×
20.02.2015
216.013.2ba8

ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к измерительной технике, а именно к калибровке лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным приемником. Лазерный толщиномер дополнительно снабжен калибровочным приспособлением. Калибровочное приспособление жестко зафиксировано штифтованным винтовым соединением на корпусе толщиномера, обеспечивающим перпендикулярность пучков лазерного излучения к плоскости положения эталона, и содержит плату управления, линейный шаговый двигатель для перемещения эталона t, зафиксированного в зоне измерения на общем основании с фотоэлектрическими модулями. При калибровке эталон - t дискретно перемещают к другой границе зоны измерения и для каждого положения эталона t измеряют расстояния R, R от фотоэлектрических модулей до каждой стороны эталона t. Определяют соответствующие этим расстояниям номера элементов n, n на многоэлементных фотоприемниках, а затем определяют угловые коэффициенты k, k и смещения b, b, калибровочных прямых для каждого фотоэлектрического модуля, применяя метод наименьших квадратов. Технический результат - повышение точности измерения при воздействии вибрации, изменении температуры окружающей среды, волнистости и изогнутости объектов. 2 н. и 2 з.п. ф-лы, 5 ил.
Реферат Свернуть Развернуть

Изобретение относится к измерительной технике и, в частности, может быть использовано для калибровки лазерных толщиномеров, построенных по методу лазерной триангуляции, при котором пучки излучения направлены с двух сторон перпендикулярно к контролируемой поверхности, а принятый оптический сигнал фиксируется многоэлементным приемником.

Известно устройство для калибровки лазерных триангуляционных измерителей (Свидетельство на полезную модель RU №37550, МПК G01B 11/00, опубл. 27.04.2004), содержащее источник лазерного излучения, приемное устройство, сменный экран, снабженный средствами для перемещения в направлении лазерного луча.

Недостатком данного устройства для калибровки является отсутствие механизмов, деталей и узлов, которые обеспечивают многократную смену технологического экрана на объект контроля, при сохранении требуемой погрешности измерения. Контроль второй стороны объекта контроля не рассматривается.

Прототипом является устройство для измерения толщины - лазерный толщиномер (патент RU №2419068, МПК G01B 11/06, опубл. 20.01.2011), содержащее корпус, зону измерения, привод, обеспечивающий перемещение объекта контроля в зоне измерения, размещенные по разные стороны, оптически связанные с контролируемым объектом фотоэлектрические модули, жестко зафиксированные на общем основании и расположенные соосно и перпендикулярно плоскости перемещения контролируемого объекта, многоэлементные фотоприемники, входящие в состав фотоэлектрических модулей, оптически связанные с контролируемым объектом, блок обработки и управления, входы которого соединены со выходом фотоприемников, содержащий задатчик режимов работы, обеспечивающий выбор режима измерения толщины или режима калибровки толщиномера, вычислитель результатов измерений и цифровое табло.

Для калибровки толщиномера его корпус сдвигают по направляющим в горизонтальном направлении из зоны измерения в зону калибровки. Технологическое приспособление для калибровки, имитирующее положение объекта контроля, винтами соединяют с корпусом толщиномера последовательно устанавливают эталоны толщины tet и через задатчик вводят значения максимальной, а затем минимальной толщины эталонов в вычислитель, который рассчитывает угловой коэффициент - k и смещение - b калибровочной прямой .

Недостатком прототипа является то, что технологическое приспособление позволяет производить калибровку, а в последующем измерение толщины эталонов tmax, tmin только для положения размещения эталонов, которое соответствует нижней границе зоны измерения, что приводит к увеличению погрешности измерения для случая произвольного положения в зоне измерения объекта контроля.

В настоящее время при калибровке лазерных триангуляционных устройств сопоставляются расстояния до контролируемого объекта - Ri и номер элемента - ni на ПЗС - линейке, оптически связанной с объектом контроля (Anand Asundi «Unified calibration technigue and its applications in optical triangular profilometry» Applied Optics, 1999, №16, том 38, c.3556-3561).

