×
27.02.2015
216.013.2d3c

Результат интеллектуальной деятельности: ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ

Вид РИД

Изобретение

№ охранного документа
0002543048
Дата охранного документа
27.02.2015
Аннотация: Изобретение относится к электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с водой, снабженный датчиком температуры, гидравлически связанный с электролизным модулем и работающий под избыточным давлением, газобаллонную систему хранения кислорода и водорода с пневмомагистралями выдачи этих газов с запорными элементами, имеющую, по крайней мере, по два последовательно связанных друг с другом пневмомагистралями баллона для каждого из газов, с установленными на баллонах датчиками давления, а также систему контроля параметров, подключенную к этим датчикам, датчику внешнего давления и датчику температуры. При этом конденсаторы пара связаны с резервуаром с водой гидромагистралями с запорными элементами, на пневмомагистралях, связывающих баллоны, установлены запорные элементы, при этом внутри баллонов размещены вкладыши из пористого гидрофильного материала для сбора конденсата, а сами баллоны снабжены гидромагистралями для удаления собранного во вкладышах конденсата, причем данные гидромагистрали снабжены запорными элементами и сообщаются с соответствующими конденсаторами пара. Также изобретение относится к способу. Использование настоящего изобретения позволяет снизить влагосодержание продуцируемых газов, повысить энергетическую эффективность и надежность работы устройства. 2 н. и 2 з.п. ф-лы, 1 ил.

Предлагаемое изобретение относится к электроэнергетике и может быть использовано в космических энергоустановках, например бортовых установках космических аппаратов (КА).

Аналогами данному предложению является большинство наземных электролизных установок (ЭЛУ) (например, патент RU №2046841, МПК: C25B 1/12 (2006.01), 27.10.1995), имеющих традиционный набор элементов, основными из которых являются:

- электролизер воды с блоком питания и системой контроля параметров;

- резервуар для сбора реакционной воды (РСВ);

- пневмогидросхема с пневмомагистралями и арматурой (клапаны и пр.).

Во многих случаях в состав ЭЛУ включаются также баллоны для хранения электролизных газов - кислорода и водорода.

Работают такие установки по принципу «электрохимического компрессора», когда баллоны заполняются газами прямо от электролизера, без использования механических компрессоров, которые снижают ресурс и надежность ЭЛУ, ухудшают ее массогабаритные параметры и усложняют обслуживание.

Общим недостатком ЭЛУ-аналогов является большая влажность генерируемых ими электролизных газов (независимо от типа электролизера). Это затрудняет их использование на борту КА, где применяются чистые газы с очень низкой точкой росы (~ минус 50°C), которые готовятся заранее, в земных условиях. Использование же влажных газов в условиях полета, когда системы КА работают при больших перепадах давления и температуры, неизбежно ведет к конденсации влаги в трубопроводах и элементах арматуры и, как следствие, - к нештатным ситуациям.

Такого недостатка не имеет принятое за прототип устройство для получения водорода и кислорода (патент RU №2032770, МПК: C25B 1/02 (2006.01), 10.04.1995), включающее электролизер и средство для осушки газов, выполненное в виде емкости с гидрофильным газопроницаемым материалом, боковые стенки которой выполнены перфорированными, а гидрофильный газопроницаемый материал выполнен фильтрующим, при этом и емкость снабжена также элементом из гидрофильного материала, непроницаемым для водорода и кислорода, установленным между перфорированными стенками емкости и фильтрующим гидрофильным газопроницаемым материал. В качестве фильтрующего гидрофильного газопроницаемого материала используют войлок, вату, измельченный асбест, в качестве гидрофильного материала, непроницаемого для водорода и кислорода, - асбокартон.

