×
10.03.2015
216.013.2fba

Результат интеллектуальной деятельности: МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам для измерения линейных ускорений и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей. Сущность: акселерометр содержит инерционную массу (1), которая закреплена во внутренней раме (2) с помощью торсионов (3- 6). Торсионы (3-6) размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний инерционной массы (1) вдоль оси Х. На инерционной массе (1) закреплены подвижные электроды (7, 8) датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. На внутренней раме (2) закреплены подвижные электроды (9, 10) датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. Внутренняя рама (2) закреплена во внешней раме (11) с помощью торсионов (12-15). Торсионы (12-15) размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний внутренней рамы (2) вдоль оси Y. Внешняя рама (11) закреплена в корпусе (16) с помощью торсионов (17-20). Торсионы (17-20) размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний внешней рамы (11) вдоль оси Z. На внешней раме (11) закреплены подвижные электроды (21, 22) датчика перемещения. Корпус (16) закреплен на подложке (23), на которой закреплены неподвижные электроды (24, 25) датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. Неподвижные электроды (24, 25) образуют конденсаторы с подвижными электродами (7, 8) в плоскости их пластин, образуя при этом емкостной датчик перемещения инерционной массы (1) относительно подложки (23). На подложке (23) закреплены неподвижные электроды (26, 27) датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. Неподвижные электроды (26, 27) образуют конденсаторы с подвижными электродами (9, 10) в плоскости их пластин, образуя при этом емкостной датчик перемещения внутренней рамы (2) относительно подложки (23). На подложке (23) закреплены неподвижные электроды (28, 29) датчика перемещения. Неподвижные электроды (28, 29) образуют конденсаторы с подвижными электродами (21, 22) в плоскости их пластин, образуя при этом емкостной датчик перемещения внешней рамы (11) относительно подложки (23). Инерционная масса (1), внутренняя рама (2), внешняя рама (11), торсионы (3-6, 12-15, 17-20), подвижные электроды (7-10, 21, 22) датчиков перемещения расположены с зазором относительно подложки (23). Инерционная масса (1), внутренняя рама (2), внешняя рама (11), торсионы (3-6, 12-15, 17-20), подвижные электроды (7-10, 21, 22) датчиков перемещения, неподвижные электроды (24-29) датчиков перемещения, корпус (16) выполнены из полупроводникового материала, например, из монокристаллического кремния. Подложка (23) может быть изготовлена из диэлектрика, например, из боросиликатного стекла. Технический результат: возможность проведения одновременных измерений ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z. 1 ил.
Основные результаты: Микромеханический акселерометр, содержащий подложку, на которой закреплены четыре неподвижных электрода датчика перемещения, выполненных из полупроводникового материала, при этом инерционная масса, внутренняя рама, два торсиона, соединяющих инерционную массу с внутренней рамой, четыре подвижных электрода выполнены из полупроводникового материала и расположены с зазором относительно подложки, причем четыре подвижных электрода датчика перемещения выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с четырьмя неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения внутренней рамы относительно подложки и емкостной датчик перемещения инерционной массы относительно подложки, отличающийся тем, что два дополнительных подвижных электрода датчика перемещения закреплены на инерционной массе, которая закреплена во внутренней раме с помощью двух дополнительных торсионов, которые жестко прикреплены одними концами к инерционной массе, а другими - к внутренней раме, на которой закреплены два подвижных электрода датчика перемещения, при этом внутренняя рама закреплена во внешней раме с помощью четырех торсионов, которые жестко прикреплены одними концами к внутренней раме, а другими - к внешней раме, на которой закреплены два подвижных электрода датчика перемещения, при этом внешняя рама закреплена в корпусе с помощью торсионов, которые жестко прикреплены одними концами к внешней раме, а другими - к корпусу, который закреплен на подложке, на которой закреплены два дополнительных неподвижных электрода датчика перемещения, которые образуют конденсаторы с двумя дополнительными подвижными электродами в плоскости их пластин, образуя при этом емкостной датчик перемещения внешней рамы относительно подложки, при этом внешняя рама, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения расположены с зазором относительно подложки, причем внешняя рама, корпус, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения, два дополнительных неподвижных электрода датчика перемещения выполнены из монокристаллического кремния, а подложка выполнена из диэлектрического материала.