Следует отметить, что полученные значения величин (Ri, ni) не учитывают шероховатость контролируемого объекта, изменение размеров световой метки в зависимости от изменения расстояния - Ri до объекта контроля, что отражается на размерах и форме видеоимпульса, сформированного ПЗС-линейкой и, следовательно, номере измеренного элемента - ni.

Для повышения точности измерений на калибровочном стенде (А.З. Венедиктов, О.В. Пальчик. «Проблема калибровки лазерных триангуляционных измерителей». Технология машиностроения. 2005 г., №8, с.57-59) задают расстояния Ri до эталона с типичным для измеряемых объектов коэффициентом отражения ρ и при каждом измерении расстояния Ri учитывают, кроме номера элемента - ni, размер световой метки Δni, где Δni=ni+1-ni-1, а ni+1, ni-1 соответственно, последний и первый засвеченные элементы в принятом оптическом сигнале. При построении зависимости между номером засвеченного элемента и расстоянием Ri до контролируемого объекта номер элемента уточняется в зависимости от ширины видеоимпульса Δni. В таблице градуировки Ri=f(ni, Δni) промежуточные значения расстояний Ri интерполируются.

Следует отметить, что в предложенном способе калибровки оптический контроль второй стороны объекта контроля не рассматривается. Процесс калибровки носит двухпараметрический характер, что усложняет данный способ.

Наиболее близкий к предлагаемому является способ калибровки раскрыт в описании патента РФ №2419068 «Способ измерения толщины и устройство для его осуществления», МПК G01B 11/06, опубл. 20.01.2011.

Для реализации предложенного способа, предварительно, в режиме калибровки, измеряют координаты световых меток, соответствующие эталонам с максимальной толщиной - tmax и минимальной - tmin, и рассчитывают угловой коэффициент , где Σ[tmax] и Σ[tmin] - суммы номеров элементов на ПЗС-линейке, соответствующих конечной ni+1 и начальной ni-1 границам видеоимпульсов с фотоприемников для эталонов толщин с tmax и tmin. а Σ[tmax]=Σ12, (аналогично, Σ[tmin]) где Σ1=N1+N2 - сумма номеров элементов, которые соответствуют начальной ni-1 и конечной ni+1 границам видеоимпульса, полученного при считывании видеосигнала от верхней поверхности эталона, аналогично Σ2=N3+N4 - сумма номеров элементов, которые соответствуют начальной и конечной границам видеоимпульса, полученного при считывании видеосигнала от нижней поверхности эталона, а толщину установленного эталона tet определяют как , где , это смещение калибровочной прямой, a - статистическая по результатам серии замеров оценка суммы Σ=Σ12. Статистическая оценка состоит, например, в отбрасывании некоторого количества максимальных и минимальных замеров и усреднении оставшихся.

Недостаток данного способа калибровки по эталонам, соответствующим максимальной и минимальной толщине tmax и tmin динамического диапазона измерений, состоит в последовательной установке эталонов на технологическое приспособление, опорная плоскость которого соответствует одной из границ зоны измерения, как правило, - это нижняя граница, и проведении вышеперечисленной последовательности операций только для этого случая. На практике измерения производятся при произвольном положении контролируемых объектов в зоне измерения и, следовательно, при произвольной ширине и положении видеоимпульсов, сформированных оптически связанными с контролируемой поверхностью ПЗС-линейками. Проведенные измерения показали увеличение погрешности измерений, если объект контроля находится в произвольном положении в зоне измерения, отличающейся от положения эталонов при калибровке.

Задачей изобретения является создание лазерного толщиномера и способа его калибровки, позволяющих повысить точность измерения при произвольном положении объекта контроля в зоне измерения и при воздействии таких дестабилизирующих факторов производственного процесса, как вибрация, изменение температуры окружающей среды, волнистость и изогнутость объектов контроля.

