×
27.02.2015
216.013.2d73

Результат интеллектуальной деятельности: ИОННЫЙ ДВИГАТЕЛЬ

Вид РИД

Изобретение

№ охранного документа
0002543103
Дата охранного документа
27.02.2015
Аннотация: Изобретение относится к энергетике. Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет торообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя. Изобретение позволяет значительно повысить вибропрочность электродов, обеспечить стабильность межэлектродных зазоров, а также обеспечивает увеличение КПД. 1 ил.
Основные результаты: Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, отличающийся тем, что корпус ионного двигателя имеет торообразную форму, при этом катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, причем их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.

Изобретение относится к области электроракетных двигателей (ЭРД).

Среди различных типов электроракетных двигателей (ЭРД) в ионных двигателях (ИД) может быть достигнут максимальный удельный импульс тяги.

Принцип действия ИД основан на извлечении из ионизованной плазмы ионов и дальнейшем их электростатическом ускорении. В таком двигателе полностью разделены процессы ионизации и ускорения. По способу перевода рабочего тела (РТ) в ионизованное состояние ИД разделяют на 3 группы: на основе разряда постоянного тока, ВЧ-разряда или СВЧ-разряда.

ИД средней мощности широко используются за рубежом. К настоящему времени разработан широкий спектр таких двигателей. В США разрабатываются, производятся и эксплуатируются ИД с разрядом постоянного тока [1].

Особенностью германских двигателей является то, что ионизация РТ происходит в ВЧ-разряде.

В японских двигателях ионизация ксенона происходит в СВЧ-разряде.

Одним из основных узлов ИД является ионно-оптическая система (ИОС).

Известен ИД [1 - с.240], содержащий газоразрядную камеру (ГРК), имеющую форму цилиндра с конической задней стенкой. К стенкам ГРК через изоляторы крепятся аноды. Магнитное поле создается с помощью электромагнитов, расположенных снаружи ГРК. Конфигурация магнитного поля задается тремя полюсными наконечниками. Внутри катодного полюсного наконечника расположен полый катод. Эмиттер - из гексаборида лантана. Рабочее тело (ксенон) подается в ГРК через коллектор, расположенный в районе ИОС, которая состоит из плазменного, ускоряющего и замедляющего электродов. Замедляющий электрод выполнен в виде кольца, охватывающего весь ионный пучок. Плазменный и ускоряющий электроды толщиной 0,5 и 1,0 мм имеют форму сегмента сферы с большим радиусом и обладают начальным прогибом, направленным наружу ГРК. Снаружи ИОС расположен катод-нейтрализатор.

Недостатком ИД с разрядом постоянного тока является то, что под высоким потенциалом находятся: анод, стенка ГРК, катод с подключенными к нему источниками электропитания, экранная сетка ИОС и кабели. Обеспечить надежную электрическую изоляцию указанных цепей от корпуса и в системе питания и управления (СПУ) технически сложно. Кроме того, двигатель с разрядом постоянного тока конструктивно сложнее двух других типов. Для его работы необходим катод ГРК, ток которого должен в 7-10 раз превосходить ток катода-нейтрализатора. Для двигателя мощностью (30-70) кВт с ионным током (10-20) А потребуется катод на разрядный ток (70-150) А. Создание такого сильноточного катода представляет собой достаточно сложную инженерную задачу. Катоды и нейтрализаторы, в особенности сильноточные, имеют ограниченный ресурс. Так, наработка катодов-нейтрализаторов ОКБ «Факел» (для СПД-100 на 4,5 А) не превышает 9000 ч [1 - с.33]. Поэтому потребуется резервирование как катодов, так и катодов-нейтрализаторов, но поместить несколько катодов в ГРК практически невозможно, так как катод должен располагаться вдоль продольной оси двигателя.

Самым мощным ионным двигателем к настоящему времени является лабораторная модель двигателя NEXIS мощностью до 25 кВт. Для повышения его мощности в 2-3 раза (необходимой для маршевых задач дальнего космоса) требуется пропорционально увеличить площадь ИОС. В результате, на мощность 50 кВт, диаметр модели должен быть около 0,8 м, на 75 кВт - 1 м. Мембрана такого диаметра, закрепленная по периферии, обладает малой вибропрочностью.

