×
10.03.2015
216.013.2fd1

СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к испытательной технике, в частности к области инженерных изысканий, и может быть использовано для определения напряженно-деформированного состояния пород, а именно определения стадии развития деформационных процессов в массиве материала (в горном массиве, грунтов под инженерным сооружением и т.п.). Сущность: отбирают образцы материала с хрупким скелетом. Осуществляют нагружение образцов с регистрацией физико-механических характеристик материала и строят кривую напряжение-деформация, по которой находят параметры, характеризующие предвестник разрушения материала. При сжатии образцов определяют коэффициенты , α, α, характеризующие изменение потенциальной энергии упругого деформирования при рассеянном разрушении материала, а предвестник разрушения материала находят по формуле , где γ - положительный параметр, задающий квадратичную зависимость поверхностной энергии накопленного ансамбля микротрещин в хрупком материале, I - относительное изменение объема материала, J - интенсивность касательных деформаций, Δp - изменение внутрипорового давления. Технический результат: возможность характеризовать стадию состояния материала перед разрушением, что и является предвестником разрушения материала, путем сокращения времени измерения за счет уменьшения количества испытываемых образцов. 2 з.п. ф-лы, 3 ил.
Реферат Свернуть Развернуть

Изобретение относится к испытательной технике, в частности к области инженерных изысканий, и может быть использовано для определения напряженно-деформированного состояния пород, а именно определения стадии развития деформационных процессов в массиве материала (в горном массиве, грунтов под инженерным сооружением и т.п.).

Физико-механические параметры породы, как правило, определяют в лабораторных условиях. Механическая нагрузка вызывает в горных породах или грунте напряжения и деформации. На величину показателей физико-механических свойств материала влияют: анизотропия среды, силы и характер связей между частицами, размер включений, пористость, минеральный состав и т.п. Механические свойства подразделяют на упругие (модуль Юнга, коэффициент Пуассона и др.), прочностные (пределы прочности при сжатии, растяжении и др.), реологические свойства (период релаксации, предел длительной прочности, а также такие, как объемный модуль скелета породы (при учете порового давления) и пр. Для описания состояния породы используется ряд моделей с параметрами, которые определяются в результате испытаний материала. Например, для характеристики хрупкого скелета породы (гранит, гранулы песка с другими включениями и т.п.), а также энергетического состояния породы (трещиноватость и ее развитие под нагрузкой) в последнее время предложены коэффициенты α±, αJ, , γ± [1]. Постоянные коэффициенты α±, αJ, характеризуют изменение потенциальной энергии упругого деформирования при рассеянном разрушении вследствие объемной деформации, сдвига и наличия порового давления. Причем коэффициенты αJ, α+ , , а α-, . Знак плюс в индексе ± соответствует рассеянному разрушению вследствие деформации растяжения, минус соответствует разрушению при сжатии. Положительные параметры γ± - задают квадратичную зависимость поверхностной энергии ансамбля микротрещин в хрупком материале от накопленной трещиноватости, которая может интерпретироваться как предвестник разрушения материала ω.

Например, связь проницаемости с трещиноватостью можно определить при измерении проницаемости в процессе активного нагружения. Тензор полных напряжений и изменение пористости, определяемые упругой энергией деформируемого скелета, имеют в вид,

,

где σ=σSf - тензор полных напряжений, σS - тензор парциальных напряжений в скелете, σf - тензор парциальных напряжений во флюиде, Ψ - упругая энергия скелета, e - тензор малых деформаций, Δp - изменение внутрипорового давления, - средняя плотность скелета в начальном состоянии, K - модуль сжимаемости скелета, µ - модуль сдвига, J - интенсивность касательных деформаций, e′ - девиатор тензора малых деформаций, I - единичный тензор второго ранга.

,

где ϕ - пористость, ϕ0 - пористость в начальном состоянии, I1 - относительное изменение объема материала (I1>0 - растяжение, I1<0 - сжатие), N - модуль Био.

Процесс деформирования при нагружении породы, сопровождающийся развитием микротрещин, называют активным. Если развитие трещиноватости не происходит, то процесс называется пассивным. Область пассивного и активного процессов разделяет граница зоны упругости на полуплоскости I1, J≥0 (фиг.1), уравнение которой

На полуплоскости (I1, J≥0) функция (3) определяет зависящую от порового давления треугольную область (фиг.1). Из рисунка видно, что граница области упругости обладает сильной асимметрией относительно оси J, что связано с существенным различием прочностных свойств хрупкого скелета при растяжении и сжатии.