Поставленная задача достигается за счет того, что лазерный толщиномер, содержащий корпус, зону измерения, привод, обеспечивающий перемещение объекта контроля в зоне измерения, размещенные по разные стороны, оптически связанные с контролируемым объектом фотоэлектрические модули, жестко зафиксированные на общем основании и расположенные соосно и перпендикулярно плоскости перемещения контролируемого объекта, многоэлементные фотоприемники, входящие в состав фотоэлектрических модулей, оптически связанные с контролируемым объектом, блок обработки и управления, входы которого соединены с выходам фотоприемников, содержащий задатчик режимов работы, обеспечивающий выбор режима измерения толщины или режима калибровки толщиномера, вычислитель результатов измерений и цифровое табло, дополнительно снабжен калибровочным приспособлением жестко зафиксированным штифтованным винтовым соединением на корпусе толщиномера, обеспечивающим перпендикулярность пучков лазерного излучения к плоскости положения эталона, содержащим плату управления, линейный шаговый двигатель и электромеханический привод для перемещения эталона tet, зафиксированный в зоне измерения на общем основании с фотоэлектрическими модулями, при этом электромеханический привод соединен с первым выходом вычислителя по интерфейсной линии связи через плату управления и линейный шаговый двигатель, а фотоприемники соединены по интерфейсным линиям связи от микроконтроллеров фотоэлектрических модулей через второй и третий выходы с одноименными входами вычислителя.

Отличительным признаком предлагаемого лазерного толщиномера является наличие электромеханического привода для перемещения эталона - tet, жестко зафиксированного на общем основании с фотоэлектрическими модулями в зоне измерения толщиномера.

Поставленная задача достигается также за счет того, что в способе калибровки лазерного толщиномера, заключающемся в том, что предварительно в режиме калибровки толщиномера, включающего два фотоэлектрических модуля, формируют два узких пучка излучения, направленных соосно навстречу друг другу, которые создают на противоположных сторонах эталона - tet световые метки, а на двух линейных оптически связанных с эталоном позиционно-чувствительных многоэлементных фотоприемниках, входящих в состав фотоэлектрических модулей изображения световых меток, фотоприемники одновременно сканируют и измеряют номера элементов, соответствующих максимальному и минимальному значению толщины эталонов, на границе зоны измерения размещают эталон толщины - tet, который дискретно перемещают к другой границе, и для каждого положения эталона tet измеряют расстояния R1i, R2j от фотоэлектрических модулей до каждой стороны эталона tet и соответствующие этим расстояниям номера элементов n1i, n2i, на многоэлементных фотоприемниках, а затем определяют угловые коэффициенты k1, k2 и смещения b1, b2 калибровочных прямых для каждого фотоэлектрического модуля.

Кроме того, коэффициенты k1, k2, b1, b2 можно определить, применяя метод наименьших квадратов:

где: N - число замеров при снятии градуировочных характеристик, n1i, n2i - номера элементов на многоэлементных приемников при замерах,

R1i, R2i - расстояния по градуировочным характеристикам при замерах,

а калибровку базы толщиномера R0 выполнять в соответствии с соотношением ,

где L - число шагов при калибровке в зоне измерения,

i - текущий шаг,

M - число эталонов толщины t при калибровке,

m - текущий эталон tm,

R0(i, m)=R1l+R2l+tm,

где: R1i=k1n1i+b1 и R2j=k2n2j+b2 - текущие расстояния от фотоэлектрических модулей до каждой стороны эталона с толщиной tm, а также использовать эталон, состоящий из W секторов различной толщины.

Предлагаемые изобретения поясняются чертежами, на которых изображены:

фиг.1 - лазерный толщиномер для режима работы «Калибровка» с установленным калибровочным устройством,

фиг.2 - функциональная схема лазерного толщиномера для режима работы «Калибровка»,

фиг.3 - алгоритм калибровки лазерного толщиномера,

фиг.4 - алгоритм калибровки фотоэлектрического модуля,

фиг.5 - алгоритм калибровки базы толщиномера.