Изобретение относится к измерительной технике, а именно к измерительным элементам линейного ускорения, и может быть использовано для одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей.

Известен микромеханический акселерометр [Распопов В.Я. Микромеханические приборы: учебное пособие. - М.: Машиностроение, 2002, с. 26, рис. 1.20], содержащий подложку (основание) из диэлектрического материала, четыре опорных элемента (анкера), расположенные с противоположных сторон и закрепленные неподвижно на подложке, инерционную массу, выполненную в виде прямоугольной пластины, расположенную с зазором относительно подложки и связанную с опорными элементами через четыре упругих элемента подвеса, расположенных по краям инерционной массы, емкостной измеритель перемещений, образованный гребневыми структурами электродов, из которых подвижные электроды образуют единую структуру с инерционной массой, а неподвижные электроды жестко закреплены к подложке.

Недостатком конструкции этого микромеханического акселерометра является невозможность одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z.

Известен микромеханический акселерометр [US 6199874 B1, МПК 7 B60G17/00, опубл. 13.03.2001], в котором инерционная масса смонтирована параллельно и на некотором расстоянии от основания (корпуса) с помощью двух пар упругих элементов подвеса и анкеров. Емкостный измеритель перемещений образован гребенчатыми структурами электродов, из которых подвижные электроды образуют единую структуру с инерционной массой, а неподвижные электроды, объединенные рамкой, скреплены с основанием.

Недостатком конструкции этого микромеханического акселерометра является невозможность одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z.

Известен интегральный микромеханический гироскоп-акселерометр (RU 2477863 C1, МПК G01P15/125 (2006.01), опубл. 20.03.2013), выбранный в качестве прототипа, содержащий полупроводниковую подложку, на которой расположены десять опор и четыре неподвижных электрода датчика перемещения. Эти опоры и неподвижные электроды выполнены из полупроводникового материала и расположены непосредственно на полупроводниковой подложке.

Инерционная масса, два торсиона, соединяющих внутреннюю раму с опорами, два торсиона, соединяющих инерционную массу с внутренней рамой, четыре подвижных электрода, шестнадцать упругих балок и внутренняя рама расположены с зазором относительно полупроводниковой подложки и выполнены из полупроводникового материала.

Подвижные и неподвижные электроды датчика перемещения выполнены с гребенчатыми структурами с одной стороны, причем подвижные электроды выполнены с возможностью электростатического взаимодействия с неподвижными электродами в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения внутренней рамы относительно полупроводниковой подложки и емкостной датчик перемещения инерционной массы относительно полупроводниковой подложки.

Интегральный микромеханический гироскоп-акселерометр позволяет измерять величины угловой скорости вдоль оси Z, направленной перпендикулярно плоскости полупроводниковой подложки, и ускорения вдоль осей X, Y, расположенных в плоскости полупроводниковой подложки гироскопа-акселерометра.

Недостатком конструкции этого интегрального микромеханического гироскопа-акселерометра является невозможность одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z.

Задачей предлагаемого изобретения является создание микромеханического акселерометра, позволяющего проводить одновременное измерение ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z.

Поставленная задача достигается за счет того, что микромеханический акселерометр, так же как в прототипе, содержит подложку, на которой закреплены четыре неподвижных электрода датчика перемещения, выполненных из полупроводникового материала, при этом инерционная масса, внутренняя рама, два торсиона, соединяющих инерционную массу с внутренней рамой, четыре подвижных электрода выполнены из полупроводникового материала и расположены с зазором относительно подложки, причем четыре подвижных электрода датчика перемещения выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с четырьмя неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения внутренней рамы относительно подложки и емкостной датчик перемещения инерционной массы относительно подложки.