Уравнение границы упругой области имеет вид

где J0 - пороговое значение чистого сдвига (I1=0), при превышении которого начинается разрушение, - значения объемной деформации, при которых начинается процесс роста поврежденности, а величина .

Связь величин, входящих в уравнение (4), с параметрами материала находится как:

Для медленных процессов, в которых уровень трещиноватости определяется текущей деформацией и поровым давлением, равновесное накопление трещиноватости (предвестника разрушения материала) ω определяется, как

Соотношение (6) выполняется при условии активного нагружения ω≥0, , что дает , .

В противном случае скорость изменения трещиноватости равна нулю.

Известен способ прогнозирования механических свойств горной породы [2], включающий измерение массовой доли минералов, находящихся в породе, определение их физико-механических характеристик, плотности и пористости. Зная пористость и массовую долю породы, определяют набор упругих коэффициентов, по которым прогнозируют состояние материала (породы). Недостатком известного способа является невысокая точность нахождения упругих коэффициентов и невозможность долгосрочного предсказания стадии разрушения массива исследуемого материала.

Известен способ определения напряженно-деформированного состояния материала [3], включающий отбор образцов материала, их нагружение и выявление предвестника разрушения материала. Недостатком известного способа является невозможность получения долгосрочного предсказания разрушения исследуемого материала.

Наиболее близким к предлагаемому техническому решению является способ определения напряженно-деформированного состояния материала (в том числе и с хрупким скелетом) [4], состоящий из отбора образцов материала, их нагружения и построения деформационной зависимости, выявления физико-механических характеристик материала и нахождения по зависимости «напряжение-деформация» коэффициентов, характеризующих предвестник разрушения материала. Недостатком известного способа является трудоемкость и невысокая точность в определении коэффициентов состояния материала, а также длительная обработка полученных результатов.

Задачей технического решения является снижение трудоемкости в определении коэффициентов состояния материала, упрощение и ускорение обработки полученных результатов.

Технический результат, получаемый при решении поставленной задачи, выражается в том, что имеется возможность характеризовать стадию состояния материала перед разрушением, что и является предвестником разрушения материала, путем сокращения времени измерения за счет уменьшения количества испытываемых образцов.

Поставленная задача решается следующим образом. В известном способе определения напряженно-деформированного состояния материала с хрупким скелетом, состоящем из отбора образцов материала, их нагружения и построения деформационной зависимости, выявления физико-механических характеристик материала и нахождения по зависимости «напряжение-деформация» коэффициентов, характеризующих предвестник разрушения материала, согласно изобретению при сжатии образцов определяют коэффициенты , α-, αJ, характеризующие изменение потенциальной энергии упругого деформирования при рассеянном разрушении материала, при этом предвестник разрушения материала ω находят по формуле

,

где , α-, αJ - постоянные коэффициенты, γ- - положительный параметр, задающий квадратичную зависимость поверхностной энергии накопленного ансамбля микротрещин в хрупком материале, I1 - относительное изменение объема материала, J - интенсивность касательных деформаций, Δp - изменение внутрипорового давления.

Кроме того, зависимость «напряжение-деформация» получают в виде кривой, которая имеет излом, делящий кривую на два участка, первый до излома и второй после излома, тогда коэффициент находят по положению излома при всестороннем сжатии насыщенных флюидом образцов при поддержании постоянного давления в порах в течение всего испытания, коэффициент αJ находят по углу наклона участков кривой «осевое напряжение-осевая деформация» при одноосном сжатии и из зависимости «всестороннее давление-объемная деформация» при всестороннем сжатии ненасыщенных флюидом образцов, коэффициент α- находят по углу наклона участков кривой «всестороннее давление-объемная деформация» при всестороннем сжатии ненасыщенных флюидом образцов, коэффициент γ- находят по положению излома графика «всестороннее давление-объемная деформация» при всестороннем сжатии ненасыщенных флюидом образцов.

Кроме того, коэффициент вычисляют из уравнения , коэффициент αJ вычисляют из уравнения , коэффициент α- вычисляют из уравнения α-=(tgθν1-tgθν2)1/2, коэффициент γ- вычисляют из уравнения , где θν1 - угол наклона первого участка, θν2 - угол наклона второго участка зависимости «всестороннее давление-объемная деформация» при всестороннем сжатии, e - относительное изменение объема, соответствующее излому кривой, θc1 - угол наклона первого участка, θc2 - угол наклона второго участка кривой зависимости «вертикальная нагрузка-вертикальная деформация» при одноосном сжатии.

