×
27.02.2015
216.013.2d11

Результат интеллектуальной деятельности: СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ

Вид РИД

Изобретение

Аннотация: Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненных скважин, в частности скважин, расположенных в низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин. Технический результат - повышение эффективности способа за счет устранения условий набухания глин, содержащихся в продуктивном пласте, при прокладке радиального ствола в низкопроницаемых терригенных отложениях из влагонабухающих глин. По способу в обводнившейся части пласта первоначально проводят ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста. В необводненной части пласта проводят геофизические исследования. Определяют интервалы более проницаемых участков продуктивного пласта. На колонне бурильных труб спускают и устанавливают с помощью якорно-пакеруюшего устройства направляющую компоновку со сквозным каналом. Ориентируют ее в направлении одного из проницаемых участков продуктивного пласта. В скважину на гибкой трубе спускают фрезерующую оснастку с винтовым забойным двигателем, гибким валом и фрезой. Прорезают в стенке эксплуатационной колонны отверстие с использованием раствора на углеводородной основе. Извлекают из скважины фрезерующую оснастку. Спускают в скважину гидромониторную насадку до выходного отверстия направляющей компоновки. Размывают цементный камень за эксплуатационной колонной и горную породу с образованием радиального ствола. Через гидромониторную насадку проводят очистку радиального ствола кислотным составом с образованием каверны. Извлекают из скважины гибкую трубу с гидромониторной насадкой. Поворачивают направляющую компоновку, например, на 180 градусов и проводят аналогичные операции работы по прокладыванию следующего радиального ствола. Приподнимают направляющую компоновку на высоту следующего интервала проницаемых участков продуктивного пласта и проводят аналогичные операции по прокладке последующих радиальных стволов. До верхних радиальных стволов скважины спускают лифтовую колонну из насосно-компрессорных труб с площадью проходного отверстия, равной сумме площадей проходных отверстий радиальных стволов. Скважину вводят в эксплуатацию. 3 пр., 6 ил.
Основные результаты: Способ восстановления обводненной скважины, при котором в обводнившейся части пласта первоначально проводят ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста, затем в оставшейся необводненной части пласта проводят геофизические исследования, определяют интервалы более проницаемых участков продуктивного пласта, после чего на колонне бурильных труб спускают и устанавливают с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, ориентируют ее в направлении одного из проницаемых участков продуктивного пласта, затем из скважины извлекают колонну бурильных труб, в скважину на гибкой трубе спускают фрезерующую оснастку, состоящую из винтового забойного двигателя и гибкого вала, на нижнем торце которого размещена фреза, прорезают в стенке эксплуатационной колонны отверстие с использованием технологического раствора на углеводородной основе, извлекают из скважины на гибкой трубе фрезерующую оснастку, присоединяют к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку и спускают ее в скважину до выходного отверстия направляющей компоновки, струями технологического раствора на углеводородной основе под высоким давлением размывают цементный камень за эксплуатационной колонной и последующим перемещением гидромониторной насадки в радиальном направлении размывают горную породу с образованием радиального ствола, после чего через гидромониторную насадку проводят очистку радиального ствола кислотным составом из смеси глинокислоты и органической кислоты, например, аскорбиновой, лимонной или муравьиной, с образованием расширяющей радиальный ствол каверны, затем извлекают из скважины гибкую трубу с рукавом высокого давления и гидромониторной насадкой, проводят поворот направляющей компоновки в той же плоскости, например, на 180 градусов, проницаемого участка продуктивного пласта и проводят аналогичные операции работы по прокладыванию следующего радиального ствола, далее приподнимают направляющую компоновку на высоту следующего интервала проницаемых участков продуктивного пласта и проводят аналогичные операции по прокладке последующих радиальных стволов, после этого в скважину до верхних радиальных стволов спускают лифтовую колонну из насосно-компрессорных труб с площадью проходного отверстия, равной сумме площадей проходных отверстий радиальных стволов, и скважину вводят в эксплуатацию.

Изобретение относится к нефтегазодобывающей промышленности, а именно к восстановлению обводненных скважин, в частности к скважинам, расположенных в низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин.

Коллекторы на месторождениях севера Западной Сибири, в которых расположены добывающие скважины, относятся к сложнопостроенным коллекторам, в нижней части которых размещены высокопроницаемые продуктивные залежи, а в верхней части - заглинизированные низкопроницаемые терригенные отложения, сложенные из влагонабухающих глин.