Данное устройство представляет собой маломощную лабораторную ЭЛУ для производства кислорода и водорода, используемых в газоанализаторах. В этом случае влажность газов существенно влияет на результаты анализа, поэтому перед использованием газов необходима их осушка. Это достигается с помощью осушителей (водоотделителей), выполненных на основе пористого гидрофильного материала (ПГФМ), который улавливает в первую очередь капельную влагу, содержащуюся в электролизных газах. Собранная жидкая вода сбрасывается в окружающую среду через боковую поверхность осушителя и ПГФМ, что в свою очередь стимулирует конденсацию паров воды, содержащихся в газах.

Под действием напряжения от источника тока вода в электролизере подвергается разложению с образованием водорода и кислорода. Полученные газы в смеси с водой поступают в соответствующие газожидкостные сепараторы, где отделяются от жидкости и направляются в осушители газов. С помощью гидрофильного газопроницаемого материала, поглощающего капельную влагу, происходит осушка газов. Уловленная материалом влага через гидрофильный материал, непроницаемый для водорода и кислорода, и перфорации в стенках осушителей непрерывно диффундирует в окружающую среду. Таким образом, в процессе работы осушителей устанавливается равновесие между осушаемыми газами и окружающей средой по влагосодержанию, и газы выходят из осушителей с относительной влажностью, практически равной влажности окружающей среды. Выходящие из осушителей газы направляются потребителям. Таким путем происходит постоянное удаление влаги из осушителей, т.е. постоянная саморегенерация влагопоглощающего материала.

Недостатком прототипа устройства и способа его эксплуатации является низкая эффективность осушки газов, так как испарение жидкой воды из осушителей в окружающую среду достаточно слабое и охлаждающий эффект невелик. Соответственно, влажность газов снижается незначительно, удаляется в основном капельная влага. Кроме того, «запустить» такой осушитель можно только при условии его предварительного охлаждения. Если начальная температура осушителя достаточно велика (не меньше температуры газов), конденсации пара не будет, то есть осушитель работать не будет.

Таким образом, для «запуска» такого осушителя его необходимо предварительно охладить. Кроме того, поскольку испарение через полупроницаемую стенку слабое, при больших расходах газа габариты такого осушителя будут слишком велики, поскольку удельная мощность теплоотвода за счет такого испарения без кипения мала.

Задача данного технического предложения - разработка бортовой ЭЛУ, производящей сухие газы без использования других систем КА (например, системы терморегулирования), специальных влагопоглощающих материалов и дополнительных агрегатов, то есть за счет использования физических процессов, происходящих в самой ЭЛУ.

Техническим результатом изобретения является снижение влагосодержания продуцируемых газов, повышение энергетической эффективности и надежности работы ЭЛУ космического назначения.

Технический результат достигается за счет того, что в электролизной установке космического назначения, включающей электролизный модуль с выходными пневмомагистралями кислорода и водорода, снабженными конденсаторами пара, выполненными из пористого гидрофильного материла и имеющими водоотвод в окружающую среду, резервуар с водой, снабженный датчиком температуры, гидравлически связанный с электролизным модулем и работающий под избыточным давлением, газобаллонную систему хранения кислорода и водорода с пневмомагистралями выдачи этих газов с запорными элементами, имеющую, по крайней мере, по два последовательно связанных друг с другом пневмомагистралями баллона для каждого из газов, с установленными на баллонах датчиками давления, а также систему контроля параметров, подключенную к этим датчикам, датчику внешнего давления и датчику температуры, конденсаторы пара связаны с резервуаром с водой гидромагистралями с запорными элементами, на пневмомагистралях, связывающих баллоны, установлены запорные элементы, при этом внутри баллонов размещены вкладыши из пористого гидрофильного материала для сбора конденсата, а сами баллоны снабжены гидромагистралями для удаления собранного во вкладышах конденсата, причем данные гидромагистрали снабжены запорными элементами и сообщаются с соответствующими конденсаторами пара.

Кроме того, пневмомагистрали выдачи кислорода и водорода подключены к баллонам, имеющим только одну соединительную пневмомагистраль.