Сравнение признаков заявленного технического решения с известными аналогичного назначения свидетельствует о соответствии его критерию «новизна». Признак - нахождение предвестника разрушения материала после испытания образцов по формуле: обеспечивает уменьшение количества испытываемых образцов (для определения состояния напряженно-деформированного материала с хрупким скелетом), а значит снижает трудоемкость, упрощает и ускоряет обработку полученных результатов. Дополнительные признаки показывают конкретные способы достижения заявленных результатов.

Техническая сущность предложенного решения поясняется чертежами, где на фиг.1 дан вид границы зоны упругости, на фиг.2 дана зависимость «напряжение-деформация» при всестороннем сжатии, на фиг.3 дана зависимость «осевое напряжение-осевая деформация» при одноосном сжатии.

Пример конкретного выполнения способа определения напряженно-деформированного состояния материала с хрупким скелетом.

Уровень трещиноватости характеризует состояние материала под нагрузкой и может считаться параметром предвестника разрушения материала с хрупким скелетом . Т.к. горные породы находятся в состоянии сжатия горным давлением, то предвестник разрушения материала ω зависит только от отрицательных коэффициентов, которые находят после испытания отобранных образцов исследуемого материала при их сжатии. Поэтому предвестник разрушения материала находят по формуле: . Для определения коэффициентов состояния вещества ( , α-, αJ, γ-) на трехосной испытательной машине проводят всестороннее сжатие образцов исследуемого материала, как насыщенных флюидом, так и без него, а на другой испытательной машине с вертикальной нагрузкой проводят одноосное сжатие образцов этого же материала.

При всестороннем сжатии ненасыщенного флюидом (сухого) образца получается график (как на фиг.2) - всестороннее напряжение σ - относительное изменение объема e, который имеет два участка: первый (до излома) - линейный, соответствующий упругому поведению материала образца, второй (после излома) - «квазилинейный» с меньшим углом наклона, соответствует поведению материала при развитии трещиноватости. Следует заметить, что не для всех материалов кривая σ-e имеет линейные участки с выраженным изломом, поэтому точку перегиба находят по второй производной, а участки считают квазилинейными. Коэффициент α- определяется по разности тангенсов углов наклона этих участков

где θν1 - угол наклона первого участка, θν2 - угол наклона второго участка.

Коэффициент γ- определяется по положению точки излома графика:

где e - относительное изменение объема, соответствующее точке излома графика.

Коэффициент αJ (фиг.3) определяется по разности тангенсов углов наклона tgθc1-tgθc2 двух квазилинейных участков на графике вертикальная нагрузка σz - вертикальная деформация ez при одноосном сжатии

где θc1 - угол наклона первого участка, θc2 - угол наклона второго участка на фиг.3.

Коэффициент измеряется при испытании насыщенных флюидом образцов при постоянном давлении в порах за время всего испытания и вычисляется из уравнения

где p - давление флюида в порах образца, - положение точки излома на графике всестороннее напряжение σ - относительное изменение объема e, при давлении p, θν1 - угол наклона первого участка, θν2 - угол наклона второго участка, как на графике фиг.2.

Сведения, подтверждающие возможность осуществления изобретения

Существуют испытательные машины объемного и осевого сжатия [5], позволяющие реализовать предлагаемый способ, т.е. строить графики зависимости всестороннее давление - объемная деформация при всестороннем сжатии (как сухого материала, так и заполненного флюидом) и вертикальная нагрузка - вертикальная деформация при одноосном сжатии, для вычисления коэффициентов энергетического состояния материала (массива, породы), по которым находится предвестник разрушения материала ω.

Источники информации

1. Извеков О.Я., Кондауров В.И. О рассеянном разрушении пористых материалов с хрупким скелетом. // Механика твердого тела. №3, 2010.

2. Заявка США №20110022320, МПК G01V 9/00, 27.01.2011.

3. Патент RU №2234073, МПК G01N 3/00, 2004.

4. Патент RU №2322657, МПК G01N 3/00, 2005.

5. Болдырев Г.Г. Методы определения механических свойств грунтов. Пенза. 2008.


СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
СПОСОБ ОПРЕДЕЛЕНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ МАТЕРИАЛА С ХРУПКИМ СКЕЛЕТОМ
Источник поступления информации: Роспатент

Showing 1-10 of 15 items.
10.12.2013
№216.012.8a16

Способ определения проницаемости преграды для зондирующего излучения сверхширокополосного радара

Изобретение относится к радиотехнике и предназначено для оценки достоверности результатов поиска живых людей за непрозрачными преградами с использованием сверхширокополосного (СШП) радара путем проведения исследований по определению проницаемости преграды для используемого при поиске радара....
Тип: Изобретение
Номер охранного документа: 0002501032
Дата охранного документа: 10.12.2013
10.09.2014
№216.012.f172

Способ наземной имитации полета космических аппаратов в космосе

Изобретение относится к космонавтике, а именно к способам имитации полета космических аппаратов (КА). Подготавливают аппаратные средства, моделируют орбитальное движение КА по предварительно заданному алгоритму и/или при приеме управляющих команд в режиме реального времени, моделируют движение...
Тип: Изобретение
Номер охранного документа: 0002527632
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0d4d

Способ оценки фармакологических и токсикологических свойств веществ - радио-, токсикопротекторов и радио-, токсикосенсибилизаторов

Изобретение относится к области радиобиологии и экспериментальной медицины. Способ оценки фармакологических и токсикологических свойств веществ заключается в том, что исследуемое вещество вносят в питательную среду личинок и мух Drosophila melanogaster, сочетающих в своем геноме гипоморфные...
Тип: Изобретение
Номер охранного документа: 0002534822
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.216b

Способ определения дисперсного состава аэрозоля

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов. Способ измерения дисперсного состава аэрозольных частиц и их концентрации в воздушной среде...
Тип: Изобретение
Номер охранного документа: 0002540003
Дата охранного документа: 27.01.2015
10.03.2015
№216.013.30ce

Аппаратно-вычилистельный комплекс виртуализации и управления ресурсами в среде облачных вычислений

Изобретение относится к области систем облачных вычислений. Технический результат заключается в снижении времени перевода нагрузки между узлами. Модуль виртуализации связан со второй группой ЭВМ для хранения программных сессий и с ЭВМ управления. Модуль диспетчеризации связан со второй группой...
Тип: Изобретение
Номер охранного документа: 0002543962
Дата охранного документа: 10.03.2015
27.04.2015
№216.013.462f

Способ определения качества окружающей среды методом эпр-спектроскопии лишайников

Изобретение относится к экологии. Изобретение представляет способ определения качества окружающей среды методом ЭПР-спектроскопии лишайников, включающий сбор образцов талломов лишайников со стволов деревьев, произрастающих в индустриальной и фоновой зоне, не загрязненной антропогенными...
Тип: Изобретение
Номер охранного документа: 0002549471
Дата охранного документа: 27.04.2015
20.07.2015
№216.013.6549

Аппаратно-вычислительный комплекс с повышенными надежностью и безопасностью в среде облачных вычислений

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности комплекса и обеспечении быстрого ввода в эксплуатацию утраченных из-за неисправности оборудования ресурсов. Аппаратно-вычислительный комплекс с повышенными надежностью и безопасностью в...
Тип: Изобретение
Номер охранного документа: 0002557476
Дата охранного документа: 20.07.2015
20.09.2015
№216.013.7d52

Способ иммуногистохимического окрашивания тотальных препаратов образцов биологических тканей (варианты)

Группа изобретений относится к области экспериментальной биологии и медицины для приготовления тотальных препаратов биологических тканей для оптической проекционной томографии, конфокальной, мультифотонной и светоплоскостной микроскопии и может быть использована для предклинических испытаний...
Тип: Изобретение
Номер охранного документа: 0002563679
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7da5

Способ измерения концентрации частиц аэрозоля и устройство для его осуществления

Предложенный способ позволяет измерять распределение по фракциям и концентрации твердых и жидких частиц аэрозоля в интервале размеров частиц: от 0,8 мкм до 2 мкм, от 2 мкм до 5 мкм, от 5 мкм до 10 мкм и более 10 мкм при помощи полупроводниковых кондуктометрических сенсоров по изменению...
Тип: Изобретение
Номер охранного документа: 0002563762
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.9024

Мобильная паразитологическая лаборатория

Изобретение относится к медицинской технике, в частности к мобильным паразитологическим лабораториям. Мобильная паразитологическая лаборатория выполнена на базе транспортного средства и содержит водительский и лабораторный отсеки. Лабораторный отсек включает в себя входной санитарно-шлюзовой...
Тип: Изобретение
Номер охранного документа: 0002568516
Дата охранного документа: 20.11.2015
Showing 1-10 of 17 items.
10.12.2013
№216.012.8a16

Способ определения проницаемости преграды для зондирующего излучения сверхширокополосного радара