Согласно изобретению два подвижных электрода датчика перемещения закреплены на инерционной массе, которая закреплена во внутренней раме с помощью двух дополнительных торсионов, которые жестко прикреплены одними концами к инерционной массе, а другими к внутренней раме, на которой закреплены два подвижных электрода датчика перемещения. Внутренняя рама закреплена во внешней раме с помощью четырех торсионов, которые жестко прикреплены одними концами к внутренней раме, а другими к внешней раме, на которой закреплены два дополнительных подвижных электрода датчика перемещения. Внешняя рама закреплена в корпусе с помощью торсионов, которые жестко прикреплены одними концами к внешней раме, а другими к корпусу, который закреплен на подложке, на которой закреплены два дополнительных неподвижных электрода датчика перемещения, которые образуют конденсаторы с двумя дополнительными подвижными электродами в плоскости их пластин, образуя при этом емкостной датчик перемещения внешней рамы относительно подложки. Внешняя рама, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения расположены с зазором относительно подложки. Внешняя рама, корпус, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения, два дополнительных неподвижных электрода датчика перемещения выполнены из монокристаллического кремния, а подложка выполнена из диэлектрического материала.

Предложенное расположение подвижных электродов датчика перемещения на внутренней раме и инерционной массе, введение дополнительной внешней рамы, закрепленной на подложке через систему, состоящую из торсионов и корпуса, позволяет установить на внешней раме два дополнительных подвижных электрода датчика перемещения, которые образуют конденсаторы с двумя дополнительными неподвижными электродами датчика перемещения, установленными на подложке, образуя при этом емкостной датчик перемещения внешней рамы относительно подложки, а также введение двух дополнительных торсионов, соединяющих инерционную массу с внутренней рамой, позволяет инерционной массе совершать колебания вдоль оси Х, что обеспечивает возможность проведения одновременного измерения ускорений вдоль трех взаимно перпендикулярных осей X, Y, Z.

На фиг. 1 представлена структура предлагаемого микромеханического акселерометра.

Микромеханический акселерометр содержит инерционную массу 1, которая закреплена во внутренней раме 2 с помощью торсионов 3, 4, 5, 6. Торсионы 3, 4, 5, 6 жестко прикреплены одними концами к внутренней раме 2, а другими - к инерционной массе 1. Торсионы 3, 4, 5, 6 размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний инерционной массы 1 вдоль оси Х, за счет геометрических размеров торсионов 3, 4, 5, 6.

На инерционной массе 1 закреплены подвижные электроды 7, 8 датчика перемещения, выполненные с гребенчатыми структурами с одной стороны.

На внутренней раме 2 закреплены подвижные электроды 9, 10 датчика перемещения, выполненные с гребенчатыми структурами с одной стороны.

Внутренняя рама 2 закреплена во внешней раме 11 с помощью торсионов 12, 13, 14, 15, которые жестко прикреплены одними концами к внутренней раме 2, а другими - к внешней раме 11. Торсионы 12, 13, 14, 15 размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний внутренней рамы 2 вдоль оси Y, за счет геометрических размеров торсионов 12, 13, 14, 15.

Внешняя рама 11 закреплена в корпусе 16 с помощью торсионов 17, 18, 19, 20, которые жестко прикреплены одними концами к внешней раме 11, а другими к корпусу 16. Торсионы 17, 18, 19, 20 размещены в микромеханическом акселерометре с возможностью совершения поступательных колебаний внешней рамы 11 вдоль оси Z, за счет геометрических размеров торсионов 17, 18, 19, 20.

На внешней раме закреплены подвижные электроды 21, 22 датчика перемещения.

Корпус 16 закреплен на подложке 23, на которой закреплены неподвижные электроды 24, 25 датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. Неподвижные электроды 24, 25 образуют конденсаторы с подвижными электродами 7, 8, в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения инерционной массы 1 относительно подложки 23.