Для удобства изложения приводится пример выполнения устройства, а затем последовательность операций для предлагаемого способа калибровки.

Лазерный толщиномер (фиг.1) содержит калибровочное приспособление 1, жестко закрепленное на корпусе 2 толщиномера с помощью соединения, включающего винты 3, 4 и штифты 5, 6. Соединение калибровочного приспособления 1 с корпусом фотоэлектрических модулей 7, 8, жестко зафиксированных на корпусе 2 толщиномера, обеспечивает однозначность установки при многократных повторениях операций по калибровке с последующим переходом в режим измерения.

Калибровочное приспособление 1 содержит (фиг.2) плату управления 9, линейный шаговый двигатель (актуатор) 10, на валу 11 которого размещается эталон толщины 12. Плата управления 9 предназначена для формирования управляющих сигналов для актуатора 10.

Фотоэлектрические модули 7 и 8 содержат лазерные излучатели 13, 14 с формирующей оптикой 15, 16 и приемные каналы в составе: ПЗС-линейки, 17, 18, приемные объективы 19, 20 и поворотные зеркала 21, 22.

Полупроводниковые излучатели 13, 14 с формирующей оптикой 15, 16 формируют световые метки О1 и O2, соответственно, на верхней и нижней сторонах эталона 12. Индикатрисы рассеяния в этих точках схематически показаны на фиг.2. Для тестовых оптических сигналов от эталона с толщиной - tet приемными каналами в составе объективов 19, 20, поворотных зеркал 21 и 22 изображение световых меток строится на ПЗС-линейках 17 и 18 в точках O1/ и O2/.

Микроконтроллеры 26 и 27 предназначены для определения номера элемента, соответствующего максимуму видеосигнала при приеме световых меток и формировании управляющих сигналов для ПЗС-линеек.

Кроме того, в корпусе 2 толщиномера находятся: вычислитель 23, клавиатура 24, индикатор 25.

Вычислитель 23 предназначен для расчета калибровочных коэффициентов k1, k2, смещений b1, b2 и расстояний от фотоэлектрических модулей до первой R1i=k1n1i+b1 и второй R2i=k2=n2i+b2 сторон объекта контроля.

Клавиатура 24 предназначена для задания режимов работы толщиномера: калибровка, измерение толщины. Индикатор 25 для отображения результатов вычислений, констант.

Первые входы-выходы платы управления 9 и вычислителя 23 соединены интерфейсной линией связи с протоколом обмена, например по RS-232, для передачи команд от вычислителя 23 через плату управления 9 на линейный шаговый двигатель 10 для установки эталона 12 в зоне измерения Δ в требуемое положение.

Для передачи номера элемента ПЗС-линейки, соответствующего максимуму видеосигнала, вторые и третьи входы-выходы вычислителя 23 соединены интерфейсными линиями связи с одноименными входами-выходами, соответственно, микроконтроллеров 26 и 27.

Работа устройства для калибровки начинается по команде с клавиатуры 24. В соответствии с протоколом обмена от вычислителя 23 по линии связи на 1 вход платы управления 9 поступает команда на установку эталона 12 на границе зоны измерения, например нижней 28. Полупроводниковые излучатели 13, 14 с формирующей оптикой 15 и 16 формируют световые метки O1 и O2 соответственно, на верхней и нижней сторонах эталона 12 с толщиной - tet. По управляющим сигналам с 4 выхода микроконтроллеров 26 и 27 на 5 входы ПЗС-линеек 17, 18 подаются сигналы управления и выполняется сканирование. Номера элементов n1i, n2i, в считанных видеосигналах и соответствующие максимумам видеосигналов, полученных при приеме от световых меток O1 и O2 на эталоне толщиной - tet передаются через последовательно соединенные выходы ПЗС-линеек 17, 18 усилители 31 микроконтроллеры 26, 27 по интерфейсной линии связи через 2 и 3 входы-выходы в вычислитель 23, для расчета калибровочных коэффициентов k1, k2, смещений b1, b2, текущих расстояний от фотоэлектрических модулей до первой R1i=k1n1i+b1 и второй R2=k2n2i+b2 стороны эталона толщины. Для определения базы толщиномера R0 в соответствии с соотношением R0=R1i+R2i+tm, где R1i, R2i, - расстояния от модулей до эталона, tm - толщина эталона используется эталон с секторами, отличающихся по толщине, и который устанавливается для калибровки базы поворотами вокруг оси вала 11, механически связанного с двигателем 10 для измерения базы R0 в i-секторе.

