×
20.02.2015
216.013.2b83

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

Вид РИД

Изобретение

Аннотация: Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов. Согласно предложенному способу диагностирования электрической машины измеряют электродвижущую силу в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов. По разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний. Кроме того, по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени. Технический результат: повышение точности диагностики электрической машины, введение возможности определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета - статический или динамический), упрощение технической реализации диагностики, а также возможность диагностики в режиме реального времени. 4 ил.
Основные результаты: Способ диагностирования электрической машины, по которому измеряют электродвижущую силу, отличающийся тем, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.

Изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов как в процессе эксплуатации, так и в процессе испытаний, например, авиационных генераторов.

Известен способ диагностирования электрических и механических повреждений асинхронного двигателя с короткозамкнутым ротором [патент РФ №2479096 С2, H02K 15/00, G01R 31/34, 10.04.2013], по которому диагностика осуществляется во время работы двигателя путем измерения величин тока в двух точках его короткозамыкающего кольца, разнесенных относительно друг друга на величину полюсного деления асинхронного двигателя или кратную ей, для чего на короткозамкнутом кольце ротора в указанных точках устанавливаются два датчика тока. Величины токов. протекающих в короткозамыкающем кольце ротора, свидетельствуют о наличии или отсутствии повреждений двигателя.

Недостатками данного способа являются ограниченная область применения и сложность технической реализация, обусловленная установкой датчиков тока на короткозамкнутом кольце ротора.

Известен способ диагностики электрических машин по внешнему магнитному полю [Бойкова О.А. Функциональная диагностика неисправностей электромеханических элементов электротехнических комплексов по внешнему электромагнитному полю // автореферат на соискание ученной степени кандидата технических наук по специальности 05.09.03 «Электротехнические комплексы и системы», Уфа - 2011, 16 с.], по которому диагностика электрической машины осуществляется путем регистрации и анализа параметров ее внешнего магнитного поля.

Недостатками данного способа являются сложность его технической реализации и невысокий уровень его диагностического критерия, обусловленный слабой величиной внешнего магнитного поля.

Известен способ диагностирования генераторов переменного тока и устройство для его осуществления [патент РФ №2077064С1, H02K 15/00, G01R 31/34, 10.04.1997], по которому для определения технического состояния генератора и вида неисправности на обмотку возбуждения подается переменное напряжение и осуществляется осциллографическое наблюдение выходного сигнала с генератора и его сравнение с эталонным сигналом с помощью фигуры Лиссажу.

Недостатками данного способа являются ограниченная область применения, обусловленная тем, что у многих конструкций генераторов отсутствует обмотка возбуждения и сложность технической реализации, обусловленная необходимостью осциллографического наблюдения.

Известен способ автоматического контроля механических повреждений трехфазных асинхронных электродвигателей [патент РФ №2356061 C1, G01R 31/00, 20.05.2009], при котором в течение заданного интервала времени производят запись значений фазного тока электродвигателя и его спектральный анализ, полученные результаты спектрального анализа сравнивают с заданными значениями гармоник тока, отличающийся тем, что амплитуды гармоник тока, полученные в результате спектрального анализа, сравнивают с опорными значениями, характерными для каждого из видов механических повреждений в зависимости от уровня первой гармоники тока статора, причем набор характерных частот задают в зависимости от конструкции электродвигателя, вида предполагаемого повреждения, а заключение о наличии предполагаемого повреждения делают по превышению значений анализируемого сигнала на характерных частотах над опорными значениями.

Недостатками данного способа являются ограниченная область применения и сложность технической реализация, обусловленная необходимостью осциллографического наблюдения.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ диагностирования электрических машин [патент РФ №2246644 C1, F16C 32/04, 20.02.2005], который основан на контроле ЭДС, генерируемой электрической машиной при вращении по инерции при отключенном питающем напряжении, и обеспечивает с помощью контроллера отключение электрической машины при наличии неисправностей и информирование о техническом состоянии электрической машины.