За прототип принят ионный двигатель с ВЧ-разрядом, например, RIT-ИД с радиочастотной ионизацией [2]. В общем случае ионный двигатель, например, RIT-22, содержит: 2- или 3-сеточную ИОС (круглого сечения); катод-нейтрализатор, установленный снаружи корпуса ИД; ГРК из диэлектрического материала с малым косинусом потерь; индуктор в виде спирали из медного провода; узел подачи ксенона, с газоэлектрической развязкой; корпус и радиочастотный генератор.

В радиочастотном двигателе единственным элементом, находящимся под высоким потенциалом, является экранная сетка (с подключенным к ней проводом), которая расположена внутри диэлектрической ГРК, выполняющей, помимо всего, защитную функцию. Поэтому особых мер по обеспечению электрической прочности изоляции этой сетки не требуется. Остальные элементы двигателя имеют относительно низкие потенциалы.

В разрабатываемом крупногабаритном ИД RIT-45 мощностью 35 кВт диаметр ИОС будет порядка 500 мм, в крупногабаритном ИД ЭРД-50 мощностью 30 кВт характерный размер ИОС (круглого сечения) составляет 700 мм [1]. При этом электроды ИОС традиционно выполняются в виде тонких (толщиной 0,4…1,0 мм) пластин перфорированных до 35000 отверстий. Причем допуск на точность выполнения отверстий в двух электродах обычно составляет не более 0,02 мм. Вибропрочность таких электродов, представляющих собой заделанную по окружности тонкостенную мембрану большой площади, перфорированную десятками тысяч отверстий, достаточно мала. Кроме того, расчет термической деформации электродов ИОС в крупногабаритном ИД с учетом геометрии, температурных полей и теплофизических свойств материалов показывает, что обеспечение приемлемых тепловых деформаций сеток представляет собой достаточно сложную задачу. В этом смысле предпочтительней делать сетки из однородного материала - углерода, который имеет наименьший коэффициент линейного расширения - минус 0,3·10-6 °C-1. Так как электроды являются практически изотермичными, они будут повторять форму друг друга. При использовании разнородных материалов сеток добиться стабильности межэлектродных зазоров в диапазоне (0,5-1,0) мм крайне сложно.

Недостатком такого крупногабаритного ИД является значительное снижение вибропрочности ИОС, представляющей собой огромную перфорированную мембрану. Кроме того, несимметричная установка катода-нейтрализатора снаружи ИОС, приводит к уменьшению КПД ИД на 5-7% [3].

Задачей предлагаемого изобретения является увеличение вибропрочности и надежности эксплуатации за счет обеспечения стабильности межэлектродных зазоров ИОС, а также повышение КПД крупногабаритного ИД.

Эта задача решается следующим образом.

В крупногабаритном ионном двигателе, содержащем корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, при этом корпус ионного двигателя имеет горообразную форму, причем катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, при этом их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.

На фиг.1 представлен общий вид ИД, который состоит из заключенных в кольцевой корпус 6 кольцевой 3-сеточной ИОС 1, расположенного вдоль центральной оси катода-нейтрализатора 2 и кольцевой ГРК 3, выполненной из диэлектрического материала с малым косинусом потерь. Индуктор 4 выполнен в виде спирали из медного провода и кольцевого узла подачи ксенона 5 с газоэлектрической развязкой. При этом ИОС 1 состоит из кольцевых: экранного электрода 7 с токоподводом 8, ускоряющего электрода 9 с токоподводом 10 и замедляющего электрода 11, электроразделенных изоляторами 12 и заделанных в корпус с наружной и внутренней стороны. Корпус 6 перфорирован отверстиями 13.

Для запуска двигателя подают расход ксенона в катод-нейтрализатор 2 и кольцевой узел подачи ксенона 5 ГРК 3. После стартового разогрева катода-нейтрализатора 2 инициируют в нем разряд и включают ВЧ-генератор, питающий индуктор 4. Электроны через ИОС 1 проникают в полость ГРК 3, где инициируют высокочастотный разряд. Затем подают напряжение на электроды 7, 9, 11 ИОС 1 и двигатель переходит в номинальный режим работы. Особенностью двигателя такой схемы является то, что только экранный электрод 7 ИОС 1 находится под высоким потенциалом, так как разряд в ГРК 3 является безэлектродным.

Рассмотрим две мембраны из одного и того же материала, одинаковой толщины, отличающиеся только диаметром.

Круговая частота собственных колебаний мембраны рассчитывается по формуле

,

где λ - круговая частота;

Р - цилиндрическая жесткость мембраны;

m - масса единицы площади мембраны;

R - радиус мембраны.