Из опыта ремонта таких скважин известно, что по мере снижения пластового давления в высокопроницаемую продуктивную залежь внедряются подошвенные воды, подстилающие эту залежь, происходит обводнение залежи и проводимые в скважине ремонтно-изоляционные работы по изоляции притока пластовых вод оказываются безрезультатными, вскрытие же вышерасположенных заглинизированных низкопроницаемых терригенных отложений, сложенных из влагонабухающих глин, известными методами, кумулятивной перфорацией или бурением бокового ствола с применением водных растворов, ведет к набуханию глин, препятствующих последующей добыче газа из пласта.

Для восстановления обводненных скважин проводятся ремонтно-изоляционные работы [Справочная книга по текущему и капитальному ремонту нефтяных и газовых скважин / А.Д. Амиров и др. - М.: Недра, 1979. - С.238-241].

Известен способ восстановления скважины, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта [Патент РФ №2273718, E21B 29/10, заявлено 02.07.04, опубликовано 10.04.06].

Недостатком этого способа является недостаточная эффективность восстановления обводненных скважин, так как при производстве ремонтно-изоляционных работ продольно-гофрированными пластырями не устраняется поступление пластовых вод в скважину, а вероятность разрушения ремонтируемого интервала эксплуатационной колонны, особенно в скважинах с наличием сплошной перфорации эксплуатационной колонны двойной плотностью, возрастает.

Известен способ восстановления обводненной скважины, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта [Патент РФ №2231630. E21B 43/00, E21B 43/32, заявлено 2002, опубликовано 2004].

Недостатком этого способа является недостаточная эффективность восстановления обводненных скважин, так как при перфорации эксплуатационной колонны перфораторами большой мощности вероятность нарушения герметичности цементного камня за колонной возрастает, при этом полное или частичное его разрушение способствует еще большему притоку пластовых вод к забою скважины.

Известен способ восстановления скважины, принятый за прототип, включающий производство ремонтно-изоляционных работ и вскрытие продуктивного пласта [Патент РФ №2370636. E21B 43/00, E21B 43/32, заявлено 21.04.08, опубликовано 20.10.09].

Недостатком этого способа является недостаточная эффективность восстановления обводненных скважин, так как при использовании в процессе ремонта технологических растворов на водной основе ведет к набуханию глин, содержащихся в продуктивном пласте.

Задача, стоящая при создании изобретения, состоит в повышении эффективности восстановления обводненной скважины.

Достигаемый технический результат, который получается в результате создания изобретения, состоит в устранении условий набухания глин, содержащихся в продуктивном пласте при прокладке радиального ствола в низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин.

Поставленная задача и технический результат достигаются тем, что при восстановлении обводненной скважины первоначально в обводнившейся части пласта проводят ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста, затем в оставшейся необводненной части пласта проводят геофизические исследования, определяют интервалы более проницаемых участков продуктивного пласта, после чего на колонне бурильных труб спускают и устанавливают с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, ориентируют ее в направлении одного из проницаемых участков продуктивного пласта, затем из скважины извлекают колонну бурильных труб, в скважину на гибкой трубе спускают фрезерующую оснастку, состоящую из винтового забойного двигателя и гибкого вала, на нижнем торце которого размещена фреза, прорезают в стенке эксплуатационной колонны отверстие с использованием технологического раствора на углеводородной основе, извлекают из скважины на гибкой трубе фрезерующую оснастку, присоединяют к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку и спускают ее в скважину до выходного отверстия направляющей компоновки, струями с технологического раствора на углеводородной основе под высоким давлением размывают цементный камень за эксплуатационной колонной и последующим перемещением гидромониторной насадки в радиальном направлении размывают горную породу с образованием радиального ствола, после чего через гидромониторную насадку проводят очистку радиального ствола кислотным составом из смеси глинокислоты и органической кислоты, например, аскорбиновой, лимонной или муравьиной, с образованием расширяющего радиальный ствол каверны, затем извлекают из скважины гибкую трубу с рукавом высокого давления и гидромониторной насадкой, проводят поворот направляющей компоновки в той же плоскости, например, на 180 градусов, проницаемого участка продуктивного пласта и проводят аналогичные операции работы по прокладыванию следующего радиального ствола, далее приподнимают направляющую компоновку на высоту следующего интервала проницаемых участков продуктивного пласта и проводят аналогичные операции по прокладке последующих радиальных стволов, после этого в скважину до верхних радиальных стволов спускают лифтовую колонну из насосно-компрессорных труб с площадью проходного отверстия, равной сумме площадей проходных отверстий радиальных стволов, и скважину вводят в эксплуатацию.