Способ калибровки с помощью вышеописанного устройства выполняется в следующей последовательности: используя штифтованные резьбовые соединения 3, 4 (фиг.1), калибровочное устройство 1 соединяют с толщиномером.

На клавиатуре 24 инициализируется режим калибровки толщиномера (фиг.3). В соответствии с протоколом обмена, по интерфейсной линии связи (фиг.2) между первыми входами-выходами вычислителя 23 и платы управления 9 эталон 12 устанавливается в положение 28, на границе зоны измерения, и по командам вычислителя 23 эталон 12 смещается с шагом - δ к другой 29 границе зоны измерения. Каждый i шаг эталона соответствует предварительно аттестованному расстоянию от фотоэлектрического модуля 7 R1i до одной из сторон эталона и фотоэлектрического модуля 8 до второй стороны эталона R2i. Алгоритм калибровки фотоэлектрических модулей приведен на фиг.4. На каждом шаге расположенные в фотоэлектрических модулях 7 и 8 микроконтроллеры 26, 27 определяют номера элементов, соответствующие максимуму видеосигнала (n1i), (n2i). Для повышения достоверности результатов количество замеров при определении номеров элементов для каждого положения эталона в зоне измерения повторяется N раз. После окончания перемещения эталона до границы зоны измерения 29 градуировочные характеристики первого (R1i, n1i) фотоэлектрического модуля, а затем второго (R2i, n2s) запоминаются вычислительным устройством 23 и используются для расчетов коэффициентов k1 b1, k2, b2, и текущих расстояний до первой R1i=k1n1i+b1 и второй R2i=k2i+b2 стороны эталонов или контролируемых объектов. Алгоритмы калибровки фотоэлектрических модулей (фиг.3) выполняются перед калибровкой базы толщиномера.

Алгоритм калибровки базы толщиномера R0 - расстояние между фотоэлектрическими модулями, которое используется при вычислении толщины как t=R0-R1i-R2i, приведен на фиг.5.

Для калибровки базы толщиномера R0 используется эталон, который состоит из m секторов различной толщины. Для измерения R0 устанавливается сектор эталона tm с минимальной толщиной, который последовательно занимает L положений в зоне измерения Δ=Rmax-Rmin. Для дальнейшей калибровки R0 базы эталон разворачивается и устанавливается сектор с толщиной tm+1. По окончании L-циклов измерений по смещению эталона в зоне измерения Δ и M циклов измерений по толщинам, имеющихся эталонов база толщиномера, рассчитывается как .

Использование вышеизложенных изобретений позволит повысить точность измерений толщины в произвольной точке зоны измерения, так как измеряются текущие расстояния R1i и R2i до каждой стороны объекта контроля, кроме того, контролируется база толщиномера R0, что позволяет компенсировать механические и температурные воздействия на толщиномер.


ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
ЛАЗЕРНЫЙ ТОЛЩИНОМЕР И СПОСОБ ЕГО КАЛИБРОВКИ
Источник поступления информации: Роспатент

Showing 1-10 of 107 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.2407

Роторный ветродвигатель с ветронаправляющим экраном

Изобретение относится к области ветроэнергетики и может быть использовано для получения механической или электрической энергии. Роторный ветродвигатель содержит вращающуюся ветротурбину, расположенную внутри ветронаправляющего экрана, состоящего из отдельных лопаток, поворачивающихся на своих...
Тип: Изобретение
Номер охранного документа: 0002474725
Дата охранного документа: 10.02.2013
20.03.2013
№216.012.301d

Способ определения аномалий на политермах свойств высокотемпературных металлических расплавов (варианты)

Изобретение относится к технической физике, а именно к способам контроля и измерения свойств веществ, и предназначено для определения аномалий на политермах свойств высокотемпературных металлических расплавов. Дополнительной сферой применения являются металлургические процессы, в частности...
Тип: Изобретение
Номер охранного документа: 0002477852
Дата охранного документа: 20.03.2013
10.06.2013
№216.012.4896

Способ извлечения редкоземельных элементов из технологических и продуктивных растворов и пульп

Изобретение относится к гидрометаллургии редких металлов, в частности к области извлечения редкоземельных элементов при комплексной переработке технологических и продуктивных растворов. Способ извлечения редкоземельных элементов из растворов, содержащих железо(III) и алюминий, включает сорбцию...
Тип: Изобретение
Номер охранного документа: 0002484162
Дата охранного документа: 10.06.2013
20.10.2013
№216.012.75fd

Способ получения п-ацетиламинофенола

Изобретение относится к способу получения п-ацетиламинофенола (парацетамола) формулы I. Способ заключается в каталитическом восстановлении п-нитрозофенола в этилацетате при перемешивании с катализатором Ni-Ренея при давлении водорода 2-4 атм и при температуре 20-50°C, последующей обработке...
Тип: Изобретение
Номер охранного документа: 0002495865
Дата охранного документа: 20.10.2013
27.01.2014
№216.012.9b8c

Способ получения анестезина

Изобретение относится к способу получения этилового эфира n-аминобензойной кислоты (анестезина) формулы который обладает местным анестезирующим действием и является полупродуктом в синтезе новокаина. Способ заключается в восстановлении этилового эфира n-нитробензойной кислоты с последующим...
Тип: Изобретение
Номер охранного документа: 0002505526
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a345

Способ изготовления модифицированного электрода для электрохимического анализа (варианты)

Использование: для контроля состава природных, сточных вод, биологических объектов, пищевых продуктов, диагностики заболеваний в химической, металлургической, пищевой промышленности, медицине, экологии. Сущность: способ изготовления модифицированного электрода включает синтез на поверхности...
Тип: Изобретение
Номер охранного документа: 0002507512
Дата охранного документа: 20.02.2014
10.05.2014
№216.012.c1b0

Термогравиметрическая установка

Термогравиметрическая установка предназначена для определения кислородной нестехиометрии в твердых оксидных материалах по изменению их массы в зависимости от температуры и парциального давления кислорода газовой атмосферы. Термогравиметрическая установка содержит измерительную систему,...
Тип: Изобретение
Номер охранного документа: 0002515333
Дата охранного документа: 10.05.2014
27.06.2014
№216.012.d5eb

Аппликатор магнитный

Изобретение относится к медицине, а именно к магнитотерапии, и может быть использовано для лечения различных заболеваний воздействием магнитных полей, создаваемых постоянным магнитом, размещаемым снаружи тела. Аппликатор магнитный содержит гибкую пластину из магнитомягкого эластомера на основе...
Тип: Изобретение
Номер охранного документа: 0002520541
Дата охранного документа: 27.06.2014
20.07.2014
№216.012.df28

Аустенитно-ферритная сталь с высокой прочностью

Изобретение относится к области металлургии и может быть использовано для получения высокопрочной теплостойкой проволоки различных типоразмеров и листового материала. Предложенная сталь содержит компоненты в следующем соотношении, мас.%: углерод до 0,03, хром 8,0-16, никель 6-12, молибден 1-5,...
Тип: Изобретение
Номер охранного документа: 0002522914
Дата охранного документа: 20.07.2014
Showing 1-10 of 159 items.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20be

