×
20.02.2015
216.013.2a8a

Результат интеллектуальной деятельности: СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ

Вид РИД

Изобретение

Аннотация: Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике, в системах обработки первичной радиолокационной информации, для обнаружения высокоманевренной цели в импульсно-доплеровских радиолокационных станциях. Достигаемый технический результат - повышение разрешающей способности по ускорению и улучшение характеристик обнаружения без увеличения требований к вычислительным ресурсам. Указанный результат достигается за счет адаптивной настройки каналов без увеличения их количества. Для этого осуществляются операции поиска максимумов модулей преобразования Фурье в каждом из каналов ускорения и изменение настройки каналов ускорения в процессе обнаружения цели, то есть изменение междупериодных фазовых набегов опорных сигналов за счет ускорения. 4 ил.
Основные результаты: Способ обнаружения маневрирующей цели, заключающийся в том, что зондируют пространство пачкой когерентных радиоимпульсов, осуществляют аналого-цифровое преобразование отраженного от маневрирующей цели комплексного сигнала, представленного синфазной (действительной) и квадратурной (мнимой) составляющими, получают выборки сигналов, осуществляют квадратичные фазовые сдвиги полученных выборок в диапазоне, границы которого определяются априорно возможными значениями ускорения, осуществляют преобразование Фурье, определяют модули полученных значений, на основании их сравнения с порогом принимают решение о наличии или отсутствии цели, отличающийся тем, что выполняют поиск максимумов модулей преобразования Фурье для каждого осуществленного ранее квадратичного фазового сдвига, из дискретных значений квадратичных фазовых сдвигов выбирают ту пару соседних значений, которой соответствуют максимумы модулей преобразований Фурье, затем формируют новые дискретные значения квадратичных фазовых сдвигов в диапазоне, границы которого определяются полученной парой соседних значений квадратичных фазовых сдвигов.

Предлагаемое изобретение относится к радиолокации и может быть использовано в радиолокационной технике, в системах обработки первичной радиолокационной информации, для обнаружения высокоманевренной цели в импульсно-доплеровских радиолокационных станциях (ИД РЛС).

В ИД РЛС цели облучаются радиоимпульсами, излучаемыми с определенной частотой повторения. При отражении от движущейся воздушной цели несущая частота радиоимпульсов сдвигается на величину, равную частоте Доплера. Знак этой величины определяется направлением движения цели относительно ИД РЛС. Частота повторения радиоимпульсов выбирается из условия однозначности измерения скорости. При отражении от высокоманевренной цели, движущейся с постоянным радиальным ускорением, радиоимпульсы преобразуются в дискретные выборки линейно-частотно-модулированного (ЛЧМ) сигнала.

Известен способ обнаружения сигналов, отраженных от маневрирующей цели [1], в котором осуществляют аналого-цифровое преобразование (АЦП) сигнала, осуществляют панорамную развертку по частоте и по производной частоты, и накапливают отсчеты в матричном фильтре. Недостатками способа являются значительные вычислительные затраты на реализацию.

Известен способ обнаружения сигналов, отраженных от маневрирующей цели [2], заключающийся в разбиении сигнальной выборки на ряд коротких выборок, вычислении корреляционных сумм в узлах сетки гексагонального типа и сравнении их с порогом обнаружения. Недостатком данного способа является то, что для увеличения разрешающей способности по скорости и ускорению необходимо увеличивать число каналов скорости и ускорения, что приводит к чрезмерному возрастанию требований к вычислительным ресурсам. С другой стороны увеличение числа каналов обработки в многоканальной системе сопряжено с возрастанием порога обнаружения для сохранения требуемой вероятности ложной тревоги, что в свою очередь приводит к снижению вероятности правильного обнаружения.