Недостатками данного способа являются ограниченные функциональные возможности, обусловленные диагностированием при вращении ротора по инерции, и, как следствие, и изменяющимся во времени диагностическим критерием - ЭДС, отсутствием возможности диагностики при номинальной частоте вращения ротора и невозможностью определения таких неисправностей электрической машины как статический и динамический эксцентриситет и уровень колебаний ее ротора.

Задача изобретения - расширение функциональных возможностей благодаря введению возможности диагностики электрических машин при номинальной частоте вращения, определению величины эксцентриситета, а также его типа, статического или динамического и уровня колебаний ротора, расширению области применения благодаря возможности диагностики всех типов машин переменного тока.

Техническим результатом является повышение точности диагностики электрической машины, введение возможности определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета: статический или динамический), упрощение технической реализации диагностики, а также возможность диагностики в режиме реального времени.

Поставленная задача решается и указанный технический результат достигается тем, что в способе диагностирования электрической машины, по которому измеряют электродвижущую силу (ЭДС), согласно изобретению, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной, по величине измеренной электродвижущей силе рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.

Сущность изобретения поясняется чертежами.

На фиг.1 изображено ЭДС витка. На фиг.2 изображено распределение магнитной индукции по средней линии воздушного зазора в электрической машине без статических и динамических эксцентриситетов, при наличии статических и динамических эксцентриситетов, составляющих 5% от величины воздушного зазора электрической машины, при наличии статических и динамических эксцентриситетов, составляющих 10% от величины воздушного зазора электрической машины, при наличии статических и динамических эксцентриситетов, составляющих 15% от величины воздушного зазора электрической машины. На фиг.3 изображено суммирование векторов ЭДС активных сторон витка при исправном состоянии электрической машины. На фиг.4 изображено суммирование векторов ЭДС активных сторон витка при наличии статического или динамического эксцентриситета.

Пример конкретной реализации способа.

При вращении исправного четырехполюсного магнитоэлектрического генератора мощностью 65 кВт на холостом ходу с номинальной частотой вращения 12000 об/мин индукция в воздушном зазоре магнитоэлектрического генератора составляет 0,9 Тл. При этом ЭДС витка EB фазы A определяется геометрической суммой векторов ЭДС первой и второй активных сторон витка, фиг.1:

где EB - ЭДС витка;

- вектор ЭДС первой активной стороны витка;

- вектор ЭДС второй активной стороны витка.

Учитывая то, что

где l - активная длина магнитоэлектрического генератора;

B1 - магнитная индукция в воздушном зазоре под первым витком;

B2 - магнитная индукция в воздушном зазоре под вторым витком;

f - частота генерируемого тока;

τ - полюсное деление.

Так как при исправном состоянии магнитная индукция в воздушном зазоре под первой и второй активными сторонами витка фазы A равны (фиг.2), то и ЭДС первой и второй активных сторон витка фазы A равны, тогда векторы ЭДС первой и второй активных сторон витка фазы A суммируются по правилу треугольника (фиг.3), и в результате полное ЭДС витка фазы A определяется по теореме Пифагора для равнобедренного треугольника:

где β - относительный шаг витка.

Суммарное ЭДС равняется 5,82 В витка фазы А при активной длине магнитоэлектрического генератора 142 мм, полюсном перекрытии 57 мм, частоте генерируемого тока 400 Гц, относительном шаге витка 87,7 и магнитной индукции в воздушном зазоре 0,9 Тл.

При наличии эксцентриситета в 15% от воздушного зазора, то есть при неисправном состоянии четырехполюсного магнитоэлектрического генератора, магнитная индукция в воздушном зазоре под первой и второй активными сторонами витка фазы A не равны (фиг.2), и, как следствие, ЭДС первой и второй активных сторон витка фазы A не равны, тогда векторы ЭДС первой и второй активных сторон витка фазы A суммируются по правилу треугольника (фиг.4) и в результате полное ЭДС витка фазы A определяется по теореме косинусов:

Суммарное ЭДС витка фазы A при эксцентриситете в 15% от величины воздушного зазора равняется 8,388 В при активной длине магнитоэлектрического генератора 142 мм, полюсном перекрытии 57 мм, частоте генерируемого тока 400 Гц, относительном шаге витка 87,7 и магнитной индукции в воздушном зазоре 0,92 Тл под первой активной стороной витка и 0,87 Тл под второй активной стороной.