На фиг.1 показана схема ремонтно-изоляционных работ по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста, на фиг.2 - то же при спуске в скважину направляющей компоновки; на фиг.3 - то же при прорезании в эксплуатационной колонне отверстия; на фиг.4 - то же при размывании цементного камня за эксплуатационной колонной и горных пород, окружающих скважину, жидкостью на углеводородной основе с образованием радиального ствола, на фиг.5 - то же при промывке радиального ствола кислотным составом с образованием каверн, на фиг.6 - то же при вводе восстановленной скважины в эксплуатацию.

Способ реализуется следующим образом.

В процессе эксплуатации скважины, расположенной в сложно построенном пласте 1, нижняя, наиболее продуктивная, часть 2 пласта вскрыта посредством перфорации эксплуатационной колонны 3 с образованием перфорационных отверстий 4, через которые происходит добыча газа.

По мере снижения пластового давления подошвенные воды 5, находящиеся первоначально ниже башмака 6 эксплуатационной колонны, начинают подтягиваться к перфорационным отверстиям 4 посредством конуса подошвенных вод 7, обводняя скважину.

Для устранения обводнения скважины в ней проводятся ремонтно-изоляционные работы, закачивая через перфорационные отверстия 4 водоизоляционную композицию 8 и закрепляя ее цементом с образованием во внутренней полости эксплуатационной колонны 3 цементного моста 9, перекрывающего перфорационные отверстия 4.

После чего проводят геофизические исследования, по результатам которых определяют интервалы более проницаемых участков Ю низкопроницаемой заглинизированной части пласта 1.

Далее на колонне бурильных труб 11 спускают направляющую компоновку 12, снабженную сквозным каналом 13, выполненным в ее корпусе. Размещают направляющую компоновку 12 в скважине таким образом, чтобы выходное отверстие 14 сквозного канала 13 было расположено в выбранном интервале одного из проницаемых участков 10 низкопроницаемой заглинизированной части пласта. Фиксируют направляющую компоновку 12 в эксплуатационной колонне 3 в выбранном положении посредством якорно-пакерующего устройства 15.

Затем из скважины извлекают колонну бурильных труб 11.

После чего в скважину на гибкой трубе 16 в полость сквозного отверстия 13 до выходного отверстия 14 спускают фрезерующую оснастку, состоящую из винтового забойного двигателя 17 и гибкого вала 18, на нижнем торце которого размещена фреза 19.

С помощью фрезерующей оснастки в стенке эксплуатационной колонны 3 прорезают отверстие 20 с использованием технологического раствора на углеводородной основе 21, например, газовым конденсатом, дизельным топливом, нефтью.

Извлекают из скважины на гибкой трубе 16 фрезерующую оснастку. Присоединяют к башмаку гибкой трубы 16 посредством переводного рукава высокого давления 22 гидромониторную насадку 23 и спускают ее в скважину. Длина переводного рукава высокого давления 22 выбирается из расчета максимально-возможной длины радиального ствола 24, проектируемого в выбранном интервале одного из проницаемых участков 10 низкопроницаемой заглинизированной части пласта.

Струями раствора на углеводородной основе 21, например, газовым конденсатом, дизельным топливом, нефтью, под высоким давлением, не превышающим давление гидроразрыва пласта, размывают цементный камень 25 за эксплуатационной колонной 3 и последующим перемещением гидромониторной насадки 23 в радиальном направлении размывают окружающую скважину горную породу проницаемого участка 10 низкопроницаемой части пласта с образованием радиального ствола 24 небольшого диаметра, зависящего от толщины выбранного интервала одного из проницаемых участков 10 низкопроницаемой заглинизированной части пласта.

После завершения образования радиального ствола 24 проводят очистку радиального ствола 24 промывкой его кислотным составом 26 из смеси глинокислоты, состоящей из соляной кислоты 10-12% концентрации и плавиковой кислоты 3-5% концентрации, а также органической кислоты, например, аскорбиновой кислоты 1-2% концентрации, или лимонной кислоты 1-3% концентрации, либо муравьиной кислоты 5-7% концентрации, с образованием за стенками радиального ствола 24 каверны 27, расширяющей радиальный ствол 24.

