×
10.03.2015
216.013.2f4f

Результат интеллектуальной деятельности: СПЛАВ НА ОСНОВЕ КОБАЛЬТА ДЛЯ НАНЕСЕНИЯ ПОКРЫТИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к металлургии сплавов на основе кобальта, предназначенных для получения износостойких покрытий с высокой микротвердостью, полученных методами гетерофазного переноса. Сплав на основе кобальта имеет следующий состав, мас.%: 20,0-30,0 Cr; 6,0-12,0 Si; 2,0-4,0 В; 0,2-0,8 Y; 0,1 - 0,6 Се; 0,3 - 0,9 La. Отношение содержания кремния к бору равно 3:1, а структура сплава представляет собой металлическую матрицу с наноразмерными частицами оксидов Се размером 30-80 нм, нитридов Y размером 50-100 нм и гидридов La размером 20-60 нм. Объемная доля наноразмерных частиц в сплаве составляет 30-50%. Предлагаемый сплав для нанесения покрытий обеспечивает повышение износостойкости покрытий за счет увеличения микротвердости до 68-72 HRc. 1 табл., 2 пр.
Основные результаты: Сплав на основе кобальта для нанесения износостойких покрытий методами гетерофазного переноса, содержащий хром, бор и иттрий, отличающийся тем, что он дополнительно содержит кремний, церий и лантан при следующем соотношении компонентов, мас.%: причем отношение содержания кремния к бору равно 3:1, а структура сплава представляет собой металлическую матрицу с наноразмерными частицами оксидов Се размером 30-80 нм, нитридов Y размером 50-100 нм и гидридов La размером 20-60 нм, при этом объемная доля наноразмерных частиц в сплаве составляет 30-50%.

Изобретение относится к металлургии сплавов на основе кобальта, предназначенных для получения износостойких покрытий с высокой микротвердостью для работы в жестких условиях эксплуатации, прежде всего в условиях абразивного износа.

Известен сплав на основе кобальта для литого микропровода в стеклянной изоляции (а.с. № 378965, Н01В1/02; С22С19/00, 01.01.1973), легированный хромом, кремнием и бором, %:

Cr: 20 - 30

Si: 5-10

В: 0,01-1,0

Со - остальное [1].

Известный сплав с относительно высокой микротвердостью разработан для процесса литья микропроводов с учетом специфики этого процесса и не может быть использован для получения функциональных покрытий без существенной корректировки состава.

Известен также сплав на основе кобальта для центробежного нанесения покрытий на внутреннюю поверхность цилиндра формовочной машины изделий из пластика (JP 60-200937, С22С19/07, 11.10.1985). Сплав состоит из мас.%: 0.1-10.0 Ni, 10-30 Cr, 0.5-3.0 В, 2.5-5.0 Si, 0.01-10.0 Ρ и неизбежные примеси и может дополнительно содержать 1-15%W и / или 1-10% Mo [2].

Сплав характеризуется относительно низкой износостойкостью, т.к. предназначен для нанесения покрытий на внутреннюю поверхность цилиндра машины для формовки пластмассовых изделий, имеющих невысокую твердость.

Наиболее близким по технической сущности и достигаемому эффекту, и принятым нами за прототип, является сплав для нанесения износостойких покрытий (JP 57-032347А, С22С19/05, С23С15/00, С23С07/00, С23С17/00, 22.02.1982). Композиция состоит из мас.%: 5-45 Al, 10-40 Cr, 0.005-0.8 В, 0.01-1.0 РЗЭ, например, Y в виде простого вещества или смеси, а остальное Ni или Со [3].

Введение алюминия в кобальтовые сплавы повышает вязкость, что снижает микротвердость сплава (не более 20 HRc), вследствие чего сплав имеет относительно низкую износостойкость, например, при абразивном износе. Однако практика работы современных деталей машин в условиях абразивного износа, а также при обработке или изготовлении металлических деталей из высокопрочных сталей и сплавов, показывает, что микротвердость должна быть не менее 50 HRc. Исследование микроструктуры известных сплавов показывает, что причиной низкой микротвердости у известных сплавов является отсутствие упрочняющих армирующих компонентов, например соединений эффективных редкоземельных элементов, прежде всего иттрия, лантана и церия, активно образующих в сплаве из-за наибольшего сродства к азоту, водороду и кислороду, соответственно нитриды, гидриды и оксиды в виде наноразмерных включений.