Технический результат достигается также и тем, что в способе эксплуатации электролизной установки космического назначения, включающем разложение воды в электролизере током с образованием водорода и кислорода, конденсацию паров воды из потоков этих газов путем их охлаждения при сбросе полученного конденсата в окружающую среду, заполнение осушенными газами соответствующих баллонов с последующей выдачей полученных газов потребителям, сброс конденсата в окружающую среду производят при значении давления в ней ниже уровня, при котором происходит кипение воды с данной температурой, а заполнение баллонов соответствующим газом осуществляют последовательно из баллона в баллон при сверхкритическом перепаде давления, при этом выделяющуюся в баллонах капельную влагу собирают в пористом гидрофильном материале внутри баллона, а процесс заполнения баллонов газом периодически прерывают, удаляя собранную воду из баллонов.

Кроме того, перед началом разложения воды проводят предварительное захолаживание конденсаторов пара, направляя в них часть воды из резервуара с водой при давлении в окружающей среде, меньшем давления, при котором происходит кипение воды с данной температурой.

Сущность изобретения заключается в стимулировании конденсации паров из электролизных газов за счет их охлаждения в процессе перетекания их из электролизера в баллонную батарею, а также в процессе их сбора в баллонной батарее ЭЛУ. Охлаждение газов производят в два этапа: сначала перед заполнением первого баллона батареи (ресивера), сообщающегося с электролизным модулем, а затем - в ходе последовательного перепуска газа из ресивера в остальные баллоны батареи.

На первом этапе потоки газа охлаждаются в газожидкостном теплообменнике-сублиматоре (ГЖТС) за счет испарения в них воды (в том числе собранного конденсата) в вакуум.

При запуске ЭЛУ, перед включением электролизера, ГЖТС захолаживается, для чего в них направляется часть воды, предназначенной для разложения на газы. Попадая в гидрополость ГЖТС, где давление ниже уровня, при котором кипит вода с данной температурой, вода сначала закипает, а затем на ее поверхности образуется лед (www.edwardsvacuum.com «Water Phase Changes - Water to ice in 90 sec, using vacuum»). В вакууме этот лед сублимируется с большой удельной теплотой (теплота испарения + теплота плавления), что обеспечивает эффективность работы ГЖТС. При этом быстрое образование льда, обусловленное теплооттоком, сопровождающим кипение воды, обеспечивает малость потерь воды на захолаживание ГЖТС.

На стационарном режиме работы ЭЛУ потери воды на испарение в ГЖТС в целом компенсируются за счет конденсата, собранного из самих электролизных газов (водород и кислород). При этом поскольку теплота конденсации воды примерно равна теплоте ее испарения, количество воды, испарившейся в вакуум, примерно соответствует количеству полученного конденсата (без учета потерь тепла).

На втором этапе охлаждения газов, при перепуске газа из одного баллона в последующий, охлаждение происходит в процессе быстрого адиабатического расширения газа в заполняемом баллоне. Выделяющаяся при этом капельная влага улавливается и периодически удаляется из баллонов (до того момента как снова начнет испаряться в процессе последующего медленного нагревания газа в баллоне при его сжатии).

Сущность изобретения поясняется чертежом (фиг.1), на котором представлена принципиальная схема электролизной установки космического назначения, где обозначено:

1 - электролизный модуль (ЭМ);

2 - выходная водородная пневмомагистраль ЭМ;

3 - водородный конденсатор пара (ГЖТС);

4, 37 - водоотводы в окружающее пространство;

5 - резервуар с водой (РСВ);

6 - выходная гидромагистраль РСВ;

7 - пневмомагистраль выдачи водорода;

8, 18, 19, 23, 24, 31, 32, 39, 40, 41 - запорные элементы (ЗЭ);

9, 10 - баллоны для хранения водорода;

11, 36 - соединительные пневмомагистрали;

12, 13, 33, 34 - датчики давления в баллонах;