После этого извлекают из скважины гибкую трубу 16 с рукавом высокого давления 22 и гидромониторной насадкой 23, проводят поворот направляющей компоновки 12 в той же плоскости, например, на 180 градусов, в зависимости от направления простирания следующего выбранного интервала проницаемых участков 10 низкопроницаемой заглинизированной части пласта и проводят аналогичные операции по прокладыванию следующего радиального ствола.

Далее приподнимают направляющую компоновку 12 на высоту следующего выбранного интервала проницаемых участков 10 низкопроницаемой заглинизированной части пласта и проводят аналогичные операции по прокладке последующих радиальных стволов.

После завершения ремонтных работ по восстановлению обводненной скважины из нее извлекают гидромониторную насадку 23 и направляющую компоновку 12, в скважину до глубины верхнего радиального ствола спускают лифтовую колонну 28 из насосно-компрессорных труб диаметром, соответствующим площади проходного отверстия, равной сумме площадей проходных отверстий радиальных стволов.

Далее скважину осваивают и вводят в эксплуатацию.

Примеры реализации заявляемого способа.

Пример 1

Восстановление обводненной скважины с эксплуатационной колонной диаметром 168 мм проводили следующим способом. Первоначально в обводнившейся части пласта провели ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста. В качестве водоизолирующей композиции использовали состав на основе кремнийорганической жидкости ГКЖ-11Н, поливинилового спирта ПВС-В1Н с добавлением в качестве загустителя алюмосиликатные микросферы, а в качестве цементного раствора - состав на основе ПТЦ 1-100 с добавлением суперпластификатора СП-1. Затем в оставшейся необводненной части пласта провели геофизические исследования и определили интервалы более проницаемых участков продуктивного пласта. После чего на колонне бурильных труб диаметром 89 мм спустили и установили с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, соориентировали ее в направлении выбранного в интервале 696-700 м проницаемого участка продуктивного пласта. В качестве якорно-пакеруюшего устройства использовали пакер ПРО-ЯМО 168×35 НПФ «Пакер» (г. Октябрьский, Республика Башкортостан). Затем из скважины извлекли колонну бурильных труб и в скважину на гибкой трубе диаметром 48 мм спустили фрезерующую оснастку, состоящую из винтового забойного двигателя типа Д1-54 и гибкого вала, на нижнем торце которого была размещена фреза ФРП-57. В стенке эксплуатационной колонны диаметром 168 мм прорезали отверстие диаметром 60 мм с использованием газового конденсата. Из скважины извлекли на гибкой трубе фрезерующую оснастку и присоединили к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку, спустили ее в скважину до выходного отверстия направляющей компоновки. Струями газового конденсата под давлением 35 МПа размыли цементный камень за эксплуатационной колонной. Последующим перемещением гидромониторной насадки в радиальном направлении по выбранному проницаемому участку продуктивного пласта толщиной 4 м размыли горную породу с образованием радиального ствола диаметром 50 мм и длиной 100 м. После чего через гидромониторную насадку провели очистку радиального ствола кислотным составом из смеси глинокислоты, содержащую соляную и плавиковую кислоты соответственно 12% и 5% концентрациями, и аскорбиновой кислоты 1% концентрации с образованием расширяющего радиальный ствол каверны диаметром до 80 мм. Затем из скважины извлекли гибкую трубу с рукавом высокого давления и гидромониторной насадкой, провели поворот направляющей компоновки в той же плоскости на 180 градусов и провели аналогичные операции по прокладыванию следующего радиального ствола аналогичной конструкции. Далее приподняли направляющую компоновку на высоту 30 м и провели аналогичные операции по прокладке следующих радиальных стволов. После этого в скважину до верхних радиальных стволов спустили лифтовую колонну диаметром 114 мм и скважину ввели в эксплуатацию.