Тогда для исправного генератора ЭДС фазы A при числе витков 10 равняется 46,56 В и рассчитывается как геометрическая сумма ЭДС четырех витков фазы A, при этом все ЭДС витков фазы A равны, а при статическом или динамическом эксцентриситете в 15% от величины воздушного зазора ЭДС фазы A рассчитывается как геометрическая сумма четырех неодинаковых ЭДС витка фазы A, каждое из которых зависит от величины эксцентриситета. ЭДС каждой активной стороной витка фазы A, для рассматриваемого примера имеем 8 активных сторон каждого витка фазы A, соответственно, определяется в виде

где Br - остаточная магнитная индукция постоянного магнита (Br=1,1 Тл);

δ - воздушный зазор;

D2 - диаметр ротора;

kδ - коэффициент, учитывающий зубцы статора;

µ0 - магнитная проницаемость;

- относительная длина силовой линии в воздушном зазоре;

σо - коэффициент учитывающий рассеивание магнита;

e - величина статического эксцентриситета;

Hc - коэрцитивная сила.

Тогда четыре неодинаковых ЭДС фазы A рассчитываются согласно выражению (5), с учетом выражений (6)-(13), а максимальное суммарное ЭДС фазы А определяется как геометрическая сумма четырех неодинаковых ЭДС витков фазы A. Для динамического эксцентриситета расчет носит аналогичный характер.

Максимальное ЭДС фазы A при эксцентриситете в 15% от величины воздушного зазора равняется 54,38 В. Причем при статическом эксцентриситете максимальное ЭДС сохраняет свое максимальное значение во времени, а при динамическом изменяется от 45 В до 54,38 В. Из представленных выше расчетов очевидно, что ЭДС электрической машины без эксцентриситета и с эксцентриситетом разнятся, а следовательно, по величине измеренной ЭДС с учетом выражения (5)-(13) определяется величина статического или динамического эксцентриситета. Причем при статическом эксцентриситете максимальное значение ЭДС витка будет постоянным, а при динамическом изменяться во времени.

Колебания ротора магнитоэлектрического генератора наводят дополнительные ЭДС в витках, которые определяются путем разложения осциллограммы измеренной ЭДС в ряд Фурье и по данному разложению возможно судить об уровне колебаний.

Таким образом, повышается точность диагностики электрической машины, вводится возможность определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета: статический или динамический), упрощается техническая реализация диагностики, а также достигается возможность диагностики в режиме реального времени.

Итак, заявляемое изобретение позволяет расширить функциональные возможности благодаря введению возможности диагностики электрических машин при номинальной частоте вращения, определить величину эксцентриситета, а также его тип, статический или динамический и уровень колебаний ротора, расширить область применения благодаря возможности диагностики всех типов машин переменного тока.

Способ диагностирования электрической машины, по которому измеряют электродвижущую силу, отличающийся тем, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
Источник поступления информации: Роспатент

Showing 141-141 of 141 items.
27.06.2019
№219.017.98d9

Установка для очистки поверхностных сточных вод

Изобретение относится к области биотехнологии. Предложена установка для очистки стоков. Установка содержит водосточный коллектор, отстойную камеру с секциями для удаления нефтепродуктов и взвешенных веществ, насос для подачи стоков на коническое биоплато. Секция удаления нефтепродуктов...
Тип: Изобретение
Номер охранного документа: 0002692590
Дата охранного документа: 25.06.2019
Showing 171-180 of 191 items.
17.08.2019
№219.017.c110

Электродвигатель с внешним ротором и системой охлаждения статора

Изобретение относится к области электротехники, в частности, к охлаждению статора обращенной машины. Технический результат - повышение надежности и КПД. Электродвигатель с внешним ротором и системой охлаждения статора включает статический вал, установленный в подшипниковой опоре, концентрично...
Тип: Изобретение
Номер охранного документа: 0002697511
Дата охранного документа: 15.08.2019
22.08.2019
№219.017.c21e