Известен способ обнаружения сигналов, отраженных от маневрирующей цели [3], в котором получают последовательности мультипликаций из сигнальной входной выборки, путем задержки каждого элемента выборки сигнала на период излучения импульсов в пачке Т, инвертирования мнимой части задержанного отсчета выборки сигнала, умножения задержанного элемента выборки сигнала на следующий элемент выборки сигнала. Для получения достаточных статистик в узлах сетки, покрывающей область параметра ускорения, используют метод ЛЧМ-фильтрации, затем получают одноканальную максимально правдоподобную оценку доплеровского набега фазы сигнала за счет скорости в каждом канале по ускорению. Недостатком данного способа является то, что одновременно с выигрышем в количестве вычислительных операций происходит повышение порогового отношения сигнал-шум. Оба фактора вызваны отсутствием многоканальности по скорости.

В качестве прототипа выбран известный способ обнаружения сигналов, отраженных от маневрирующей цели [4], в котором осуществляют АЦП сигнала, вычисляют корреляционные суммы выборки сигнала и опорных комплексных ЛЧМ сигналов, фазы действительной и мнимой частей которых сдвинуты на девяносто градусов, в узлах сетки, покрывающей область априорных значений частоты сигнала и ее производной, определяют максимум модуля корреляционной суммы, сравнивают значение максимума модуля корреляционной суммы с порогом, при этом корреляционные суммы вычисляют в узлах прямоугольной сетки путем умножения сигнальных отсчетов на фазовращающие множители, соответствующие значению производной частоты, и применения быстрого преобразования Фурье (БПФ), вычисляющего значения корреляционной суммы во всех узлах с одинаковым индексом.

Недостатком данного способа является высокая сложность его реализации для широкого диапазона изменения частоты Доплера и ее производной ввиду резкого увеличения числа каналов обработки сигнала.

Техническим результатом предлагаемого изобретения является повышение разрешающей способности по ускорению и улучшение характеристик обнаружения без увеличения требований к вычислительным ресурсам. Для повышения разрешающей способности по ускорению и улучшения характеристик обнаружения при реализации способа, используемого в прототипе, как и в аналоге необходимо увеличивать число каналов скорости и ускорения. Такое решение, помимо увеличения количества требуемых вычислительных операций, приведет к неоднозначному влиянию на характеристики обнаружения. С одной стороны, увеличение числа каналов приведет к более точной настройке опорных сигналов и увеличению вероятности правильного обнаружения. С другой стороны, рост числа каналов приводит к росту вероятности ложных тревог и, соответственно, необходимости увеличения порога обнаружения, что приводит к уменьшению вероятности правильного обнаружения. Таким образом, неоднозначность влияния увеличения числа каналов на характеристики обнаружения накладывает еще одно ограничение на применение способа, известного из описания прототипа.

Технический результат предлагаемого изобретения достигается за счет адаптивной настройки каналов без увеличения их количества. Для этого формируются синфазная и квадратурная составляющие отраженного от маневрирующей цели комплексного сигнала после аналого-цифрового преобразования. Затем для компенсации фазовых набегов, вызванных ускоренным движением цели и, имеющих квадратичный вид (далее квадратичные фазовые набеги), осуществляются квадратичные фазовые сдвиги полученных выборок в диапазоне (то есть осуществляется обратный поворот фазы в соответствии с квадратичным фазовым набегом), границы которого на первом этапе работы алгоритма определяются априорно возможными значениями ускорения. Таким образом, настройка каждого канала ускорения определяется дискретным значением фазового сдвига из данного диапазона. Далее осуществляется дискретное преобразование Фурье, и определяются модули полученных значений. На основании их сравнения с порогом принимается решение о наличии или отсутствии цели. При несовпадении квадратичных фазовых сдвигов опорного и принятого сигналов происходит размытие сигнала по каналам скорости и снижение уровня сигнала в канале, соответствующем истинному значению скорости. При этом для каналов ускорения с наиболее близкими к реальному ускорению настройками, уровни сигналов будут максимальны (фиг.1). Следовательно, выбирая из дискретных значений квадратичных фазовых сдвигов ту пару соседних значений, которой соответствуют максимумы модулей преобразований Фурье, можно сузить диапазон, из которого выбираются значения квадратичных фазовых сдвигов. Таким образом, на следующем этапе выполнения алгоритма границы диапазона сужаются, благодаря чему разрешающая способность по ускорению повышается при сохранении прежнего количества каналов и, соответственно, вероятности ложных тревог. За счет более точной настройки каналов ускорения вероятность правильного обнаружения увеличивается.