Известно, что создание наноструктурированного состояния за счет наноразмерных когерентных выделений приводит к эффективному повышению микротвердости сплава. Однако количество таких выделений должно быть строго регламентировано.

Техническим результатом настоящего изобретения является разработка сплава на основе кобальта для получения износостойких покрытий с микротвердостью 68 - 72 HRc, перспективных для инновационных изделий.

Технический результат достигается за счет того, что сплав на основе кобальта для нанесения износостойких покрытий методами гетерофазного переноса, содержащий хром, бор и иттрий, в соответствии с изобретением дополнительно содержит кремний, церий и лантан при следующем соотношении компонентов, мас.%:

Cr 20,0-30,0
Si 6,0-12,0
В 2,0-4,0
Y 0,2-0,8
Се 0,1-0,6
La 0,3-0,9
Со остальное,

причем отношение содержания кремния к бору равно 3:1, а структура сплава представляет собой металлическую матрицу с наноразмерными частицами оксидов Се размером 30-80 нм, нитридов Y размером 50-100 нм и гидридов La размером 20-60 нм, при этом объемная доля наноразмерных частиц в сплаве составляет 30-50%.

В качестве матричного материала (базового сплава), как показывает практика получения износостойких покрытий, целесообразно использовать сплав Co-Cr-Si-B. Введение Сг в количествах 20-30% обеспечивает создание матричного материала с оптимальной прочностью, а введение Si в количествах 6-12% и В в количествах 2-4% в соотношении 3:1 соответствует устойчивому соединению этих элементов и обеспечивает смачиваемость сплавом металлической подложки. Базовый состав имеет только один недостаток - относительно невысокую микротвердость.

Для достижения требуемой микротвердости в сплав системы Со-Сг-Si-B дополнительно вводят Y, La и Се, которые, имея наибольшее сродство к азоту, водороду и кислороду соответственно, образуют в сплаве наноразмерные включения в виде нитридов, гидридов и оксидов, когерентно связанных с матрицей, и обеспечивающих за счет этого существенное повышение микротвердости и, соответственно, износостойкости покрытия.

При содержании в сплаве Се 0,1-0,6% образуются наноразмерные выделения оксидов от 30 до 80 нм; при содержании иттрия 0,2-0,8% образуются нитриды размером 50-100 нм; при содержании лантана 0,3-0,9% - гидриды размером 20-60 нм. Это оптимальные размеры выделений для повышения микротвердости в 3-3,5 раза. Следует отметить, что при указанных размерах нановыделений обеспечивается когерентная связь с матрицей и равномерное распределение по объему. Выделения в матрице наноразмерных частиц приводят к существенному упрочнению матрицы и, соответственно, повышению микротвердости в указанных пределах. Важным является то, что указанные наноразмерные выделения образуются непосредственно при выплавке сплава и должны сохраняться при получении из слитка порошковых материалов (за счет высокоэнергетических методов обработки, а также за счет использования методов сверхзвукового гетерофазного переноса при получении функциональных покрытий).

Экспериментально установлено, что достижение требуемой микротвердости обеспечивается только при комплексном легировании сплава Y, La, Се. При этом объемная доля наноразмерных частиц в металлической матрице должна быть 30-50%, что соответствует оптимальному количеству, не приводящему к разупрочнению сплава. При меньшей объемной доле упрочняющих наноразмерных частиц эффект увеличения микротвердости незначителен. При наличии большего количества выделений (более 50%) наблюдается существенное охрупчивание сплава. Особенно этот эффект заметен в покрытиях и тонких пленках.

В лабораторных условиях были изготовлены опытные партии (9 вариантов) сплава, в которых удалось достичь требуемого результата с точки зрения микротвердости и получения качественных покрытий. Результаты испытаний приведены в Таблице 1.

Пример 1

Выплавка сплава производится в высокочастотной плавильной печи типа ЛПЗ-37 с рабочей частотой 440 кГц в алундовых тиглях. Введение шихтовых материалов производится в следующей последовательности: Со→Cr→Si→В→Y→La→Се. Масса слитка 1,0 кг. Из слитка по дезинтеграторной технологии на установке типа "ДЕЗИ-15" получают порошки фракции 40-63 мкм. Полученный таким образом порошок напыляют на установке сверхзвукового холодного газодинамического напыления "Димет-3".Этот метод нанесения покрытий обеспечивает сохранение химического и фазового состава исходного порошка, в.т.ч. и наноразмерных выделений, за счет низкой температуры гетерофазного переноса (80-120°С) и высоких скоростей потока (до 2,5 Махов/скоростей звука). Толщина покрытия 100±10 мкм. Наноструктурированное покрытие имеет включения размером 50-80 нм и объемной долей 30%.