14, 15, 27, 28 - вкладыши из пористого гидрофильного материала (ПГФМ);

16, 17 - выходные гидромагистрали водородных баллонов;

20 - гидромагистраль для удаления водородного конденсатора;

21 - кислородный конденсатор пара (ГЖТС);

22 - гидромагистраль для удаления кислородного конденсата;

25, 26 - баллоны для хранения кислорода;

29, 30 - выходные гидромагистрали кислородных баллонов;

35 - выходная кислородная пневмомагистраль ЭМ;

38 - пневмомагистраль выдачи кислорода;

42 - датчик температуры РСВ;

43 - датчик внешнего давления;

44 - система контроля параметров.

Электролизный модуль (ЭМ) (1), который обеспечивается водой от резервуара с водой (РСВ) (5) с датчиком температуры (42) по гидромагистрали (6), своими выходными пневмомагистралями (2) и (35) связан с газобаллонной системой хранения электролизных газов, включающей баллоны для хранения водорода (9), (10), соединенные между собой пневмомагистралями (11) с запорным элементом (41), и баллоны для хранения кислорода (25), (26), соединенные между собой пневмомагистралями (36) с запорным элементом (39). Для выдачи газов потребителю система хранения имеет пневмомагистрали выдачи водорода (7) и кислорода (38) с ЗЭ (8) и (40) соответственно. На выходных магистралях (2) и (35) электролизного модуля (1) установлены конденсаторы пара (3) и (21), представляющие собой газожидкостные теплообменники-сублиматоры (ГЖТС), выполненные на основе пористого гидрофильного материала (ПГФМ) (например, поролона) и имеющие водоотводы (дренажные приспособления) в окружающее пространство (4) и (37).

На баллонах (9), (10), (25), (26) установлены датчики давления (12), (13), (33), (34), подключенные к системе контроля параметров (44), которая соединена также с датчиком температуры воды (42), установленным в РСВ (5), а также датчиком внешнего давления (43), контролирующим давление в окружающей среде (датчик «вакуума»). Внутри каждого баллона размещены вкладыши из ПГФМ-уловители капельной влаги (14), (15), (27), (28). При этом баллоны для хранения водорода (9), (10) имеют выходные гидромагистрали (16), (17) с установленными на них ЗЭ (18), (19), по которым конденсат, собранный во вкладышах (14), (15), удаляется из баллонов (9), (10). Баллоны для хранения кислорода (25), (26) также имеют выходные гидромагистрали (29), (30) с установленными на них ЗЭ (31), (32), по которым конденсат, собранный во вкладышах (27), (28), удаляется из баллонов (25), (26). Выходные гидромагистрали (29), (30) кислородных баллонов соединяются с кислородным конденсатором пара (21), а выходные гидромагистрали (16), (17) водородных баллонов - с водородным конденсатором пара (3). Конденсаторы пара (3) и (21) установлены на соответствующих выходной водородной пневмомагистрали (2) и выходной кислородной пневмомагистрали (35) электролизного модуля (1). Помимо этого конденсаторы пара (3) и (21) соединены также с РСВ (5) гидромагистралями (20) и (22) с ЗЭ (23), (24). В состав установки входит также датчик внешнего давления (43), подключенный к системе контроля параметров (44).

Таким образом, пневмогидросхема ЭЛУ представляет собой два частично открытых в вакуум газожидкостных контура, связанных друг с другом через РСВ (водокислородный и водоводородный контуры).

Работа установки описывается применительно к водоводородному контуру, аналогично работает и водокислородный контур.

При стационарной работе предлагаемой электролизной установки вода под действием избыточного давления из РСВ (5) по гидромагистрали (6) поступает в ЭМ (1), где разлагается на водород и кислород, имеющие влажность 100%. Влажный водород по выходной пневмомагистрали (2) направляется в газобаллонную систему хранения (баллоны для хранения водорода (9), (10)), проходя через водородный конденсатор пара (3). Здесь водород охлаждается за счет испарения воды (или льда) в вакуум через водоотвод (4). При охлаждении влажного водорода происходит выделение капельной влаги, которая вместе с газом поступает в водородный баллон (10) (ресивер). Здесь капли воды улавливаются вкладышем (15).