Устройство для бесконтактного фотометрического определения характеристик металлических расплавов

Изобретение относится к устройству для определения, контроля и измерения физических параметров веществ и предназначено для бесконтактного фотометрического определения характеристик металлических расплавов, в частности кинематической вязкости и электропроводности. Устройство содержит тигель с...
Тип: Изобретение
Номер охранного документа: 0002473883
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e8

Способ определения поглощенной дозы β-излучения в твердотельном термолюминесцентном детекторе

Изобретение относится к радиационной физике, является способом оценки накопленной дозы ионизирующего β-излучения с использованием твердотельных термолюминесцентных детекторов и может быть использовано при персональной дозиметрии при мониторинге радиационной обстановки в различных условиях....
Тип: Изобретение
Номер охранного документа: 0002473925
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e9

Устройство для определения поглощенной дозы β-излучения в твердотельном термолюминесцентном детекторе

Изобретение относится к радиационной физике, является устройством для определения поглощенной дозы ионизирующего β-излучения в термолюминесцентном детекторе и может быть использовано при персональной дозиметрии, при мониторинге радиационной обстановки в различных условиях. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002473926
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.236a

Способ получения 1,4-дизамещенных [1.1.1.1.1] пентиптиценов

Изобретение относится к способу получения 1,4-дизамещенных [1.1.1.1.1] пентиптиценов R = С≡С-Аr; тиенил-2. Способ включает взаимодействие пентиптиценхинона с литиевыми производными гетаренов и ацетиленов с последующей ароматизацией восстанавливающим агентом. При этом способ характеризуется...
Тип: Изобретение
Номер охранного документа: 0002474568
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2407

Роторный ветродвигатель с ветронаправляющим экраном

Изобретение относится к области ветроэнергетики и может быть использовано для получения механической или электрической энергии. Роторный ветродвигатель содержит вращающуюся ветротурбину, расположенную внутри ветронаправляющего экрана, состоящего из отдельных лопаток, поворачивающихся на своих...
Тип: Изобретение
Номер охранного документа: 0002474725
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.286f

Устройство защиты ядерного реактора на быстрых нейтронах

Предлагаемое изобретение относится к системам защиты и диагностики ядерного реактора на быстрых нейтронах АЭС. Устройство защиты ядерного реактора содержит измерители и датчики режимов работы АЭС и системы управления защиты, стержень аварийной защиты для гашения цепной реакции при авариях...
Тип: Изобретение
Номер охранного документа: 0002475871
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a6c

Волновод для осветления стекломассы

Изобретение относится к области стекловарения, в частности к стекловаренным печам. Волновод для осветления стекломассы, включающий погруженный в расплав стекломассы цилиндрический корпус волновода с закрытым торцом, снабжен газоструйным акустическим излучателем, трубопроводом для подачи и...
Тип: Изобретение
Номер охранного документа: 0002476387
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.2f61

Устройство для получения труб с винтовым профилем

Изобретение относится к области обработки металлов давлением, конкретно - к трубопрофильному производству. Корпус содержит два держателя с профильными кольцами, установленные последовательно вдоль оси трубы. Один держатель выполнен подвижным с возможностью поворота вокруг своей оси при помощи...
Тип: Изобретение
Номер охранного документа: 0002477664
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2f90

Легированное кварцевое стекло с тетраэдрической координацией атомов титана

Изобретение касается легированного кварцевого стекла с тетраэдрической координацией атомов титана и может быть использовано при создании оптоэлектронных и светоизлучающих устройств. Легированное кварцевое стекло с тетраэдрической координацией атомов титана представляет собой основу, состоящую...
Тип: Изобретение
Номер охранного документа: 0002477711
Дата охранного документа: 20.03.2013
+ добавить свой РИД