Изобретение относится к радиотехнике и предназначено для оценки достоверности результатов поиска живых людей за непрозрачными преградами с использованием сверхширокополосного (СШП) радара путем проведения исследований по определению проницаемости преграды для используемого при поиске радара....
Тип: Изобретение
Номер охранного документа: 0002501032
Дата охранного документа: 10.12.2013
10.09.2014
№216.012.f172

Способ наземной имитации полета космических аппаратов в космосе

Изобретение относится к космонавтике, а именно к способам имитации полета космических аппаратов (КА). Подготавливают аппаратные средства, моделируют орбитальное движение КА по предварительно заданному алгоритму и/или при приеме управляющих команд в режиме реального времени, моделируют движение...
Тип: Изобретение
Номер охранного документа: 0002527632
Дата охранного документа: 10.09.2014
10.12.2014
№216.013.0d4d

Способ оценки фармакологических и токсикологических свойств веществ - радио-, токсикопротекторов и радио-, токсикосенсибилизаторов

Изобретение относится к области радиобиологии и экспериментальной медицины. Способ оценки фармакологических и токсикологических свойств веществ заключается в том, что исследуемое вещество вносят в питательную среду личинок и мух Drosophila melanogaster, сочетающих в своем геноме гипоморфные...
Тип: Изобретение
Номер охранного документа: 0002534822
Дата охранного документа: 10.12.2014
27.01.2015
№216.013.216b

Способ определения дисперсного состава аэрозоля

Изобретение относится к способам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов. Способ измерения дисперсного состава аэрозольных частиц и их концентрации в воздушной среде...
Тип: Изобретение
Номер охранного документа: 0002540003
Дата охранного документа: 27.01.2015
10.03.2015
№216.013.30ce

Аппаратно-вычилистельный комплекс виртуализации и управления ресурсами в среде облачных вычислений

Изобретение относится к области систем облачных вычислений. Технический результат заключается в снижении времени перевода нагрузки между узлами. Модуль виртуализации связан со второй группой ЭВМ для хранения программных сессий и с ЭВМ управления. Модуль диспетчеризации связан со второй группой...
Тип: Изобретение
Номер охранного документа: 0002543962
Дата охранного документа: 10.03.2015
27.04.2015
№216.013.462f

Способ определения качества окружающей среды методом эпр-спектроскопии лишайников

Изобретение относится к экологии. Изобретение представляет способ определения качества окружающей среды методом ЭПР-спектроскопии лишайников, включающий сбор образцов талломов лишайников со стволов деревьев, произрастающих в индустриальной и фоновой зоне, не загрязненной антропогенными...
Тип: Изобретение
Номер охранного документа: 0002549471
Дата охранного документа: 27.04.2015
20.07.2015
№216.013.6549

Аппаратно-вычислительный комплекс с повышенными надежностью и безопасностью в среде облачных вычислений

Изобретение относится к вычислительной технике. Технический результат заключается в повышении надежности комплекса и обеспечении быстрого ввода в эксплуатацию утраченных из-за неисправности оборудования ресурсов. Аппаратно-вычислительный комплекс с повышенными надежностью и безопасностью в...
Тип: Изобретение
Номер охранного документа: 0002557476
Дата охранного документа: 20.07.2015
20.09.2015
№216.013.7d52

Способ иммуногистохимического окрашивания тотальных препаратов образцов биологических тканей (варианты)

Группа изобретений относится к области экспериментальной биологии и медицины для приготовления тотальных препаратов биологических тканей для оптической проекционной томографии, конфокальной, мультифотонной и светоплоскостной микроскопии и может быть использована для предклинических испытаний...
Тип: Изобретение
Номер охранного документа: 0002563679
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7da5

Способ измерения концентрации частиц аэрозоля и устройство для его осуществления

Предложенный способ позволяет измерять распределение по фракциям и концентрации твердых и жидких частиц аэрозоля в интервале размеров частиц: от 0,8 мкм до 2 мкм, от 2 мкм до 5 мкм, от 5 мкм до 10 мкм и более 10 мкм при помощи полупроводниковых кондуктометрических сенсоров по изменению...
Тип: Изобретение
Номер охранного документа: 0002563762
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.9024

Мобильная паразитологическая лаборатория

Изобретение относится к медицинской технике, в частности к мобильным паразитологическим лабораториям. Мобильная паразитологическая лаборатория выполнена на базе транспортного средства и содержит водительский и лабораторный отсеки. Лабораторный отсек включает в себя входной санитарно-шлюзовой...
Тип: Изобретение
Номер охранного документа: 0002568516
Дата охранного документа: 20.11.2015
+ добавить свой РИД