алюминием, так и на участки с карбидом кремния. Проведение процесса химического осаждения никеля в растворе с пониженной концентрацией ионов никеля и при пониженных температурах и значениях pH позволяет осаждать никелевое покрытие на алюминиевую поверхность без дополнительной цинкатной обработки. Это обусловлено тем, что при высоких температурах и значениях pH идет ускоренное осаждение никеля, приводящее к низкому сцеплению с обрабатываемой поверхностью.

Ниже приводятся примеры химического никелирования различных изделий из ММКМ AlSiC.

Пример 1.

Обрабатываемое изделие представляло собой пластину из ММКМ AlSiC размером 104×59×3 мм. Процесс обработки включал следующие стадии:

1. Химическое обезжиривание поверхности материала проводили в растворе состава, г/л:

Сода кальцинированная 40
Тринатрийфосфат 40
Стекло натриевое жидкое 25
Синтанол 3

Процесс осуществляли при температуре раствора +70°C в течение 15 мин.

2. Промывку осуществляли в проточной горячей и холодной воде в течение 4 мин.

3. Травление осуществляли в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 20 с при температуре +20°C.

4. Далее промывали в холодной проточной воде в течение 30 с.

5. Химическое никелирование проводили в предложенном растворе при следующем соотношении компонентов, г/л:

Никель хлористый 6-водный 15
Лимонная кислота 25
Молочная кислота 7
Аммоний хлористый 25
Аммоний фтористый 3
Гипофосфит натрия 1-водный 15
Аммиак водный (29 мас.%) содержится в количестве,
обеспечивающем pH
раствора 7,2
Вода Остальное

Процесс химического никелирования проводили при температуре раствора +60°C в течение 40 мин.

6. Далее осуществили двойную промывку в горячей проточной воде.

7. В заключение изделие просушили теплым воздухом +70°C.

Готовое изделие получилось со сплошным и равномерным покрытием толщиной 4,1 мкм.

Качество сцепления никелевого покрытия с основой проверяли по ГОСТу 9.302-88 двумя методами: методом нагрева и нанесения сетки царапин.

По методу нагрева изделие с покрытием нагревали до +200°C, выдерживали при данной температуре в течение 1 часа и охлаждали на воздухе. По результатам визуального контроля вздутий, отслаиваний, шелушений и растрескиваний обнаружено не было.

По методу нанесения сетки царапин на поверхность изделия с никелевым покрытием стальным острием нанесли 8 параллельных царапин глубиной до основного металла на расстоянии 2 мм одна от другой и 8 параллельных царапин, перпендикулярных к ним на расстоянии 2 мм одна от другой. В результате проведенного эксперимента отслаиваний покрытия не наблюдалось.

В течение всего срока эксплуатации раствора химического никелирования самопроизвольное выпадение никеля в объеме раствора и на стенках ванны не наблюдалось. Таким образом, можно сделать вывод о высокой стабильности предложенного раствора при работе и его хранении.

Пример 2.

Обрабатываемое изделие представляло собой корпус микроволнового передатчика размером 180×150×30 мм из ММКМ AlSiC со сложной геометрией поверхности и глухими отверстиями. Процесс обработки включал следующие стадии:

1. Химическое обезжиривание поверхности материала проводили в растворе состава, г/л:

Сода кальцинированная 40
Тринатрийфосфат 40
Стекло натриевое жидкое 25
Синтанол 3

Процесс осуществляли при температуре раствора +70°C в течение 15 мин.

2. Промывку осуществляли в проточной горячей и холодной воде в течение 4 мин.

3. Травление осуществляли в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 20 с при температуре +25°C.

4. Далее промывали в холодной проточной воде в течение 30 с.

5. Химическое никелирование проводили в растворе при следующем соотношении компонентов, г/л:

Никель хлористый 6-водный 30
Цитрат натрия 84
Аммоний хлористый 50
Гипофосфит натрия 1-водный 10
Водный аммиак (29 мас.%) содержится в количестве,
обеспечивающем
pH раствора 10
Вода Остальное

Процесс химического никелирования проводили при температуре раствора +90°C в течение 40 мин.