Пример 2

Восстановление обводненной скважины с эксплуатационной колонной диаметром 146 мм проводили следующим способом. Первоначально в обводнившейся части пласта провели ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста. В качестве водоизолирующей композиции использовали состав на основе кремнийорганической жидкости ГКЖ-10 и поливинилового спирта ПВС-18/11, а в качестве цементного раствора - состав на основе ПТЦ 1-50 с добавлением суперпластификатора С-3 и полипропилового волокна «Фибра». Затем в оставшейся необводненной части пласта провели геофизические исследования и определили интервалы более проницаемых участков продуктивного пласта. После чего на колонне бурильных труб диаметром 73 мм спустили и установили с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, соориентировали ее в направлении выбранного в интервале 682-690 м проницаемого участка продуктивного пласта. В качестве якорно-пакеруюшего устройства использовали пакер G типоразмера 146×35 фирмы Гайберсон. Затем из скважины извлекли колонну бурильных труб и в скважину на гибкой трубе диаметром 38 мм спустили фрезерующую оснастку, состоящую из винтового забойного двигателя типа Д1-48 и гибкого вала, на нижнем торце которого была размещена фреза типа типа ФРП-52. В стенке эксплуатационной колонны диаметром 146 мм прорезали отверстие диаметром 50 мм с использованием дизельного топлива. Из скважины извлекли на гибкой трубе фрезерующую оснастку и присоединили к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку, спустили ее в скважину до выходного отверстия направляющей компоновки. Струями дизельного топлива под давлением 35 МПа размыли цементный камень за эксплуатационной колонной. Последующим перемещением гидромониторной насадки в радиальном направлении по выбранному проницаемому участку продуктивного пласта толщиной 2 м размыли горную породу с образованием радиального ствола диаметром 20 мм и длиной 50 м. После чего через гидромониторную насадку провели очистку радиального ствола кислотным составом из смеси глинокислоты, содержащей соляную и плавиковую кислоты соответственно 10% и 3% концентрациями, и лимонной кислоты 3% концентрации с образованием расширяющего радиальный ствол каверны диаметром до 40 мм. Затем из скважины извлекли гибкую трубу с рукавом высокого давления и гидромониторной насадкой, провели поворот направляющей компоновки в той же плоскости на 90 градусов и провели аналогичные операции по прокладыванию следующего радиального ствола аналогичной конструкции. Далее приподняли направляющую компоновку на высоту 50 м и провели аналогичные операции по прокладке следующих радиальных стволов. После этого в скважину до верхних радиальных стволов спустили лифтовую колонну диаметром 89 мм и скважину ввели в эксплуатацию.

Пример 3

Восстановление обводненной скважины с эксплуатационной колонной диаметром 140 мм проводили следующим способом. Первоначально в обводнившейся части пласта провели ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста. В качестве водоизолирующей композиции использовали состав на основе кремнийорганической жидкости ГКЖ-10 и гидрофобизирующей добавки этилсиликат ЭТС-40, а в качестве цементного раствора - состав на основе ПТЦ 1-50 с добавлением суперпластификатора С-3. Затем в оставшейся необводненной части пласта провели геофизические исследования и определили интервалы более проницаемых участков продуктивного пласта. После чего на колонне бурильных труб диаметром 73 мм спустили и установили с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, соориентировали ее в направлении выбранного в интервале 679-680 м проницаемого участка продуктивного пласта. В качестве якорно-пакеруюшего устройства использовали пакер ПРО-ЯДЖ-0-140-35 НПФ «Пакер» (г. Октябрьский, Республика Башкортостан). Затем из скважины извлекли колонну бурильных труб и в скважину на гибкой трубе диаметром 33 мм спустили фрезерующую оснастку, состоящую из винтового забойного двигателя типа Д1-43 и гибкого вала, на нижнем торце которого была размещена фреза типа ФРП-47. В стенке эксплуатационной колонны диаметром 140 мм прорезали отверстие диаметром 45 мм с использованием нефти. Из скважины извлекли на гибкой трубе фрезерующую оснастку и присоединили к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку, спустили ее в скважину до выходного отверстия направляющей компоновки. Струями нефти под давлением 35 МПа размыли цементный камень за эксплуатационной колонной. Последующим перемещением гидромониторной насадки в радиальном направлении по выбранному проницаемому участку продуктивного пласта толщиной 1 м размыли горную породу с образованием радиального ствола диаметром 10 мм и длиной 25 м. После чего через гидромониторную насадку провели очистку радиального ствола кислотным составом из смеси глинокислоты, содержащей соляную и плавиковую кислоты соответственно 10% и 4% концентрациями, и муравьиной кислоты 7% концентрации с образованием расширяющего радиальный ствол каверны диаметром до 20 мм. Затем из скважины извлекли гибкую трубу с рукавом высокого давления и гидромониторной насадкой, провели поворот направляющей компоновки в той же плоскости на 45 градусов и провели аналогичные операции по прокладыванию следующего радиального ствола аналогичной конструкции. Далее приподняли направляющую компоновку на высоту 60 м и провели аналогичные операции по прокладке следующих радиальных стволов. После этого в скважину до верхних радиальных стволов спустили лифтовую колонну диаметром 73 мм и скважину ввели в эксплуатацию.

