×
20.02.2015
216.013.2b83

Результат интеллектуальной деятельности: СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

Вид РИД

Изобретение

Аннотация: Предложенное изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов, как в процессе эксплуатации, так и в процессе испытаний, например авиационных генераторов. Согласно предложенному способу диагностирования электрической машины измеряют электродвижущую силу в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов. По разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний. Кроме того, по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени. Технический результат: повышение точности диагностики электрической машины, введение возможности определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета - статический или динамический), упрощение технической реализации диагностики, а также возможность диагностики в режиме реального времени. 4 ил.
Основные результаты: Способ диагностирования электрической машины, по которому измеряют электродвижущую силу, отличающийся тем, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.

Изобретение относится к электротехнике и предназначено для диагностирования статических и динамических эксцентриситетов в электрических машинах автономных объектов как в процессе эксплуатации, так и в процессе испытаний, например, авиационных генераторов.

Известен способ диагностирования электрических и механических повреждений асинхронного двигателя с короткозамкнутым ротором [патент РФ №2479096 С2, H02K 15/00, G01R 31/34, 10.04.2013], по которому диагностика осуществляется во время работы двигателя путем измерения величин тока в двух точках его короткозамыкающего кольца, разнесенных относительно друг друга на величину полюсного деления асинхронного двигателя или кратную ей, для чего на короткозамкнутом кольце ротора в указанных точках устанавливаются два датчика тока. Величины токов. протекающих в короткозамыкающем кольце ротора, свидетельствуют о наличии или отсутствии повреждений двигателя.

Недостатками данного способа являются ограниченная область применения и сложность технической реализация, обусловленная установкой датчиков тока на короткозамкнутом кольце ротора.

Известен способ диагностики электрических машин по внешнему магнитному полю [Бойкова О.А. Функциональная диагностика неисправностей электромеханических элементов электротехнических комплексов по внешнему электромагнитному полю // автореферат на соискание ученной степени кандидата технических наук по специальности 05.09.03 «Электротехнические комплексы и системы», Уфа - 2011, 16 с.], по которому диагностика электрической машины осуществляется путем регистрации и анализа параметров ее внешнего магнитного поля.

Недостатками данного способа являются сложность его технической реализации и невысокий уровень его диагностического критерия, обусловленный слабой величиной внешнего магнитного поля.

Известен способ диагностирования генераторов переменного тока и устройство для его осуществления [патент РФ №2077064С1, H02K 15/00, G01R 31/34, 10.04.1997], по которому для определения технического состояния генератора и вида неисправности на обмотку возбуждения подается переменное напряжение и осуществляется осциллографическое наблюдение выходного сигнала с генератора и его сравнение с эталонным сигналом с помощью фигуры Лиссажу.

Недостатками данного способа являются ограниченная область применения, обусловленная тем, что у многих конструкций генераторов отсутствует обмотка возбуждения и сложность технической реализации, обусловленная необходимостью осциллографического наблюдения.

Известен способ автоматического контроля механических повреждений трехфазных асинхронных электродвигателей [патент РФ №2356061 C1, G01R 31/00, 20.05.2009], при котором в течение заданного интервала времени производят запись значений фазного тока электродвигателя и его спектральный анализ, полученные результаты спектрального анализа сравнивают с заданными значениями гармоник тока, отличающийся тем, что амплитуды гармоник тока, полученные в результате спектрального анализа, сравнивают с опорными значениями, характерными для каждого из видов механических повреждений в зависимости от уровня первой гармоники тока статора, причем набор характерных частот задают в зависимости от конструкции электродвигателя, вида предполагаемого повреждения, а заключение о наличии предполагаемого повреждения делают по превышению значений анализируемого сигнала на характерных частотах над опорными значениями.

Недостатками данного способа являются ограниченная область применения и сложность технической реализация, обусловленная необходимостью осциллографического наблюдения.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ диагностирования электрических машин [патент РФ №2246644 C1, F16C 32/04, 20.02.2005], который основан на контроле ЭДС, генерируемой электрической машиной при вращении по инерции при отключенном питающем напряжении, и обеспечивает с помощью контроллера отключение электрической машины при наличии неисправностей и информирование о техническом состоянии электрической машины.