В процессе заполнения баллона-ресивера (10) и второго водородного баллона (9) периодически открываются ЗЭ (19) и (18) на гидромагистралях (17) и (16) соответственно и ЗЭ (23) на гидромагистрали (20), и собранный конденсат (вода) под действием избыточного давления перепускается в РСВ (5). При этом вода проходит через конденсатор пара (3) и восполняет потери воды (льда), обусловленные испарением в вакуум.

Кроме откачки конденсата из баллона-ресивера (10) в процессе его заполнения водород (уже более холодный и сухой) периодически перепускается в следующий баллон хранения водорода (9). Для этого открывают ЗЭ (41) на пневмомагистрали (11), и водород из баллона-ресивера (10) перетекает в баллон (9) с меньшим давлением. При достаточно большом (сверхкритическом) перепаде давлений между баллонами (это контролируется датчиками давления (12), (13) и системой контроля параметров (44)) расширение газа в заполняемом баллоне происходит адиабатически, с охлаждением и дополнительной конденсацией пара. Так же как и в баллоне (10) капельная влага собирается во вкладыше (14) баллона (9) и периодически удаляется из баллона (9) по гидромагистрали (16) при открывании ЗЭ (18).

Заполнение последующих баллонов (если они необходимы) и удаление из них конденсата проводят аналогичным образом, при этом необходимо отметить следующее:

- перепуск газа из баллона в баллон должен осуществляться при сверхкритическом перепаде давления (≈3 атм) - это обеспечивает независимость параметров газа в «питающем» баллоне от параметров газа в заполняемом баллоне. При этом чем больше перепад давления, тем больше охлаждается газ на начальной стадии процесса (в струе), тем больше воды конденсируется;

- в последующем, при сжатии газа в баллоне он будет нагреваться, а выделившаяся вода, соответственно, снова испаряться. Этот процесс идет гораздо медленнее адиабатического охлаждения, поэтому необходимо своевременно удалять из баллонов собранный во вкладышах конденсат.

Проще всего это делать периодически.

Следует также отметить, что:

а) влажность газа в каждом «последующем» баллоне меньше, чем в «баллоне-источнике», поэтому самый сухой газ будет в последнем заполняемом баллоне, откуда он будет выдаваться по магистралям выдачи водорода (7) с ЗЭ (8) и выдачи кислорода (38) с ЗЭ (40). Отличительной особенностью этого баллона в системе хранения является наличие еще лишь одной (кроме магистрали выдачи) пневматической связи с другими элементами ЭЛУ;

б) при выходе на стационарный режим для запуска рабочего процесса необходимо предварительно обеспечить работоспособность конденсаторов пара (3), (21) на соответствующих выходных пневмомагистралях (2), (35) ЭМ (1). Для этого открывают ЗЭ (23), (24) и по гидромагистралям (20), (22) заполняют конденсаторы пара (3), (21) водой от РСВ (5), находящегося под избыточным давлением. После этого ЗЭ (23), (24) перекрывают и включают питание ЭМ (1). При этом заполнение конденсаторов пара (3), (21) водой начинают при достаточно низком внешнем давлении, ориентируясь на показания датчика температуры (42) РСВ (5) и датчика внешнего давления в окружающей среде (43), с тем чтобы обеспечить вскипание воды.