Особенностью предлагаемого способа восстановления обводненной скважины посредством прокладки радиальных стволов является то, что его проводят в сложно построенном пласте, имеющем несколько проницаемых участков низкопроницаемой заглинизированной части пласта, в том числе, сложенных из низкопроницаемых сильно заглинизированных терригенных отложений небольшой толщины, включающих влагонабухающие глины, причем прокладку каждого радиального ствола осуществляют с использованием жидкости на углеводородной основе, не оказывающей вредного влияния, в частности, не приводящей к набуханию влагосодержащих глин, а очистка радиального ствола от остатков горной породы и расширение радиального ствола осуществляются с использованием кислотного состава из смеси глинокислоты и органической кислоты, например, аскорбиновой, лимонной или муравьиной, хорошо разрушающего цементирующуюся составляющую низкопроницаемого терригенного коллектора. Тем самым обеспечивается увеличение эффективной площади и глубины вскрытия продуктивного пласта небольшой толщины при устранении условий набухания глин, содержащихся в этом коллекторе.

Способ восстановления обводненной скважины, при котором в обводнившейся части пласта первоначально проводят ремонтно-изоляционные работы по изоляции притока пластовых вод и отсечению обводнившейся части ствола установкой цементного моста, затем в оставшейся необводненной части пласта проводят геофизические исследования, определяют интервалы более проницаемых участков продуктивного пласта, после чего на колонне бурильных труб спускают и устанавливают с помощью якорно-пакеруюшего устройства направляющую компоновку, снабженную сквозным каналом, ориентируют ее в направлении одного из проницаемых участков продуктивного пласта, затем из скважины извлекают колонну бурильных труб, в скважину на гибкой трубе спускают фрезерующую оснастку, состоящую из винтового забойного двигателя и гибкого вала, на нижнем торце которого размещена фреза, прорезают в стенке эксплуатационной колонны отверстие с использованием технологического раствора на углеводородной основе, извлекают из скважины на гибкой трубе фрезерующую оснастку, присоединяют к башмаку гибкой трубы посредством переводного рукава высокого давления гидромониторную насадку и спускают ее в скважину до выходного отверстия направляющей компоновки, струями технологического раствора на углеводородной основе под высоким давлением размывают цементный камень за эксплуатационной колонной и последующим перемещением гидромониторной насадки в радиальном направлении размывают горную породу с образованием радиального ствола, после чего через гидромониторную насадку проводят очистку радиального ствола кислотным составом из смеси глинокислоты и органической кислоты, например, аскорбиновой, лимонной или муравьиной, с образованием расширяющей радиальный ствол каверны, затем извлекают из скважины гибкую трубу с рукавом высокого давления и гидромониторной насадкой, проводят поворот направляющей компоновки в той же плоскости, например, на 180 градусов, проницаемого участка продуктивного пласта и проводят аналогичные операции работы по прокладыванию следующего радиального ствола, далее приподнимают направляющую компоновку на высоту следующего интервала проницаемых участков продуктивного пласта и проводят аналогичные операции по прокладке последующих радиальных стволов, после этого в скважину до верхних радиальных стволов спускают лифтовую колонну из насосно-компрессорных труб с площадью проходного отверстия, равной сумме площадей проходных отверстий радиальных стволов, и скважину вводят в эксплуатацию.
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ
Источник поступления информации: Роспатент

Showing 101-110 of 176 items.
20.02.2019
№219.016.be2b

Устройство для контроля и регулирования процесса добычи газа в газовых и/или газоконденсатных скважинах

Изобретение относится к управлению расходом газообразных и жидких веществ с помощью элементов, чувствительных к давлению среды, и может быть использовано на газодобывающих промыслах, оборудованных ингибиторопроводом от установки комплексной подготовки газа до куста скважин при освоении газовых...
Тип: Изобретение
Номер охранного документа: 0002340771
Дата охранного документа: 10.12.2008
01.03.2019
№219.016.cb11

Циркуляционная обвязка для сооружения гравийного фильтра в скважине

Изобретение относится к газодобывающей промышленности, в частности к наземному оборудованию скважины. Циркуляционная обвязка для сооружения гравийного фильтра в скважине включает насосный агрегат, жестко соединенный с всасывающим трубопроводом и выкидной линией, связанными с приемной емкостью,...
Тип: Изобретение
Номер охранного документа: 0002341648
Дата охранного документа: 20.12.2008
01.03.2019
№219.016.cb13