Новыми признаками заявляемого способа, которые обладают существенными отличиями от способа-прототипа, являются следующие:

1) поиск максимумов модулей преобразования Фурье в каждом из каналов ускорения;

2) изменение настройки каналов ускорения в процессе обнаружения цели, т.е. изменение квадратичных фазовых сдвигов опорных сигналов.

Сравним эффективность способа-прототипа и заявляемого способа. В качестве критерия будем использовать характеристики обнаружения, то есть зависимость вероятности правильного обнаружения цели от отношения сигнал-шум на входе устройства обнаружения.

На фиг.2 и 3 представлены характеристики обнаружения (сплошная линия - заявляемый способ, пунктирная - способ-прототип) для случая трех и четырех каналов ускорения соответственно, диапазон априорно возможных межпериодных набегов фаз за счет ускорения равен 0.001π (~0,18 град), число импульсов в пачке 128.

Из анализа фиг.2 и 3 видно, что заявляемый способ позволяет получить выигрыш в 1.46 дБ (1.4 раз) при трех каналах ускорения, и 0.52 дБ (1.13 раз) при 4 каналах ускорения, для вероятности правильного обнаружения 0.9. Данный выигрыш соответствует увеличению дальности обнаружения маневрирующей цели на 26 км и 9 км соответственно, при начальной дальности обнаружения 300 км. Был проведен ряд имитационных экспериментов, позволяющих утверждать, что при изменении числа импульсов в пачке как в большую, так и меньшую сторону эффективность заявляемого способа сохраняется. Выигрыш зависит от числа каналов ускорения, при меньшем их количестве удается обеспечить большую эффективность.

Сравним также требуемые на реализацию вычислительные ресурсы. Единицей измерения будем считать элементарную операцию (ЭО) типа умножения, сложения и сравнения действительных чисел. На современном этапе развития техники можно считать, что эти действия выполняются за одинаковое время.

Для осуществления способа-прототипа в одном канале по ускорению требуется 6N ЭО на выполнение квадратичных фазовых сдвигов, где N - число импульсов в пачке; 5N log2N ЭО для вычисления N точечного БПФ; 3N ЭО для вычисления модулей БПФ. Для реализации данных действий во всех каналах ускорения требуется M(6N+5N log2N+3N) ЭО, где М - число каналов по ускорению.

Для осуществления заявляемого способа в одном канале по ускорению требуется 6N ЭО на выполнение квадратичных фазовых сдвигов, где N - число импульсов в пачке; 5N log2N ЭО для вычисления N точечного БПФ; 3N ЭО для вычисления модулей БПФ; N-1 ЭО для поиска максимума модуля БПФ. Для реализации данных действий во всех каналах ускорения требуется M(6N+5N log2N+3N+N-1) ЭО.

При этом число каналов ускорения для обеспечения одинаковой эффективности обнаружения, определяемой характеристиками обнаружения, будет отличаться для способа-прототипа и заявляемого способа. Эффективность обнаружения, которую обеспечивает заявляемый способ при описанных выше параметрах системы и трех каналах ускорения, может быть получена при наличии пяти каналов ускорения в способе-прототипе. При этом заявляемый способ требует на выполнение в 1.63 раза меньше ЭО и обеспечивает более высокую разрешающую способность.

Техническая реализация заявляемого способа возможна на основе устройства, структурная схема которого изображена на фиг.4. Устройство состоит из буферного регистра 1, многоканальных фазовращателей 2, блока формирования фазовых сдвигов 3, блоков быстрого преобразования Фурье 4, многоканальных блоков вычисления модулей отсчетов БПФ 5, многоканальной схемы выбора максимума 6, многоканальных пороговых устройств 7, блока стабилизации уровня ложной тревоги 8.

Работу устройства можно разделить на два этапа и описать следующим образом. Сигнал, отраженный от маневрирующей цели, после преобразований в каскадах приемника и аналого-цифрового преобразования поступает на входы устройства, реализующего заявляемый способ. Квадратурные составляющие на входе устройства в одном элементе разрешения по дальности описываются последовательностью комплексных величин:

где и - действительная и мнимая составляющие комплексного k-го отсчета соответственно;

k=0…N-1; i - мнимая единица;

φc и - межпериодные набеги фазы сигнала за счет скорости и ускорения соответственно.