На подложке 23 закреплены неподвижные электроды 26, 27 датчика перемещения, выполненные с гребенчатыми структурами с одной стороны. Неподвижные электроды 26, 27 образуют конденсаторы с подвижными электродами 9, 10 в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения внутренней рамы 2 относительно подложки 23.

На подложке 23 закреплены неподвижные электроды 28, 29 датчика перемещения. Неподвижные электроды 28, 29 образуют конденсаторы с подвижными электродами 21, 22 в плоскости их пластин, образуя при этом емкостной датчик перемещения внешней рамы 11 относительно подложки 23.

Инерционная масса 1, внутренняя рама 2, внешняя рама 11, торсионы 3, 4, 5, 6, 12, 13, 14, 15, 17, 18, 19, 20, подвижные электроды 7, 8, 9, 10, 21, 22 датчиков перемещения расположены с зазором относительно подложки 23.

Инерционная масса 1, внутренняя рама 2, внешняя рама 11, торсионы 3, 4, 5, 6, 12, 13, 14, 15, 17, 18, 19, 20, подвижные электроды 7, 8, 9, 10, 21, 22 датчиков перемещения, неподвижные электроды 24, 25, 26, 27, 28, 29 датчиков перемещения, корпус 16 выполнены из полупроводникового материала, например, из монокристаллического кремния.

Подложка 23 может быть изготовлена из диэлектрика, например из боросиликатного стекла.

Работает устройство следующим образом

При возникновении ускорения подложки 23 вдоль оси Y, под действием сил инерции инерционная масса 1 вместе с подвижными электродами 7, 8 перемещается вдоль оси Y, за счет изгиба торсионов 3, 4, 5, 6. Разность напряжений, генерируемая на емкостных датчиках перемещений, образованных подвижными электродами 7, 8 и неподвижными электродами 24, 25, характеризует величину ускорения, за счет изменения величины площади перекрытия между подвижными электродами 7, 8 и неподвижными электродами 24, 25.

При возникновении ускорения подложки 23 вдоль оси Х, под действием сил инерции внутренняя рама 2 вместе с подвижными электродами 9, 10 перемещается вдоль оси Х, за счет изгиба торсионов 12, 13, 14, 15. Разность напряжений, генерируемая на емкостных датчиках перемещений, образованных подвижными электродами 9, 10 и неподвижными электродами 26, 27, характеризует величину ускорения, за счет изменения величины площади перекрытия между подвижными электродами 9, 10 и неподвижными электродами 26, 27.

При возникновении ускорения подложки 23 вдоль оси Z, под действием сил инерции внешняя рама 11 вместе с подвижными электродами 21,22 перемещается вдоль оси Z, за счет изгиба торсионов 17, 18, 19, 20. Разность напряжений, генерируемая на емкостных датчиках перемещений, образованных подвижными электродами 21, 22 и неподвижными электродами 28, 29, характеризует величину ускорения, за счет изменения величины площади перекрытия между подвижными электродами 21, 22 и неподвижными электродами 28, 29.

Таким образом, предлагаемое устройство представляет собой микромеханический акселерометр, позволяющий одновременно измерять величины ускорений, направленных вдоль осей X, Y, Z.