Буровой раствор

Изобретение относится к области нефтяной и газовой промышленности, а именно к буровым растворам для вскрытия продуктивного пласта-коллектора. Технический результат изобретения состоит в создании бурового раствора с регулируемой плотностью без твердой фазы для качественного вскрытия...
Тип: Изобретение
Номер охранного документа: 0002344153
Дата охранного документа: 20.01.2009
01.03.2019
№219.016.cb17

Буровой раствор

Изобретение относится к области нефтяной и газовой промышленности, а именно к буровым растворам для вскрытия продуктивного пласта-коллектора. Технический результат изобретения состоит в создании бурового раствора с регулируемой плотностью без твердой фазы, сохраняющего свои реологические...
Тип: Изобретение
Номер охранного документа: 0002344152
Дата охранного документа: 20.01.2009
01.03.2019
№219.016.cb67

Способ очистки зумпфа метаноугольной скважины и посадочный узел для установки опорной втулки в эксплуатационной колонне

Изобретение относится к горной промышленности и может быть использовано при эксплуатации скважин, оборудованных погружными насосами, в первую очередь, на скважинах для добычи метана из угольных пластов. Технический результат - обеспечение размещения подземного оборудования и, в частности,...
Тип: Изобретение
Номер охранного документа: 0002393335
Дата охранного документа: 27.06.2010
01.03.2019
№219.016.cb69

Обвязка устьевого и наземного оборудования метаноугольной скважины (варианты)

Группа изобретений относится к нефтегазодобывающей отрасли, в частности к конструкциям обвязки устьевого и наземного оборудования скважин. Включает отводы трубного и затрубного каналов скважины, выполненные в устьевой трубной головке. К первому отводу затрубного канала присоединена линия...
Тип: Изобретение
Номер охранного документа: 0002393336
Дата охранного документа: 27.06.2010
01.03.2019
№219.016.cb7d

Способ одновременного создания группы подземных резервуаров в растворимых породах

Изобретение относится к области строительства подземных хранилищ в отложениях каменной соли и может быть использовано в нефтяной, газовой и химической отраслях промышленности при создании подземных газонефтехранилищ, перевалочных баз, хранилищ товарных нефтепродуктов, добыче солей через буровые...
Тип: Изобретение
Номер охранного документа: 0002399571
Дата охранного документа: 20.09.2010
01.03.2019
№219.016.cbfb

Консорциум штаммов микроорганизмов для очистки окружающей среды от углеводородов

Изобретение относится к биотехнологии, в частности к консорциуму штаммов микроорганизмов дрожжей Candida sp.ВСБ-616 и бактерий Rhodococcus sp. ВКПМ AC-1258 (вар.16-а) для очистки объектов окружающей среды от углеводородов. Использование данного консорциума штаммов повышает эффективность очистки...
Тип: Изобретение
Номер охранного документа: 0002384616
Дата охранного документа: 20.03.2010
01.03.2019
№219.016.ccb5

Способ изоляции трубопровода

Изобретение относится к строительству трубопроводного транспорта и может быть использовано при прокладке трубопроводов в обводненных и болотистых местах. На трубу наносят сплошной слой отверждаемого из жидкого состояния материала. После окончательного отверждения слоя трубу с нанесенным...
Тип: Изобретение
Номер охранного документа: 0002338117
Дата охранного документа: 10.11.2008
01.03.2019
№219.016.cded

Способ определения критических скоростей флюида

Изобретение относится к области контроля эксплуатации скважин в нефтяной и газовой промышленности и может быть использовано при определении критических скоростей флюида, соответствующих началу выноса песка из пористых образцов. Способ определения критических скоростей флюида, соответствующих...
Тип: Изобретение
Номер охранного документа: 0002415400
Дата охранного документа: 27.03.2011
Showing 101-110 of 125 items.
20.06.2018
№218.016.63ea

Реагент для удаления конденсационной жидкости из газовых скважин

Изобретение относится к области добычи газа, а именно к химическим реагентам для удаления жидкости из скважин газовых месторождений, в продукции которых содержится конденсационная жидкость. Технический результат - обеспечение эффективного удаления конденсационной жидкости из газовых скважин...
Тип: Изобретение
Номер охранного документа: 0002657918
Дата охранного документа: 18.06.2018
08.02.2019
№219.016.b81d