Цилиндрическая жесткость мембраны описывается следующим образом:

,

где Е - модуль Юнга;

h - толщина мембраны;

µ - коэффициент Пуассона.

В результате получаем: . То есть собственная частота колебаний мембраны обратно пропорциональна ее площади. Сетки ИОС ионного двигателя в упрощенном виде можно представить в виде мембран. В ионном двигателе, в котором площадь оптики в два раза больше, чем у другого ИД, собственная частота сеток в два раза ниже. При одинаковом уровне перегрузок вдвое возрастет амплитуда перемещений, что увеличивает риск повреждения (поломок) сеток.

Таким образом, при необходимости значительного увеличения мощности двигателя (площади его ИОС) предпочтительно использовать предложенный ИД. В нем электроды ИОС закреплены по наружной и по внутренней поверхностям корпуса. Такая конструкция ИД позволит значительно повысить вибропрочность электродов и обеспечить стабильность межэлектродных зазоров в диапазоне (0,5-1,0) мм при их термическом расширении во время работы ИД.

Кроме того, центральное расположение катода-нейтрализатора обеспечит увеличение КПД на несколько (5-7) процентов, особенно при значительном увеличении диаметра ИОС.

Литература

1. Холловские и ионные плазменные двигатели для космических аппаратов / О.А. Горшков, В.А. Муравлев, А.А. Шагайда; под ред. акад. РАН А.С. Коротева. - М.: Машиностроение. - 2008.

2. H.W. Loeb, D. Feili, G.A. Popov, V.A. Obukhov, V.V. Balashov, A.I. Mogulkin, V.M. Murashko, A.N. Nesterenko, and S.A. Khartov: "Design of High-Power High-Specific Impulse RF-Ion Thruster", 32 nd IEPC, Wiesbaden, Sept. 11-15, 2011.

3. Исследование и разработка катодов нового поколения для стационарных плазменных двигателей. Архипов Б.А. Автореферат диссертации на соискание ученой степени доктора технических наук. Калининград, 1998 г. С.21.

Ионный двигатель, содержащий корпус, закрепленные жестко на наружной поверхности корпуса газоразрядную камеру и ионно-оптическую систему и катод-нейтрализатор, установленный на корпусе, отличающийся тем, что корпус ионного двигателя имеет торообразную форму, при этом катод-нейтрализатор установлен по центральной оси корпуса, электроды ионно-оптической системы и газоразрядная камера выполнены кольцеобразной формы, причем их внутренние поверхности по периметру жестко закреплены на внутренней поверхности корпуса ионного двигателя.
ИОННЫЙ ДВИГАТЕЛЬ
Источник поступления информации: Роспатент

Showing 321-330 of 370 items.
10.04.2019
№219.017.0636

Ракетный разгонный блок

Изобретение относится к ракетно-космической технике, а именно к конструкции ракетных разгонных блоков. Ракетный разгонный блок содержит корпус, состоящий из верхнего переходника с металлической обшивкой, среднего переходника, нижнего переходника, бак окислителя, бак горючего, межбаковую ферму,...
Тип: Изобретение
Номер охранного документа: 0002412871
Дата охранного документа: 27.02.2011
17.04.2019
№219.017.153f

Способ заправки рабочим телом гидравлических магистралей доставляемого оборудования космических объектов

Изобретение относится к космической технике и может быть использовано для заправки рабочими телами гидравлических магистралей доставляемого на орбитальные космические объекты оборудования. Согласно предлагаемому способу, перед заполнением гидравлической магистрали рабочим телом из бака...
Тип: Изобретение
Номер охранного документа: 0002271969
Дата охранного документа: 20.03.2006
17.04.2019
№219.017.15b2

Способ определения расхода системы подачи рабочего тела к источнику плазмы

Изобретение относится к эксплуатируемой преимущественно в условиях космического вакуума измерительной технике, предназначенной для определения расхода рабочего тела (ксенона), подаваемого из баков реактивных двигательных установок космических аппаратов. Измеряют рабочее давление P(t) во входной...
Тип: Изобретение
Номер охранного документа: 0002392589
Дата охранного документа: 20.06.2010
17.04.2019
№219.017.15fe

Способ определения герметичности системы подачи рабочего тела к источнику плазмы, преимущественно в условиях вакуума