ЭЛЕКТРОЛИЗНАЯ УСТАНОВКА КОСМИЧЕСКОГО НАЗНАЧЕНИЯ И СПОСОБ ЕЕ ЭКСПЛУАТАЦИИ
Источник поступления информации: Роспатент

Showing 281-290 of 370 items.
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
20.02.2019
№219.016.bd12

Коммутатор напряжения с защитой блока нагрузки от перегрузки по току

Изобретение относится к области электронной техники и может быть использовано в коммутируемых источниках питания с защитой блока нагрузки от перегрузки по току. Коммутатор напряжения с защитой блока нагрузки от перегрузки по току содержит электронный ключ, который через датчик тока нагрузки...
Тип: Изобретение
Номер охранного документа: 02242831
Дата охранного документа: 20.12.2004
20.02.2019
№219.016.be4a

Устройство деления потока жидкости

Изобретение относится к машиностроению и предназначено для использования в системах терморегулирования изделий авиационной и космической техники, а также и в других областях техники. Устройство деления потока жидкости содержит корпус с расточкой, одним входным патрубком и двумя выходными...
Тип: Изобретение
Номер охранного документа: 0002342582
Дата охранного документа: 27.12.2008
20.02.2019
№219.016.be53

Устройство для выбора объектов наблюдения с орбитального космического аппарата

Устройство для выбора объектов наблюдения с орбитального космического аппарата (КА). Устройство для выбора объектов наблюдения с орбитального КА включает глобус с нанесенной на него картой, два охватывающих глобус кольца, первое из которых закреплено над точками полюсов глобуса с возможностью...
Тип: Изобретение
Номер охранного документа: 0002346241
Дата охранного документа: 10.02.2009
20.02.2019
№219.016.bf8e

Способ определения альбедо земли

Изобретение относится к космической технике. Способ включает последовательное размещение над отражающей поверхностью не менее чем в двух пространственных положениях чувствительной к регистрируемой радиации аппаратуры и определение моментов нахождения Солнца в зенитной области над снабженным...
Тип: Изобретение
Номер охранного документа: 0002351919
Дата охранного документа: 10.04.2009
20.02.2019
№219.016.bf99

Способ определения максимальной выходной мощности солнечных батарей космического аппарата и система для его осуществления

Изобретение относится к области космической техники, к системам электроснабжения космических аппаратов, и может быть использовано при эксплуатации солнечных батарей. Способ определения максимальной выходной мощности солнечных батарей космического аппарата включает измерение угла между...
Тип: Изобретение
Номер охранного документа: 0002353555
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.bf9d

Аварийно-спасательный скафандр космонавта для транспортного средства

Изобретение относится к аварийно-спасательному космическому скафандру мягкого типа. Согласно изобретению скафандр содержит внешнюю силовую и внутреннюю герметичную оболочки, герметизируемый вход в эти оболочки, шлем с остеклением, регулятор давления, объединенный разъем коммуникаций...
Тип: Изобретение
Номер охранного документа: 0002353561
Дата охранного документа: 27.04.2009
20.02.2019
№219.016.c038

Система наддува топливных баков

Изобретение относится к космической технике, а точнее к области проектирования и эксплуатации реактивных двигательных установок (РДУ) космических летательных аппаратов (КЛА). В системе наддува топливных баков в каждую пневмомагистраль после газовых редукторов введены два параллельно включенных...
Тип: Изобретение
Номер охранного документа: 0002339835
Дата охранного документа: 27.11.2008
Showing 281-290 of 295 items.
19.01.2018
№218.016.00c0

Способ управления космическим кораблём при сближении с кооперируемым космическим аппаратом

Изобретение относится к операциям сближения и стыковки космических аппаратов (КА) на околокруговой орбите, например, грузового космического корабля в качестве КА и международной космической станции в качестве кооперируемого КА (ККА). После выведения КА на опорную орбиту определяют параметры...
Тип: Изобретение
Номер охранного документа: 0002629644
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.00e4

Способ регулирования температуры в термокамере

Изобретение относится к проведению тепловакуумных испытаний космических объектов. Способ регулирования температуры в термокамере включает нагрев объекта испытаний в вакууме, измерение текущего значения температуры T на объекте испытаний, измерение текущего значения температуры Т на объекте...
Тип: Изобретение
Номер охранного документа: 0002629645
Дата охранного документа: 30.08.2017
19.01.2018
№218.016.0266