Магнитоэлектрический генератор

Изобретение относится к области электротехники и может быть использовано в качестве генератора электрической энергии для автономных объектов, гибридных силовых установках и т.д. Магнитоэлектрический генератор имеет шесть фаз и содержит корпус, в который запрессован сердечник магнитопровода...
Тип: Изобретение
Номер охранного документа: 0002697812
Дата охранного документа: 20.08.2019
01.09.2019
№219.017.c5dc

Способ вихретокового контроля целостности бандажных оболочек роторов

Изобретение относится к области электромашиностроения и может быть использовано в электрических машинах при диагностировании состояния бандажных оболочек роторов. Способ вихретокового контроля дополнительно содержит этапы, на которых осуществляют контроль бандажной оболочки ротора электрической...
Тип: Изобретение
Номер охранного документа: 0002698557
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.cdaf

Электродвигатель с беспазовым магнитопроводом статора из аморфного железа

Изобретение относится к электротехнике и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение кпд, энергоэффективности и минимизация тепловыделений. Беспазовый магнитопровод статора выполнен в виде полого...
Тип: Изобретение
Номер охранного документа: 0002700656
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cef2

Магнитная система синхронного двигателя с инкорпорированными постоянными магнитами и с асинхронным пуском.

Изобретение относится к электротехнике и может быть использовано в электромашиностроении при производстве электродвигателей. Техническим результатом является повышение энергетических характеристик: полезной мощности, механического момента, коэффициента мощности, кпд при снижении массогабаритных...
Тип: Изобретение
Номер охранного документа: 0002700663
Дата охранного документа: 18.09.2019
02.10.2019
№219.017.cf27

Высокооборотный электромеханический преобразователь энергии с воздушным охлаждением (варианты)

Изобретение относится к электротехнике. Технический результат состоит в повышении надежности и эффективности отвода выделяемого тепла электромеханических преобразователей энергии, повышении КПД за счет предохранения постоянных магнитов ротора от теплового размагничивания. По внешней поверхности...
Тип: Изобретение
Номер охранного документа: 0002700280
Дата охранного документа: 16.09.2019
02.10.2019
№219.017.d157

Электрическая машина с интенсивной системой охлаждения

Изобретение относится к области электромашиностроения и может быть использовано при изготовлении электродвигателей и генераторов. Технический результат - повышение надежности электрических машин благодаря защите от межвиткового короткого замыкания, а также повышение эффективности охлаждения...
Тип: Изобретение
Номер охранного документа: 0002700274
Дата охранного документа: 16.09.2019
01.11.2019
№219.017.dc88

Способ диагностики двухполюсного ротора с постоянными магнитами

Изобретение относится к области энергомашиностроения, в частности к устройствам, используемым для диагностики электрических машин с постоянными магнитами в синхронных машинах. Технический результат: повышение точности и эффективности диагностики двухполюсных роторов с постоянными магнитами....
Тип: Изобретение
Номер охранного документа: 0002704567
Дата охранного документа: 29.10.2019
19.11.2019
№219.017.e3b8

Магнитоэлектродегидратор

Изобретение относится к аппаратам для обезвоживания и обессоливания нефти и очистки нефтепродуктов и может быть использовано в нефтяной и нефтеперерабатывающей промышленности. Магнитоэлектродегидратор содержит корпус, источник питания, электроды. Содержит герметично закрепленную с нижней...
Тип: Изобретение
Номер охранного документа: 0002706316
Дата охранного документа: 15.11.2019
24.11.2019
№219.017.e60c

Статор электрической машины с жидкостным охлаждением (варианты)

Изобретение относится к области электромашиностроения, в частности к высокооборотным электрическим машинам. Технический результат - повышение эффективности охлаждения и снижение тепловой заметности электрических машин. Беспазовый статор электрической машины с жидкостным охлаждением содержит...
Тип: Изобретение
Номер охранного документа: 0002706802
Дата охранного документа: 21.11.2019
+ добавить свой РИД