Микромеханический акселерометр, содержащий подложку, на которой закреплены четыре неподвижных электрода датчика перемещения, выполненных из полупроводникового материала, при этом инерционная масса, внутренняя рама, два торсиона, соединяющих инерционную массу с внутренней рамой, четыре подвижных электрода выполнены из полупроводникового материала и расположены с зазором относительно подложки, причем четыре подвижных электрода датчика перемещения выполнены с гребенчатыми структурами с одной стороны и образуют конденсаторы с четырьмя неподвижными электродами с гребенчатыми структурами с одной стороны в плоскости их пластин через боковые зазоры и взаимопроникающие друг в друга гребенки электродов, образуя при этом емкостной датчик перемещения внутренней рамы относительно подложки и емкостной датчик перемещения инерционной массы относительно подложки, отличающийся тем, что два дополнительных подвижных электрода датчика перемещения закреплены на инерционной массе, которая закреплена во внутренней раме с помощью двух дополнительных торсионов, которые жестко прикреплены одними концами к инерционной массе, а другими - к внутренней раме, на которой закреплены два подвижных электрода датчика перемещения, при этом внутренняя рама закреплена во внешней раме с помощью четырех торсионов, которые жестко прикреплены одними концами к внутренней раме, а другими - к внешней раме, на которой закреплены два подвижных электрода датчика перемещения, при этом внешняя рама закреплена в корпусе с помощью торсионов, которые жестко прикреплены одними концами к внешней раме, а другими - к корпусу, который закреплен на подложке, на которой закреплены два дополнительных неподвижных электрода датчика перемещения, которые образуют конденсаторы с двумя дополнительными подвижными электродами в плоскости их пластин, образуя при этом емкостной датчик перемещения внешней рамы относительно подложки, при этом внешняя рама, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения расположены с зазором относительно подложки, причем внешняя рама, корпус, два дополнительных торсиона, закрепляющих инерционную массу во внутренней раме, четыре торсиона, соединяющих внутреннюю раму с внешней рамой, четыре торсиона, соединяющих внешнюю раму и корпус, два дополнительных подвижных электрода датчика перемещения, два дополнительных неподвижных электрода датчика перемещения выполнены из монокристаллического кремния, а подложка выполнена из диэлектрического материала.
МИКРОМЕХАНИЧЕСКИЙ АКСЕЛЕРОМЕТР
Источник поступления информации: Роспатент

Showing 141-145 of 145 items.
27.01.2016
№216.014.c35b

Фильтр тока обратной последовательности

Изобретение относится к электротехнике, а именно к технике релейной защиты, и может быть использовано для выявления токов обратной последовательности в токопроводах фаз электроустановки. Фильтр тока обратной последовательности для электроустановки с токопроводами фаз А, В, С, расположенными по...
Тип: Изобретение
Номер охранного документа: 0002574038
Дата охранного документа: 27.01.2016
20.04.2016
№216.015.342a

Сверло одностороннего резания с твердосплавным стеблем

Изобретение относится к машиностроению и может быть использовано при сверлении глубоких отверстий малых диаметров. Сверло содержит стебель из твердого сплава, соединенный посредством цапфы с хвостовиком из стали. В стебле выполнены наружный V-образный прямой канал и внутренний прямой канал...
Тип: Изобретение
Номер охранного документа: 0002581541
Дата охранного документа: 20.04.2016
10.05.2016
№216.015.3c6d

Линейный индукционный ускоритель

Изобретение относится к ускорительной технике и может быть использовано для создания пучков заряженных частиц наносекундной длительности с высокой частотой следования импульсов. Линейный индукционный ускоритель содержит индукционную систему 1 в виде набора ферромагнитных сердечников, охваченных...
Тип: Изобретение
Номер охранного документа: 0002583039
Дата охранного документа: 10.05.2016
25.08.2017
№217.015.b0de

Способ установления состояния предразрушения конструкционного изделия

Изобретение относится к контрольно-измерительной технике и может быть использовано лабораториями неразрушающего контроля, проектными и научно-исследовательскими организациями для диагностики трещинообразования в конструкционных материалах и прогнозирования состояния предразрушения конструкции....
Тип: Изобретение
Номер охранного документа: 0002613486
Дата охранного документа: 16.03.2017
19.01.2018
№218.016.0487

Интегральный микромеханический гироскоп

Изобретение относится к гироскопическим приборам, а именно к датчикам угловой скорости, основанным на Кориолисовых силах, и может быть использовано для измерения угловой скорости. Интегральный микромеханический гироскоп, выполненный из полупроводникового материала, содержит рамку, закрепленную...
Тип: Изобретение
Номер охранного документа: 0002630542
Дата охранного документа: 11.09.2017
Showing 141-150 of 240 items.
10.10.2014
№216.012.fd79