Пример 2

Выплавка сплава производится в высокочастотной плавильной печи типа ЛПЗ-37 с рабочей частотой 440 кГц в алундовых тиглях. Введение шихтовых материалов производится в следующей последовательности: Со→Cr→Si→В→Y→La→Се. Масса слитка 1,0 кг. Из слитка по дезинтеграторной технологии на установке типа "ДЕЗИ-15" получают порошки фракции 40-63 мкм. Полученный таким образом порошок напыляют на установке микроплазменного напыления "УГНП-2/2270". Толщина покрытия примерно 150±15 мкм. Наноструктурированное покрытие имеет включения размером 50-80 нм и объемной долей 50%.

Предлагаемый сплав на основе кобальта с армирующими наноразмерными компонентами позволяет получить покрытия, полученные методами гетерофазного переноса, микротвердостью 68-72 HRc, что в 3-3,5 раза превышает микротвердость известных аналогов.

Источники информации

1. A.c. СССР № 378965 от 01.01.1973 "Сплав для литого микропровода в стеклянной изоляции" (МКИ Н01В 1/02; С22С 19/00).

2. JP № 60-200937 от 11.10.1985. "Со alloy for centrifugally coating inside of cylinder for plastic molding machine".

3. JP № 57-032347 от 22.02.1982. "Alloy for coating".

4. Дикусар А.И., Петренко В.И., Грабко Д.З., Харя Е.Е., Шикимака О.А. Микромеханические свойства сплавов Co-W при импульсных режимах осаждении. Сборник трудов XIV международной научно-практической конференции "Машиностроение и техносфера XXI века".- Донецк, 2007. - Т.1. - С. 266-270.

5. Бурканова Е.Ю., Фармаковский Б.В. Высокоскоростной механосинтез с использованием дезинтеграторных установок для получения наноструктурированных порошковых материалов системы металл-керамика износостойкого класса.- Вопросы материаловедения. - № 1(69). - С. 80-85. - 2012.

6. Патент РФ 2434077 от 20.11.2011. Сплав на основе квазикристалла системы Al-Cu-Fe для нанесения износостойкого, наноструктурированного покрытия.

7. Патент РФ 2418091 от 10.05.2011. Аморфный, износостойкий наноструктурированный сплав на основе никеля системы Ni-Cr-Mo-WC.

Сплав на основе кобальта для нанесения износостойких покрытий методами гетерофазного переноса, содержащий хром, бор и иттрий, отличающийся тем, что он дополнительно содержит кремний, церий и лантан при следующем соотношении компонентов, мас.%: причем отношение содержания кремния к бору равно 3:1, а структура сплава представляет собой металлическую матрицу с наноразмерными частицами оксидов Се размером 30-80 нм, нитридов Y размером 50-100 нм и гидридов La размером 20-60 нм, при этом объемная доля наноразмерных частиц в сплаве составляет 30-50%.
Источник поступления информации: Роспатент

Showing 21-27 of 27 items.
27.10.2015
№216.013.8a8c

Способ комбинированной раскатки осесимметричных деталей

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении осесимметричных деталей из малопластичных материалов, преимущественно спеченных. Заготовку устанавливают в матрицу с выставлением части для локального деформирования и фиксируют в осевом...
Тип: Изобретение
Номер охранного документа: 0002567071
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a2c3

Способ получения композиционного армированного порошкового материала

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002573309
Дата охранного документа: 20.01.2016
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
Showing 21-30 of 46 items.
27.10.2015
№216.013.8a8c

Способ комбинированной раскатки осесимметричных деталей

Изобретение относится к области обработки материалов давлением и может быть использовано при изготовлении осесимметричных деталей из малопластичных материалов, преимущественно спеченных. Заготовку устанавливают в матрицу с выставлением части для локального деформирования и фиксируют в осевом...
Тип: Изобретение
Номер охранного документа: 0002567071
Дата охранного документа: 27.10.2015
20.11.2015
№216.013.904b