Недостатками данного способа являются ограниченные функциональные возможности, обусловленные диагностированием при вращении ротора по инерции, и, как следствие, и изменяющимся во времени диагностическим критерием - ЭДС, отсутствием возможности диагностики при номинальной частоте вращения ротора и невозможностью определения таких неисправностей электрической машины как статический и динамический эксцентриситет и уровень колебаний ее ротора.

Задача изобретения - расширение функциональных возможностей благодаря введению возможности диагностики электрических машин при номинальной частоте вращения, определению величины эксцентриситета, а также его типа, статического или динамического и уровня колебаний ротора, расширению области применения благодаря возможности диагностики всех типов машин переменного тока.

Техническим результатом является повышение точности диагностики электрической машины, введение возможности определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета: статический или динамический), упрощение технической реализации диагностики, а также возможность диагностики в режиме реального времени.

Поставленная задача решается и указанный технический результат достигается тем, что в способе диагностирования электрической машины, по которому измеряют электродвижущую силу (ЭДС), согласно изобретению, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной, по величине измеренной электродвижущей силе рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.

Сущность изобретения поясняется чертежами.

На фиг.1 изображено ЭДС витка. На фиг.2 изображено распределение магнитной индукции по средней линии воздушного зазора в электрической машине без статических и динамических эксцентриситетов, при наличии статических и динамических эксцентриситетов, составляющих 5% от величины воздушного зазора электрической машины, при наличии статических и динамических эксцентриситетов, составляющих 10% от величины воздушного зазора электрической машины, при наличии статических и динамических эксцентриситетов, составляющих 15% от величины воздушного зазора электрической машины. На фиг.3 изображено суммирование векторов ЭДС активных сторон витка при исправном состоянии электрической машины. На фиг.4 изображено суммирование векторов ЭДС активных сторон витка при наличии статического или динамического эксцентриситета.

Пример конкретной реализации способа.

При вращении исправного четырехполюсного магнитоэлектрического генератора мощностью 65 кВт на холостом ходу с номинальной частотой вращения 12000 об/мин индукция в воздушном зазоре магнитоэлектрического генератора составляет 0,9 Тл. При этом ЭДС витка EB фазы A определяется геометрической суммой векторов ЭДС первой и второй активных сторон витка, фиг.1:

где EB - ЭДС витка;

- вектор ЭДС первой активной стороны витка;

- вектор ЭДС второй активной стороны витка.

Учитывая то, что

где l - активная длина магнитоэлектрического генератора;

B1 - магнитная индукция в воздушном зазоре под первым витком;

B2 - магнитная индукция в воздушном зазоре под вторым витком;

f - частота генерируемого тока;

τ - полюсное деление.

Так как при исправном состоянии магнитная индукция в воздушном зазоре под первой и второй активными сторонами витка фазы A равны (фиг.2), то и ЭДС первой и второй активных сторон витка фазы A равны, тогда векторы ЭДС первой и второй активных сторон витка фазы A суммируются по правилу треугольника (фиг.3), и в результате полное ЭДС витка фазы A определяется по теореме Пифагора для равнобедренного треугольника:

где β - относительный шаг витка.

Суммарное ЭДС равняется 5,82 В витка фазы А при активной длине магнитоэлектрического генератора 142 мм, полюсном перекрытии 57 мм, частоте генерируемого тока 400 Гц, относительном шаге витка 87,7 и магнитной индукции в воздушном зазоре 0,9 Тл.

При наличии эксцентриситета в 15% от воздушного зазора, то есть при неисправном состоянии четырехполюсного магнитоэлектрического генератора, магнитная индукция в воздушном зазоре под первой и второй активными сторонами витка фазы A не равны (фиг.2), и, как следствие, ЭДС первой и второй активных сторон витка фазы A не равны, тогда векторы ЭДС первой и второй активных сторон витка фазы A суммируются по правилу треугольника (фиг.4) и в результате полное ЭДС витка фазы A определяется по теореме косинусов:

Суммарное ЭДС витка фазы A при эксцентриситете в 15% от величины воздушного зазора равняется 8,388 В при активной длине магнитоэлектрического генератора 142 мм, полюсном перекрытии 57 мм, частоте генерируемого тока 400 Гц, относительном шаге витка 87,7 и магнитной индукции в воздушном зазоре 0,92 Тл под первой активной стороной витка и 0,87 Тл под второй активной стороной.