После прохождения буферного регистра 1 отсчеты Sk поступают на входы М многоканальных фазовращателей 2, где происходит обработка в соответствии с правилом:

где - настройка m-го канала по ускорению на межпериодный фазовый набег за счет ускорения;

m=0…М-1.

На первом этапе блок формирования фаз 3 формирует значения , которые распределены равномерно в диапазоне квадратичных фазовых набегов, соответствующем априорно возможным ускорениям. Затем полученные отсчеты последовательно поступают в блоки БПФ 4 и многоканальные блоки вычисления модуля 5. Значения модулей сравниваются с порогами, которые поступают на входы пороговых устройств 7 с выходов блока стабилизации уровня ложной тревоги 8, и на основании сравнения принимается решение о наличии или отсутствии цели. На выходах пороговых устройств 7 формируются информационные сигналы. Вместе с тем, модули отсчетов БПФ поступают на входы многоканальной схемы выбора максимума 6, где определяются два соседних канала ускорения, в которых наблюдаются максимумы модулей БПФ. При наличии нескольких целей в блоке 6 определяются пары для каждой возможной цели. На следующем этапе блок формирования фаз 3 перераспределяет настройки каналов ускорения в диапазоне, определяемом текущими фазовыми сдвигами в каналах, номера которых получены от схемы выбора максимума 6.

В зависимости от быстродействия второй этап может выполняться до начала обработки следующей пачки, то есть все вычислительные операции выполняются дважды за время, определяемое длительностью пачки. Либо второй этап может выполняться во время обработки следующей пачки. Так как ускорение летательных аппаратов меняется довольно быстро, то после выполнения второго этапа производится сброс блока формирования фаз, то есть настройки каналов ускорения вновь равномерно распределяются по диапазону априорно возможных квадратичных межпериодных набегов фаз.

Список литературы

1. Обработка сигналов в многоканальных РЛС. / Под. ред. А.П. Лукошкина. М.: Радио и связь, 1983, с.307, рис.12.18.

2. Патент №2154837 по заявке 99113134/09 от 16.06.1999, опубл. 20.08.2000. Способ обнаружения линейно-частотно-модулированного сигнала с неизвестными параметрами. Аганин А.Г., Богданов А.В., Голубенке В.А., Киселев В.В., Лапердин В.Д., Меркулов В.И., Иванов Ю.Л., Рязанцев К.В.

3. Патент №2282873 по заявке 2004138168/09 от 27.12.2004, опубл. 10.06.2006. Способ обнаружения сигналов, отраженных от маневрирующей цели и устройство для его реализации. Кошелев В.И., Белокуров В.А.

4. Кузьменков В.Ю., Логинов В.М. Способы и устройства совместного измерения радиальной скорости и радиального ускорения. // Радиотехника и электроника, 1997, т.42, №12, с.1465…1475.

Способ обнаружения маневрирующей цели, заключающийся в том, что зондируют пространство пачкой когерентных радиоимпульсов, осуществляют аналого-цифровое преобразование отраженного от маневрирующей цели комплексного сигнала, представленного синфазной (действительной) и квадратурной (мнимой) составляющими, получают выборки сигналов, осуществляют квадратичные фазовые сдвиги полученных выборок в диапазоне, границы которого определяются априорно возможными значениями ускорения, осуществляют преобразование Фурье, определяют модули полученных значений, на основании их сравнения с порогом принимают решение о наличии или отсутствии цели, отличающийся тем, что выполняют поиск максимумов модулей преобразования Фурье для каждого осуществленного ранее квадратичного фазового сдвига, из дискретных значений квадратичных фазовых сдвигов выбирают ту пару соседних значений, которой соответствуют максимумы модулей преобразований Фурье, затем формируют новые дискретные значения квадратичных фазовых сдвигов в диапазоне, границы которого определяются полученной парой соседних значений квадратичных фазовых сдвигов.
СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ
СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ
СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ
СПОСОБ АДАПТИВНОЙ НАСТРОЙКИ КАНАЛОВ УСКОРЕНИЯ В МНОГОКАНАЛЬНОМ ОБНАРУЖИТЕЛЕ МАНЕВРИРУЮЩЕЙ ЦЕЛИ
Источник поступления информации: Роспатент