Способ эксплуатации куста обводняющихся газовых скважин

Изобретение относится к газодобывающей промышленности, в частности к эксплуатации газовых скважин на месторождениях, находящихся в условиях падающей добычи газа. Способ эксплуатации куста обводняющихся скважин, которые оборудованы по беспакерной схеме и объединены одним газосборным коллектором,...
Тип: Изобретение
Номер охранного документа: 0002679174
Дата охранного документа: 06.02.2019
01.03.2019
№219.016.cefc

Способ поинтервальной обработки призабойной зоны пластов нефтегазовой скважины (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к поинтервальной обработке призабойной зоны низкопроницаемых терригенных пластов нефтегазовой скважины в условиях аномально низкого пластового давления. Обеспечивает повышение эффективности обработки. Сущность...
Тип: Изобретение
Номер охранного документа: 0002459948
Дата охранного документа: 27.08.2012
01.03.2019
№219.016.cf92

Способ переобвязки устья скважины, оборудованной дополнительной колонной (варианты)

Изобретение относится к нефтегазодобывающей промышленности, в частности к способам переобвязки устья скважины. Демонтируют устьевое оборудование до колонной головки КГ с установкой в дополнительной колонне ДК цементного моста. Отрезают и удаляют часть нулевого патрубка и осаживают КГ с...
Тип: Изобретение
Номер охранного документа: 0002433247
Дата охранного документа: 10.11.2011
01.03.2019
№219.016.cfb3

Способ переобвязки устья скважины

Изобретение относится к нефтегазодобывающей промышленности, а именно к ремонту устьевого оборудования нефтегазовых скважин, в частности к переобвязке устья скважины при замене старого или неисправного устьевого оборудования на новое. При осуществлении способа демонтируют фонтанную елку...
Тип: Изобретение
Номер охранного документа: 0002434117
Дата охранного документа: 20.11.2011
29.03.2019
№219.016.f2e4

Состав для обработки призабойной зоны скважин

Изобретение относится к нефтегазодобывающей промышленности, в частности к интенсификации притока углеводородов. Технический результат изобретения - обеспечение эффективности восстановления фильтрационной характеристики призабойной зоны скважин, пробуренных на полимерглинистых растворах. Состав...
Тип: Изобретение
Номер охранного документа: 0002374295
Дата охранного документа: 27.11.2009
29.03.2019
№219.016.f374

Способ крепления призабойной зоны пласта

Изобретение относится к нефтегазодобывающей промышленности и может быть использовано при обработке призабойной зоны пласта при добыче нефти и газа. Технический результат - повышение надежности крепления призабойной зоны. В способе крепления призабойной зоны пласта, включающем введение в...
Тип: Изобретение
Номер охранного документа: 0002305765
Дата охранного документа: 10.09.2007
10.04.2019
№219.017.083c

Способ заканчивания газовой скважины (варианты)

Группа изобретений относится к нефтегазодобывающей промышленности, а именно к заканчиванию после бурения и крепления газовых и газоконденсатных скважин, расположенных в зоне многолетнемерзлых пород. Способ заканчивания газовой скважины, при котором на обустроенном и необустроенном кустах после...
Тип: Изобретение
Номер охранного документа: 0002438007
Дата охранного документа: 27.12.2011
29.04.2019
№219.017.423a

Конструкция многозабойной скважины для эксплуатации в зоне многолетнемерзлых пород

Изобретение относится к нефтегазодобывающей промышленности, а именно к конструкциям многозабойных скважин, пробуренных в зонах повсеместного распространения многолетнемерзлых пород. Включает основной и боковые стволы, лифтовую колонну. Лифтовая колонна снабжена в интервале ниже...
Тип: Изобретение
Номер охранного документа: 0002379487
Дата охранного документа: 20.01.2010
29.04.2019
№219.017.443e

Способ изоляции притока пластовых вод в скважине

Изобретение относится к нефтегазодобывающей промышленности, а именно к изоляции притока пластовых вод в газовых и газоконденсатных скважинах, обводненных подошвенными пластовыми водами с подъемом газоводяного контакта (ГВК) выше нижних отверстий интервала перфорации. Способ изоляции притока...
Тип: Изобретение
Номер охранного документа: 0002471061
Дата охранного документа: 27.12.2012
+ добавить свой РИД