Способ получения наноструктурированного конгломерированного порошкового материала для нанесения покрытий методами газодинамического и газотермического напыления

Изобретение относится к получению наноструктурированного конгломерированного порошкового материала для нанесения износо-коррозионностойких покрытий гизодинамическим и газотермическим напылением. Проводят диспергирование наноструктурного материала в жидкую среду посредством ультразвука и сушку...
Тип: Изобретение
Номер охранного документа: 0002568555
Дата охранного документа: 20.11.2015
20.01.2016
№216.013.a2c3

Способ получения композиционного армированного порошкового материала

Изобретение относится к получению композиционного армированного порошкового материала для нанесения покрытий холодным сверхзвуковым газодинамическим напылением. Смешивают матричный порошок металлов или их сплавов и армирующий нанопорошок с размером частиц от 1 нм до 100 нм, в полученную смесь...
Тип: Изобретение
Номер охранного документа: 0002573309
Дата охранного документа: 20.01.2016
25.08.2017
№217.015.b56e

Сплав на основе ниобия для формирования 3d-изделий сложной формы и покрытий

Изобретение относится к металлургии, а именно к прецизионным сплавам для получения 3d-изделий сложной формы и функциональных покрытий методом гетерофазного переноса. Композиционный сплав на основе ниобия, используемый для формирования 3d-изделий сложной формы и термобарьерных покрытий,...
Тип: Изобретение
Номер охранного документа: 0002614230
Дата охранного документа: 23.03.2017
26.08.2017
№217.015.e0f9

Способ получения нанокристаллического порошкового материала для изготовления широкополосного радиопоглощающего композита

Изобретение относится к получению нанокристаллического магнитомягкого порошкового материала для изготовления широкополосного радиопоглощающего композита. Способ включает измельчение аморфной ленты из магнитомягкого сплава на молотковой дробилке до частиц 3-5 мм и затем измельчение в...
Тип: Изобретение
Номер охранного документа: 0002625511
Дата охранного документа: 14.07.2017
20.01.2018
№218.016.18bd

Способ получения магнитного и электромагнитного экрана

Использование: для создания композиционных материалов на основе аморфных и нанокристаллических сплавов. Сущность изобретения заключается в том, что ленты укладывают между двух полимерных диэлектрических пленок, разогретых до температуры, достаточной для двухстороннего склеивания полимерной...
Тип: Изобретение
Номер охранного документа: 0002636269
Дата охранного документа: 21.11.2017
04.04.2018
№218.016.2f02

Композиционный радиопоглощающий материал и способ его изготовления

Изобретение относится к средствам для защиты от электромагнитных полей: электротехнических и электронных. Композиционный материал для защиты от электромагнитного излучения, состоящий из полимерной основы с распределенными в ней частицами сплава системы Fe-Cu-Nb-Si-B, представляющий собой...
Тип: Изобретение
Номер охранного документа: 0002644399
Дата охранного документа: 12.02.2018
09.06.2018
№218.016.5a31

Многослойный магнитный и электромагнитный экран для защиты от излучения силовых кабелей

Изобретение относится к многослойным покрытиям, используемым в радиоэлектронной и приборостроительной технике, в частности, при создании экранов для защиты от воздействия внешних магнитных и электромагнитных полей естественного и искусственного происхождения различных биологических и...
Тип: Изобретение
Номер охранного документа: 0002655377
Дата охранного документа: 28.05.2018
17.08.2018
№218.016.7c48

Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания

Изобретение относится к технологии получения сотовых тонкостенных энергопоглотителей. Энергопоглотитель изготавливают в виде ячеистой конструкции с ячейками произвольной формы из металлического порошка дисперсностью менее 50 мкм путем его послойного 20-40 мкм лазерного сплавления по заранее...
Тип: Изобретение
Номер охранного документа: 0002664010
Дата охранного документа: 14.08.2018
25.01.2019
№219.016.b41a

Способ получения керамоматричного покрытия на стали, работающего в высокотемпературных агрессивных средах

Изобретение относится к области материаловедения, в том числе к созданию защитных керамоматричных покрытий на поверхности стали, обладающих высокой коррозионной стойкостью в агрессивных средах при температурах контактного взаимодействия 400-600°С за счет изменения состава и структуры их...
Тип: Изобретение
Номер охранного документа: 0002678045
Дата охранного документа: 22.01.2019
+ добавить свой РИД