Всенаправленный приёмник-преобразователь лазерного излучения (2 варианта)

Изобретение относится к области оптико-электронного приборостроения и касается всенаправленного приемника-преобразователя лазерного излучения. Приемник-преобразователь включает в себя приемную плоскость, выполненную в виде трех круговых панелей, взаимно пересекающихся между собой...
Тип: Изобретение
Номер охранного документа: 0002630190
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.09ff

Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, и система для его реализации

Изобретения относятся к авиационной технике. Способ воздушного охлаждения тепловыделяющей аппаратуры, расположенной снаружи летательных аппаратов, включает тепловой контакт между тепловыделяющими поверхностями аппаратуры и воздушными термоплатами (2), движение атмосферного воздуха через...
Тип: Изобретение
Номер охранного документа: 0002632057
Дата охранного документа: 02.10.2017
20.01.2018
№218.016.1de6

Способ определения с космического аппарата координат источника кольцевых волн на водной поверхности

Изобретение относится к методам наблюдения планеты из космоса и обработки результатов этого наблюдения. Способ включает регистрацию на снимке кольцевых волн, одновременно с которыми регистрируют часть суши, выбирая и идентифицируя на ней не менее четырех характерных объектов, не лежащих на...
Тип: Изобретение
Номер охранного документа: 0002640944
Дата охранного документа: 12.01.2018
20.01.2018
№218.016.1e4e

Способ контроля текущего состояния панели солнечной батареи космического аппарата

Изобретение относится к космической технике. Способ контроля текущего состояния панели солнечной батареи (СБ) космического аппарата (КА) включает ориентацию рабочей поверхности СБ на Солнце, измерение значений тока от СБ, контроль текущего состояния СБ по результатам сравнения текущих...
Тип: Изобретение
Номер охранного документа: 0002640937
Дата охранного документа: 12.01.2018
13.02.2018
№218.016.1eb2

Способ определения временной привязки телеметрических измерений с космического аппарата

Изобретение относится к методам слежения за полётом космического аппарата (КА), на борту которого возникают магнитные помехи. Способ включает генерацию на борту КА временных меток и передачу их вместе с телеметрическими данными на наземный приемный пункт. При этом измеряют параметры орбиты КА и...
Тип: Изобретение
Номер охранного документа: 0002641024
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.231a

Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, и способ испытания на стенде электроракетного двигателя, работающего на рабочем теле иоде

Изобретение относится к области электроракетных двигателей (ЭРД), в частности к стендам для их испытаний на рабочем теле иоде. Стенд для испытания электроракетного двигателя, работающего на рабочем теле иоде, состоящий из вакуумной камеры, системы вакуумирования, электроракетного двигателя,...
Тип: Изобретение
Номер охранного документа: 0002641983
Дата охранного документа: 23.01.2018
04.04.2018
№218.016.31f7

Способ контроля телеметрической информации

Изобретение относится к технологиям многопараметрического контроля телеметрической информации. Техническим результатом является расширение арсенала технических средств контроля телеметрической информации. Предложен способ контроля телеметрической информации. Способ основан на сравнении реальных...
Тип: Изобретение
Номер охранного документа: 0002645267
Дата охранного документа: 19.02.2018
09.06.2018
№218.016.5dc3

Коаксиальный электрохимический компрессор водорода

Изобретение относится к электрохимии, в том числе к «зеленой энергетике», и может использоваться в транспортных энергосистемах и космосе. Компрессор водорода включает корпус с входным и выходным штуцерами, а также пакет электроизолированных мембранно-электродных блоков, состоящих из...
Тип: Изобретение
Номер охранного документа: 0002656219
Дата охранного документа: 01.06.2018
+ добавить свой РИД