Showing 1-10 of 91 items.
20.08.2013
№216.012.5f0c

Способ определения показателей вариабельности сердечного ритма оператора в режиме реального времени и устройство для его осуществления

Изобретение относится к медицине. При осуществлении способа электрокардиосигнал фильтруют, дискретизируют по времени. В q первых кардиоциклах выделяют опорные точки, определяют длительности кардиоциклов, среднюю длительность кардиоциклов и число дискретных отсчетов N, соответствующее этой...
Тип: Изобретение
Номер охранного документа: 0002489964
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.619c

Электростатический энергоанализатор заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела. Сущность изобретения заключается в том, что электростатический энергоанализатор заряженных частиц содержит коаксиально размещенные внутренний и...
Тип: Изобретение
Номер охранного документа: 0002490620
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621d

Изотраекторный масс-спектрометр

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и...
Тип: Изобретение
Номер охранного документа: 0002490749
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621e

Электростатический анализатор энергий заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов...
Тип: Изобретение
Номер охранного документа: 0002490750
Дата охранного документа: 20.08.2013
10.09.2013
№216.012.667c

Устройство предварительной обработки электрокардиосигнала

Изобретение относится к медицинской технике. Устройство предварительной обработки электрокардиосигнала (ЭКС) содержит блок усиления (1), блок АЦП (2), вход которого подключен к выходу блока усиления (1), блок фильтра нижних частот (10). В устройство введены подключенные к выходу блока АЦП (2)...
Тип: Изобретение
Номер охранного документа: 0002491883
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.687b

Устройство для вентиляции воздуха

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в производственных помещениях. Устройство содержит коронирующие электроды, которые установлены между осадительными электродами один за другим в одной плоскости параллельно осадительным...
Тип: Изобретение
Номер охранного документа: 0002492394
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4c

Способ обнаружения квантовых точек и устройство для его осуществления

Изобретение относится к области диагностики полупроводниковых структур нанометрового размера и может быть использовано для обнаружения и классификации квантовых точек. Сущность изобретения: в способе обнаружения квантовых точек, расположенных на диагностируемом образце, образец пошагово...
Тип: Изобретение
Номер охранного документа: 0002493631
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7736

Способ образования двумерного линейного электрического поля и устройство для его осуществления

Изобретение относится к области электронной и ионной оптики и масс-спектрометрии, где используется движение заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкций и технологий изготовления устройств...
Тип: Изобретение
Номер охранного документа: 0002496178
Дата охранного документа: 20.10.2013
27.10.2013
№216.012.781c

Устройство для дистанционной регистрации процессов сердцебиения и дыхания пациента

Изобретение относится к медицинской технике и может быть использовано в медицинской практике для дистанционной регистрации процессов дыхания и сердечной деятельности пациента в реальном времени. Устройство для дистанционной регистрации процессов сердцебиения и дыхания пациента содержит в...
Тип: Изобретение
Номер охранного документа: 0002496410
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7896

Способ формирования магнитотерапевтического воздействия и устройство для его осуществления

Изобретение относится к медицинской технике, а именно к средствам для комплексной магнитотерапии. Способ заключается в размещении по всему телу пациента в два слоя, над и под ним, идентичных модулей в виде формирователей электромагнитного поля, подаче на них электрических сигналов регулируемой...
Тип: Изобретение
Номер охранного документа: 0002496532
Дата охранного документа: 27.10.2013
Showing 1-10 of 96 items.
20.08.2013
№216.012.5f0c

Способ определения показателей вариабельности сердечного ритма оператора в режиме реального времени и устройство для его осуществления