Изобретение относится к области испытательной техники, в частности к испытаниям на герметичность систем космических аппаратов. Способ определения герметичности системы подачи рабочего тела к источнику плазмы включает измерение давления и температуры в контролируемом объеме системы на...
Тип: Изобретение
Номер охранного документа: 0002377522
Дата охранного документа: 27.12.2009
19.04.2019
№219.017.2df7

Система заправки и хранения кислорода на борту космического аппарата

Изобретение относится к средствам жизнеобеспечения экипажей космических аппаратов, в частности при проведении ими внекорабельной деятельности (ВКД). Система содержит блоки: приема газа (в виде заправляемого переносного кислородного блока), предварительной осушки кислорода (с регулятором...
Тип: Изобретение
Номер охранного документа: 0002347724
Дата охранного документа: 27.02.2009
19.04.2019
№219.017.2e36

Устройство для мажоритарного выбора сигналов

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при построении высоконадежных резервированных устройств и систем с возможностью обеспечения синхронной работы всех резервных каналов. Техническим результатом изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002396591
Дата охранного документа: 10.08.2010
19.04.2019
№219.017.2f31

Распорное устройство для тонкостенных оболочек

Изобретение относится к технологии получения сварных соединений, в частности к распорному устройству для сварки тонкостенных оболочек, и может быть использовано для выполнения сварных швов в замкнутых полостях различных изделий. Распорное устройство содержит центральный цилиндр и распоры с...
Тип: Изобретение
Номер охранного документа: 0002353495
Дата охранного документа: 27.04.2009
19.04.2019
№219.017.2f48

Способ управления ориентацией космического аппарата, снабженного бортовым радиотехническим комплексом

Изобретение относится к космической технике и может быть использовано в системах управления ориентацией спутников связи, снабженных бортовым радиотехническим комплексом, для выполнения своей целевой задачи. Способ управления ориентацией космического аппарата заключается в определении градиентов...
Тип: Изобретение
Номер охранного документа: 0002355013
Дата охранного документа: 10.05.2009
19.04.2019
№219.017.3024

Устройство для хранения и подачи жидких компонентов (варианты)

Изобретение относится к устройствам для хранения и подачи жидкостей и может быть использовано для хранения и подачи компонентов топлива к потребителям на космических кораблях и летательных аппаратах. Предлагаемое устройство содержит раму с установленными на ней системой наддува и топливными...
Тип: Изобретение
Номер охранного документа: 0002301180
Дата охранного документа: 20.06.2007
19.04.2019
№219.017.3353

Способ подвода газообразного вещества в полость герметизируемого агрегата с ее герметизацией и фиксирующее устройство герметизируемого агрегата

Изобретения могут быть использованы в агрегатах с жесткими требованиями по герметичности внутренних полостей, например, в авиационной и космической технике. Способ подвода газообразного вещества в полость 7 герметизируемого агрегата с ее герметизацией включает сообщение штуцера 3 с магистралью...
Тип: Изобретение
Номер охранного документа: 0002430272
Дата охранного документа: 27.09.2011
Showing 291-294 of 294 items.
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
09.06.2019
№219.017.7bd5

Электроракетная двигательная установка и способ ее эксплуатации

Изобретение относится к области электроракетных двигателей. В электроракетной двигательной установке, содержащей электроракетный двигатель, включающий разрядную камеру и катод, соединенный трубопроводом с баллоном, содержащим ксенон высокой чистоты, дополнительно установлена снабженная...
Тип: Изобретение
Номер охранного документа: 0002308610
Дата охранного документа: 20.10.2007
13.07.2019
№219.017.b3f9

Двухступенчатый двигатель с анодным слоем (варианты)

Изобретение относится к области электроракетных двигателей (ЭРД). Двухступенчатый двигатель с анодным слоем содержит катод - нейтрализатор, электромагнит, магнитопровод с полюсами, катод ускорительной ступени, который выполнен из графита, жестко связанные с магнитопроводом и расположенные...
Тип: Изобретение
Номер охранного документа: 0002406873
Дата охранного документа: 20.12.2010
10.08.2019
№219.017.bd68

Система хранения и подачи иода (варианты) и способ определения расхода и оставшейся массы иода в ней

Предложенная группа изобретений относится к области электроракетных двигателей (ЭРД), в частности к системам хранения и подачи в них рабочего тела. Система хранения и подачи иода (по первому варианту) содержит сообщенную с электроракетным двигателем трубопроводом с установленным на нем клапаном...
Тип: Изобретение
Номер охранного документа: 0002696832
Дата охранного документа: 06.08.2019
+ добавить свой РИД