6. Далее осуществляли двойную промывку в горячей проточной воде.

7. В заключении изделие просушили теплым воздухом +70°C.

Покрытие на изделии получилось сплошным, с большой степенью равномерности толщиной 5,3 мкм.

Качество сцепления никелевого покрытия с основой, как и в первом примере, проверяли по ГОСТу 9.302-88 двумя методами: методом нагрева и нанесения сетки царапин.

По методу нагрева изделие с покрытием нагревали до +180°C, выдерживали при данной температуре в течение 1 часа и охлаждали на воздухе. По результатам визуального контроля вздутий, отслаиваний, шелушений и растрескиваний обнаружено не было.

Пример 3.

Обрабатываемое изделие представляло собой радиатор размером 150×150×70 мм из ММКМ AlSiC с теплоотводящими ребрами. Процесс обработки включал следующие стадии:

1. Химическое обезжиривание поверхности материала проводили в растворе состава, г/л:

Сода кальцинированная 40
Тринатрийфосфат 40
Стекло натриевое жидкое 25
Синтанол 3

Процесс осуществляли при температуре раствора +70°C в течение 15 мин.

2. Промывку осуществляли в проточной горячей и холодной воде в течение 4 мин.

3. Травление осуществляли в водном растворе, содержащем 20-35 мас.% фтористоводородной кислоты и 10-35 г/л аммония фтористого, в течение 20 с при температуре +30°C.

4. Далее промывали в холодной проточной воде в течение 30 сек.

5. Химическое никелирование проводили в растворе при следующем соотношении компонентов, г/л:

Никель хлористый 6-водный 20
Гипофофсит натрия 60
Оксалат натрия 40
Водный аммиак (раствор 29 мас.%) содержится в количестве,
обеспечивающем
pH раствора 10
Вода Остальное

Процесс химического никелирования проводили при температуре раствора +85°С в течение 40 мин.

6. Далее осуществляли двойную промывку в горячей проточной воде.

7. В заключение изделие просушили теплым воздухом +70°С.

Покрытие на изделии получилось сплошным и равномерным толщиной 6,5 мкм.

По методу нанесения сетки царапин на поверхность изделия с никелевым покрытием стальным острием нанесли 6 параллельных царапин глубиной до основного металла на расстоянии 2,5 мм одна от другой и 6 параллельных царапин, перпендикулярных к ним на расстоянии 2,5 мм одна от другой. В результате проведенного эксперимента отслаиваний покрытия не наблюдалось.

Источник поступления информации: Роспатент

Showing 71-80 of 374 items.
10.09.2015
№216.013.7789

Сплав на основе магния

Изобретение относится к области металлургии, а именно: к литейным сплавам на основе магния. Предложен сплав на основе магния, содержащий, мас. %: Zn 0,3-1,0, Zr 0,4-0,8, Cd 0,001-0,8, Yb 0,001-0,4, по крайней мере, два редкоземельных металла, выбранных из группы: Nd, Y, Gd, Dy 3,0-10,5, Mg -...
Тип: Изобретение
Номер охранного документа: 0002562190
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afe

Способ изготовления длинномерной заготовки из титанового сплава

Изобретение относится к обработке металлов давлением и может быть использовано при производстве длинномерных заготовок типа прутков и профилей из конструкционных титановых сплавов методом изотермической экструзии. Производят ковку или прокатку слитка при температуре β-области с получением...
Тип: Изобретение
Номер охранного документа: 0002563083
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7aff

Способ получения высокотемпературного композиционного материала на основе никеля

Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002563084
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3e

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей. Предложен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля....
Тип: Изобретение
Номер охранного документа: 0002563403
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
Showing 71-80 of 344 items.
10.09.2015
№216.013.7789

Сплав на основе магния

Изобретение относится к области металлургии, а именно: к литейным сплавам на основе магния. Предложен сплав на основе магния, содержащий, мас. %: Zn 0,3-1,0, Zr 0,4-0,8, Cd 0,001-0,8, Yb 0,001-0,4, по крайней мере, два редкоземельных металла, выбранных из группы: Nd, Y, Gd, Dy 3,0-10,5, Mg -...
Тип: Изобретение
Номер охранного документа: 0002562190
Дата охранного документа: 10.09.2015
20.09.2015
№216.013.7afe