Изобретение относится к медицине. При осуществлении способа электрокардиосигнал фильтруют, дискретизируют по времени. В q первых кардиоциклах выделяют опорные точки, определяют длительности кардиоциклов, среднюю длительность кардиоциклов и число дискретных отсчетов N, соответствующее этой...
Тип: Изобретение
Номер охранного документа: 0002489964
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.619c

Электростатический энергоанализатор заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела. Сущность изобретения заключается в том, что электростатический энергоанализатор заряженных частиц содержит коаксиально размещенные внутренний и...
Тип: Изобретение
Номер охранного документа: 0002490620
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.61c3

Способ неразрушающего объемного измерения векторной функции магнитной индукции неоднородно распределенного в пространстве и периодически изменяющегося во времени магнитного поля

Предложен способ неразрушающего объемного измерения векторной функции магнитной индукции неоднородного периодически меняющегося магнитного поля. В способе измерения мгновенных объемных состояний распределения неоднородного в пространстве магнитного поля осуществляются в местах, недоступных для...
Тип: Изобретение
Номер охранного документа: 0002490659
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621d

Изотраекторный масс-спектрометр

Изобретение относится к области масс-анализа потоков ионов, эмиттируемых с поверхности твердого тела под воздействием первичного излучения, и может быть использовано для улучшения аналитических свойств масс-спектрометров, используемых для исследования объектов твердотельной микро- и...
Тип: Изобретение
Номер охранного документа: 0002490749
Дата охранного документа: 20.08.2013
20.08.2013
№216.012.621e

Электростатический анализатор энергий заряженных частиц

Изобретение относится к области энергетического анализа потоков заряженных частиц, возбуждаемых первичными электронами с поверхности твердого тела, и может быть использовано для улучшения аналитических и потребительских свойств электронных спектрометров, используемых для исследования объектов...
Тип: Изобретение
Номер охранного документа: 0002490750
Дата охранного документа: 20.08.2013
27.08.2013
№216.012.65b7

Способ корректировки межконтактного зазора геркона

Изобретение может быть использовано в электронной промышленности при изготовлении герметизированных магнитоуправляемых контактов (герконов). Согласно данному способу в случае, когда магнитодвижущая сила срабатывания заваренного геркона не соответствует диапазону паспортных значений, производят...
Тип: Изобретение
Номер охранного документа: 0002491676
Дата охранного документа: 27.08.2013
10.09.2013
№216.012.667c

Устройство предварительной обработки электрокардиосигнала

Изобретение относится к медицинской технике. Устройство предварительной обработки электрокардиосигнала (ЭКС) содержит блок усиления (1), блок АЦП (2), вход которого подключен к выходу блока усиления (1), блок фильтра нижних частот (10). В устройство введены подключенные к выходу блока АЦП (2)...
Тип: Изобретение
Номер охранного документа: 0002491883
Дата охранного документа: 10.09.2013
10.09.2013
№216.012.687b

Устройство для вентиляции воздуха

Изобретение относится к системам продувки и очистки воздуха от пылевых, бактериальных и химических загрязнений в производственных помещениях. Устройство содержит коронирующие электроды, которые установлены между осадительными электродами один за другим в одной плоскости параллельно осадительным...
Тип: Изобретение
Номер охранного документа: 0002492394
Дата охранного документа: 10.09.2013
20.09.2013
№216.012.6d4c

Способ обнаружения квантовых точек и устройство для его осуществления

Изобретение относится к области диагностики полупроводниковых структур нанометрового размера и может быть использовано для обнаружения и классификации квантовых точек. Сущность изобретения: в способе обнаружения квантовых точек, расположенных на диагностируемом образце, образец пошагово...
Тип: Изобретение
Номер охранного документа: 0002493631
Дата охранного документа: 20.09.2013
20.10.2013
№216.012.7736

Способ образования двумерного линейного электрического поля и устройство для его осуществления

Изобретение относится к области электронной и ионной оптики и масс-спектрометрии, где используется движение заряженных частиц в статических и переменных двумерных линейных электрических полях, и может быть использовано для усовершенствования конструкций и технологий изготовления устройств...
Тип: Изобретение
Номер охранного документа: 0002496178
Дата охранного документа: 20.10.2013
+ добавить свой РИД