Способ генерации ускоренных позитронов

Изобретение относится к области ускорительной техники и предназначено для генерации позитронов с большой энергией для последующего использования в дефектоскопии, томографии, радиационных испытаниях стойкости материалов, лучевой терапии и др. Способ генерации ускоренных позитронов включает...
Тип: Изобретение
Номер охранного документа: 0002530735
Дата охранного документа: 10.10.2014
10.11.2014
№216.013.0411

Комплекс для проверки скважинных инклинометров на месторождении

Изобретение относится к области исследования и испытания инклинометров в полевых условиях. Техническим результатом является повышение точности и оперативности проверки магнитных и гироскопических скважинных инклинометров в полевых условиях. Предложен комплекс для проверки скважинных...
Тип: Изобретение
Номер охранного документа: 0002532439
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0453

Способ определения равновесности химического состава болотных вод от их гидродинамических условий

Изобретение относится к гидродинамическим и гидрохимическим исследованиям вод торфяных почв. Техническим результатом является определение изменения химического состава болотных вод по глубине торфяной залежи в условиях их гидродинамического режима во времени. В способе определяют закономерность...
Тип: Изобретение
Номер охранного документа: 0002532505
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04af

Способ визуализации ультразвуковой дефектоскопии трехмерного изделия

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что размещают пьезопреобразователи антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно...
Тип: Изобретение
Номер охранного документа: 0002532597
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04b8

Устройство ультразвуковой томографии

Использование: для визуализации ультразвуковой дефектоскопии трехмерного изделия. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит антенную решетку с n приемно-передающими элементами, каждый из которых соединен с выходом соответствующего генератора...
Тип: Изобретение
Номер охранного документа: 0002532606
Дата охранного документа: 10.11.2014
20.11.2014
№216.013.08b4

Способ определения частотных границ полезного сигнала и полос пропускания цифровых частотных фильтров

Изобретение относится к области цифровой обработки сигналов и может быть использовано для решения задач неразрушающего контроля и диагностики оборудования на основе корреляционного анализа. Техническим результатом является определение частотных границ полезного сигнала и полос пропускания...
Тип: Изобретение
Номер охранного документа: 0002533629
Дата охранного документа: 20.11.2014
10.12.2014
№216.013.0cf1

Способ прогнозирования износостойкости твердосплавных режущих инструментов

Изобретение относится к области обработки металлов резанием и может быть использовано для прогнозирования-контроля износостойкости твердосплавных режущих инструментов при их изготовлении, использовании или сертификации. Сущность: проводят испытания на изменение величины исходного параметра от...
Тип: Изобретение
Номер охранного документа: 0002534730
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0cf3

Способ количественного определения афлатоксина в1 методом дифференциальной вольтамперометрии

Изобретение относится к области аналитической химии и может быть использовано в фармакокинетических исследованиях, для контроля кормов и кормовых добавок, в пищевой промышленности для определения фальсификации и др. Способ определения афлатоксина B1, включающий следующие операции: афлатоксин...
Тип: Изобретение
Номер охранного документа: 0002534732
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d2f

Способ получения фторида водорода из отходов алюминиевого производства

Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно...
Тип: Изобретение
Номер охранного документа: 0002534792
Дата охранного документа: 10.12.2014
10.12.2014
№216.013.0d82

Шихта для получения пинкового пигмента со структурой оловянного сфена

Изобретение относится к керамическому производству, в частности, к получению керамических пигментов. Техническим результатом изобретения является понижение температуры синтеза пигмента, удешевление керамических пигментов и утилизация отхода производства глинозема. Шихта для получения пинкового...
Тип: Изобретение
Номер охранного документа: 0002534875
Дата охранного документа: 10.12.2014
+ добавить свой РИД