Тогда для исправного генератора ЭДС фазы A при числе витков 10 равняется 46,56 В и рассчитывается как геометрическая сумма ЭДС четырех витков фазы A, при этом все ЭДС витков фазы A равны, а при статическом или динамическом эксцентриситете в 15% от величины воздушного зазора ЭДС фазы A рассчитывается как геометрическая сумма четырех неодинаковых ЭДС витка фазы A, каждое из которых зависит от величины эксцентриситета. ЭДС каждой активной стороной витка фазы A, для рассматриваемого примера имеем 8 активных сторон каждого витка фазы A, соответственно, определяется в виде

где Br - остаточная магнитная индукция постоянного магнита (Br=1,1 Тл);

δ - воздушный зазор;

D2 - диаметр ротора;

kδ - коэффициент, учитывающий зубцы статора;

µ0 - магнитная проницаемость;

- относительная длина силовой линии в воздушном зазоре;

σо - коэффициент учитывающий рассеивание магнита;

e - величина статического эксцентриситета;

Hc - коэрцитивная сила.

Тогда четыре неодинаковых ЭДС фазы A рассчитываются согласно выражению (5), с учетом выражений (6)-(13), а максимальное суммарное ЭДС фазы А определяется как геометрическая сумма четырех неодинаковых ЭДС витков фазы A. Для динамического эксцентриситета расчет носит аналогичный характер.

Максимальное ЭДС фазы A при эксцентриситете в 15% от величины воздушного зазора равняется 54,38 В. Причем при статическом эксцентриситете максимальное ЭДС сохраняет свое максимальное значение во времени, а при динамическом изменяется от 45 В до 54,38 В. Из представленных выше расчетов очевидно, что ЭДС электрической машины без эксцентриситета и с эксцентриситетом разнятся, а следовательно, по величине измеренной ЭДС с учетом выражения (5)-(13) определяется величина статического или динамического эксцентриситета. Причем при статическом эксцентриситете максимальное значение ЭДС витка будет постоянным, а при динамическом изменяться во времени.

Колебания ротора магнитоэлектрического генератора наводят дополнительные ЭДС в витках, которые определяются путем разложения осциллограммы измеренной ЭДС в ряд Фурье и по данному разложению возможно судить об уровне колебаний.

Таким образом, повышается точность диагностики электрической машины, вводится возможность определения не только количественных, но и качественных характеристик дефекта (например, типа эксцентриситета: статический или динамический), упрощается техническая реализация диагностики, а также достигается возможность диагностики в режиме реального времени.

Итак, заявляемое изобретение позволяет расширить функциональные возможности благодаря введению возможности диагностики электрических машин при номинальной частоте вращения, определить величину эксцентриситета, а также его тип, статический или динамический и уровень колебаний ротора, расширить область применения благодаря возможности диагностики всех типов машин переменного тока.

Способ диагностирования электрической машины, по которому измеряют электродвижущую силу, отличающийся тем, что электродвижущую силу измеряют в момент холостого хода электрической машины на номинальной частоте вращения ротора, сравнивают ее с эталонной величиной, характеризующей исправное состояние электрической машины, и при расхождении измеренной электродвижущей силы и эталонной по величине измеренной электродвижущей силы рассчитывают величины статических и динамических эксцентриситетов, а по разложению осциллограммы измеренной электродвижущей силы в ряд Фурье рассчитывают уровень колебаний, и по величинам статических и динамических эксцентриситетов, а также по уровню колебаний судят о техническом состоянии электрической машины в режиме реального времени.
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
СПОСОБ ДИАГНОСТИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ
Источник поступления информации: Роспатент

Showing 141-141 of 141 items.
27.06.2019
№219.017.98d9

Установка для очистки поверхностных сточных вод

Изобретение относится к области биотехнологии. Предложена установка для очистки стоков. Установка содержит водосточный коллектор, отстойную камеру с секциями для удаления нефтепродуктов и взвешенных веществ, насос для подачи стоков на коническое биоплато. Секция удаления нефтепродуктов...
Тип: Изобретение
Номер охранного документа: 0002692590
Дата охранного документа: 25.06.2019
Showing 141-150 of 191 items.
19.01.2018
№218.016.02c3

Способ управления стартер-генератором, интегрированным в газотурбинный двигатель, при коротком замыкании