Способ изготовления длинномерной заготовки из титанового сплава

Изобретение относится к обработке металлов давлением и может быть использовано при производстве длинномерных заготовок типа прутков и профилей из конструкционных титановых сплавов методом изотермической экструзии. Производят ковку или прокатку слитка при температуре β-области с получением...
Тип: Изобретение
Номер охранного документа: 0002563083
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7aff

Способ получения высокотемпературного композиционного материала на основе никеля

Изобретение относится к порошковой металлургии. Способ получения композиционного материала на основе никеля включает перемешивание порошков для приготовления матрицы материала и дисперсного порошка оксида металла, механическое легирование полученной смеси, компактирование и прокатку полученного...
Тип: Изобретение
Номер охранного документа: 0002563084
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c3e

Способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля

Изобретение относится к области металлургии, а именно к производству жаропрочных сплавов на основе никеля, и может быть использовано при выплавке сплавов для литья лопаток газотурбинных двигателей. Предложен способ производства безуглеродистых литейных жаропрочных сплавов на основе никеля....
Тип: Изобретение
Номер охранного документа: 0002563403
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7c4b

Литейный сплав на основе алюминия и изделие, выполненное из него

Изобретение относится к области цветной металлургии, а именно к производству фасонных отливок из сплава на основе алюминия системы Al-Si-Cu-Mg, применяемых в качестве базовых деталей агрегатов управления топливной системой в авиационной, автомобильной и других отраслях промышленности. Литейный...
Тип: Изобретение
Номер охранного документа: 0002563416
Дата охранного документа: 20.09.2015
10.10.2015
№216.013.8099

Способ сушки покрытия из серебросодержащей пасты

Изобретение относится к способу сушки покрытия из серебросодержащей пасты, используемой для получения неразъемного соединения при изготовлении силовых полупроводниковых приборов по технологии КНМ «кремний на молибдене». Данная технология позволяет получать соединения при низкой температуре с...
Тип: Изобретение
Номер охранного документа: 0002564518
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811b

Способ получения композиционного материала на основе ниобия

Изобретение относится к области порошковой металлургии, а именно к получению высокотемпературных композиционных материалов на основе ниобия с оксидным упрочнением. Порошки для приготовления матрицы перемешивают и подвергают механическому легированию в защитной атмосфере с образованием массива...
Тип: Изобретение
Номер охранного документа: 0002564648
Дата охранного документа: 10.10.2015
10.10.2015
№216.013.811d

Способ нанесения электропроводящего покрытия для электрообогреваемого элемента органического остекления

Изобретение относится к вакуумному нанесению покрытий, а именно к нанесению электропроводящего прозрачного покрытия на полимерную пленку для электрообогреваемого элемента органического остекления. Проводят реактивное магнетронное распыление металлической мишени в атмосфере газовой смеси...
Тип: Изобретение
Номер охранного документа: 0002564650
Дата охранного документа: 10.10.2015
20.10.2015
№216.013.8326

Эпоксидное связующее пленочного типа

Изобретение относится к области создания эпоксидных связующих пленочного типа для формования полимерных композиционных материалов (ПКМ), предназначенных для использования в авиационной, машино-, авто-, судостроительной промышленности и других отраслях техники. Эпоксидное связующее пленочного...
Тип: Изобретение
Номер охранного документа: 0002565177
Дата охранного документа: 20.10.2015
20.10.2015
№216.013.832d

Многослойное электропроводящее покрытие на основе термостойкого связующего

Изобретение относится к области молниезащитных электропроводящих покрытий для конструкций из полимерных композиционных материалов, используемых в авиационной промышленности, и касается многослойного электропроводящего покрытия на основе термостойкого связующего. Содержит по меньшей мере два...
Тип: Изобретение
Номер охранного документа: 0002565184
Дата охранного документа: 20.10.2015
+ добавить свой РИД