Изобретение относится к области энергомашиностроения и может быть использовано в авиационных стартер-генераторах, интегрированных в авиационный газотурбинный двигатель. Технический результат: стабильная работа системы защиты от короткого замыкания в стартер-генераторе при высокой температуре...
Тип: Изобретение
Номер охранного документа: 0002630285
Дата охранного документа: 06.09.2017
19.01.2018
№218.016.05f3

Электропривод летательного аппарата (варианты)

Группа изобретений относится к авиакосмическим летательным аппаратам. Электропривод для летательного аппарата содержит корпус, шарико-винтовую пару, состоящую из гайки и винта, аксиальный подшипник, электродвигатель, зубчатую передачу, датчик положения ротора, демпфер и систему управления....
Тип: Изобретение
Номер охранного документа: 0002630966
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.153d

Устройство защиты от короткого замыкания высокотемпературного стартер-генератора обращённой конструкции

Использование: в области электротехники. Технический результат: защита от короткого замыкания стартер-генератора обращенной конструкции в составе газотурбинного двигателя в температурном режиме до 450°С за счет механического расцепления статора с неподвижным стержнем, сопровождающегося...
Тип: Изобретение
Номер охранного документа: 0002634836
Дата охранного документа: 07.11.2017
20.01.2018
№218.016.1b7e

Гибридный магнитный подшипник с использованием сил лоренца (варианты)

Изобретение относится к области энергомашиностроения и может быть использовано для обеспечения бесконтактного вращения ротора электрических машин. Отличие по первому варианту гибридного магнитного подшипника с использованием сил Лоренца состоит в том, что введены две управляющие m-фазные...
Тип: Изобретение
Номер охранного документа: 0002636629
Дата охранного документа: 24.11.2017
04.04.2018
№218.016.2f3d

Способ управления системой защиты магнитоэлектрического генератора от короткого замыкания

Использование: в области электротехники. Технический результат: повышение надежности системы управления, системы защиты и пожаробезопасности магнитоэлектрического генератора. Согласно способу после обнаружения короткого замыкания на фазной обмотке генератора, данную обмотку последовательно...
Тип: Изобретение
Номер охранного документа: 0002644586
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.2f5d

Гибридный магнитопровод статора электромеханических преобразователей энергии

Изобретение относится к области электромашиностроения и может быть использовано в электромеханических преобразователях энергии автономных объектов. Техническим результатом является повышение надежности, механической прочности, энергоэффективности и минимизация тепловыделений электромеханических...
Тип: Изобретение
Номер охранного документа: 0002644577
Дата охранного документа: 13.02.2018
04.04.2018
№218.016.330e

Устройство и способ автоматизированной очистки солнечной панели

Изобретение относится к системам автоматической очистки солнечных панелей. Устройство очистки солнечной панели, содержащее источник питания, соединенный с солнечной панелью, датчики контроля загрязнения и провода, расположенные на поверхности солнечной панели, отличающееся тем, что провода...
Тип: Изобретение
Номер охранного документа: 0002645444
Дата охранного документа: 21.02.2018
09.05.2018
№218.016.37e9

Магнитная система ротора с постоянными магнитами и способ ее изготовления

Изобретение относится к области электротехники, в частности к устройству роторов электрических машин с возбуждением от постоянных магнитов. Технический результат – повышение энергетических характеристик. Магнитная система ротора с постоянными магнитами содержит кольцевой цилиндр, состоящий из...
Тип: Изобретение
Номер охранного документа: 0002646543
Дата охранного документа: 06.03.2018
10.05.2018
№218.016.3ad3

Беспазовый синхронный генератор с интегрированным магнитным подвесом

Изобретение: относится к электротехнике и может быть использовано в магнитоэлектрических генераторах автономных систем электроснабжения. Технический результат состоит в повышении надежности и энергоэффективности системы измерения и управления, а также снижении массогабаритных показателей за...
Тип: Изобретение
Номер охранного документа: 0002647490
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.4e02

Адаптивное крыло

Адаптивное крыло содержит кессон, стрингеры, носовую и хвостовую части, электромеханические силовые приводы для деформации этих частей, каждая из которых включает каркас, состыкованный с центральным кессоном. Аэродинамическая поверхность крыла образована армированными эластомерными панелями,...
Тип: Изобретение
Номер охранного документа: 0002652536
Дата охранного документа: 26.04.2018
+ добавить свой РИД