×
20.02.2015
216.013.2a6c

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива. Способ получения порошка диоксида урана заключается в нагревании смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80 - 95°C в реакторе с гидрозатвором, последующей температурной выдержке полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрации и прокалке гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°C. Изобретение обеспечивает упрощение способа получения порошка диоксида урана, а также понижение давления и понижение температуры процесса реагентной денитрации. 4 з.п. ф-лы, 4 ил., 4 пр.

Изобретение относится к радиохимической технологии и может быть использовано для получения порошка диоксида урана, идущего на изготовление керамических таблеток уранового оксидного ядерного топлива для сборки тепловыделяющих элементов ядерных реакторов атомных электростанций.

Известен способ получения диоксида урана [RU 2158971 С1, МПК G21C 3/62], по которому проводят гидролиз гексафторида урана, экстракцию урана из азотнокислого раствора 30% раствором трибутилфосфата в органическом разбавителе, его реэкстракцию в водный кислый раствор, осаждения полиураната аммония аммиачной водой при pH 6,6-8, с последующей фильтрацией, сушкой-прокалкой при 450-600°C и восстановлением в водороде при 680-720°C.

К недостаткам данного метода можно отнести многостадийность и сложность процесса, необходимость использования высоких температур для разложения полученного прекурсора в производстве диоксида урана.

По другому способу [RU 2296106 С2, МПК C01G 43/025] диоксид урана получают обработкой 25%-ным раствором аммиака предварительно приготовленного водного раствора уранилнитрата с содержанием урана 50-100 г/дм3 с поддержанием значения pH не менее 6,6 при осаждении полиураната аммония. Далее следуют промежуточные стадии (фильтрация, сушка) с получением порошка полиураната аммония, являющегося прекурсором, термическое высокотемпературное разложение которого приводит к получению диоксида урана.

Существенным недостатком этого способа является его многостадийность и необходимость использования высоких температур для разложения полученного прекурсора.

Разработан способ получения диоксида урана [Заявка ФРГ, N 2693977, МПК С01С 43/02, 1978], пригодного для изготовления таблетированного ядерного топлива, методом осаждения пероксида урана. Для получения пероксида урана через раствор уранилнитрата (~ 100 г/л по урану) пропускают смесь аммиака и воздуха для нейтрализации избыточной кислотности до pH среды ~ 2, затем в раствор добавляют до ~ 20% мас. водного раствора перекиси водорода и молярного соотношения уран:перекись водорода 1:1,5-3. Пероксид урана после отделения от маточного раствора прокаливают при температуре 500-800°C с последующим восстановлением до диоксида урана при 550-750°C.

Известен способ получения диоксида урана [RU 2415084, МПК C01G 43/025], согласно которому при добавлении к азотнокислому раствору уранилнитрата восстановителя - хлорида гидроксиламина и аммиачной воды до pH 7 - получают, в зависимости от температурных условий, малорастворимые соединения: моногидрат диаквадигидроксиламинат уранила [UO2(H2O)2(NH2O)2]·H2O или безводный дигидроксиламинат уранила UO2(NH2O)2, термическое разложение которых приводит к образованию UO2 в инертной атмосфере в температурном интервале 200-400°C. Восстановителем U(VI) до U(IV) при термическом разложении указанного соединения служит координированный с ионом уранила лиганд гидроксиамина.

Описанный подход к получению диоксида урана из раствора уранилнитрата являлся по своей сути способом многостадийной термической реагентной денитрации с образованием маточного раствора, подлежащего утилизации тем или иным способом.

К недостатку данного способа получения двуокиси урана можно отнести необходимость использования инертной атмосферы при прокаливании, использование процессов осаждения, фильтрации, сушки и прокаливания, что значительно усложняет процесс получения конечного продукта.

Главный недостаток перечисленных выше способов состоит в том, что их первый многостадийный этап направлен на получение соединения - прекурсора, из которого только на второй стадии высокотемпературным термолизом получают целевой продукт - порошок диоксида урана.

Наиболее близким к предлагаемому способу и выбранным в качестве прототипа является способ [RU 2404925 С2, МПК C01G 43/01], при котором оксиды урана получают нагреванием смеси раствора уранилнитрата и аминоуксусной кислоты (глицин) при температуре 180-220°С в автоклавном режиме. Глицин берется в количестве 90-140% от стехиометрии. При этом, в зависимости от соотношения уранилнитрат:аминокислота, могут образовываться UO3, U3O8 или UO2.

Недостатком метода является требование точного контроля соотношения реагентов, относительно высокая температура проведения процесса в водном растворе, обуславливающая проведение процесса в автоклавном режиме, а также существенное влияние температуры на состав получаемых оксидов.

Задачей, на решение которой направлено предлагаемое изобретение, является упрощение способа получения порошка диоксида урана.

Техническим результатом является понижение температуры процесса реагентной денитрации и существенное понижение давления при проведении процесса.

Для достижения технического результата в способе получения порошка диоксида урана путем нагревания раствора уранилнитрата осуществляют нагревание смеси раствора уранилнитрата и гидразингидрата, взятого в двухкратном мольном избытке по отношению к уранилнитрату, до температуры 80-95°С в реакторе с гидрозатвором с последующей температурной выдержкой полученной суспензии уранилгидразината до образования гидратированного диоксида урана, фильтрацию и прокалку гидратированного диоксида урана в неокисляющей атмосфере при температуре равной 280°С.

В частном варианте температурную выдержку полученной суспензии осуществляют в течение 30 часов при конвективном способе подвода тепла к реактору.

В другом частном варианте температурную выдержку полученной суспензии осуществляют в течение одного часа при использовании энергии микроволнового излучения для подвода тепла к реактору.

В другом частном варианте прокалку гидратированного диоксида урана осуществляют в инертной атмосфере.

В другом частном варианте прокалку гидратированного диоксида урана осуществляют в восстановительной атмосфере.

Термическая денитрация уранилнитрата при его взаимодействии с гидразингидратом проходит непосредственно в жидкой фазе и приводит к получению в водном растворе сразу гидратированного диоксида урана, исключая промежуточные стадии получения каких-либо прекурсоров.

В результате термолиза аморфной и объемной суспензии уранилгидразината, образующейся в водном азотнокислом растворе уранилнитрата при его взаимодействии с гидразингидратом, получают непосредственно в растворе гидратированный диоксид урана (UO2·nH2O).

Процесс термолиза осуществляют способом конвективного подвода тепла, либо применяли энергию микроволнового излучения. Последний способ значительно сократил продолжительность термической денитрации и ускорил образование целевого продукта.

После отделения UO2·nΗ2O от маточного раствора кристаллический UO2 в неокисляющей атмосфере получают при температуре равной 280°С, либо переводят на воздухе в U3O8 при 570-800°С.

Двухкратный мольный избыток гидразингидрата необходим для полного перевода урана в гидратированный диоксид урана, дальнейшее увеличение мольного избытка гидразингидрата на технический результат не влияет, увеличение мольного избытка гидразингидрата экономически нецелесообразно.

При температурах ниже 80°С не происходит количественного перехода аморфной и объемной суспензии уранилгидразината в гидратированный диоксид урана (UO2·nH2O), при температурах выше 95°С проведение процесса экономически нецелесообразно.

При температурах ниже 280°С не происходит количественного перехода гидратированного диоксида урана (UO2·nH2O) в кристаллический диоксид урана UO2, при температурах выше 280°С проведение процесса экономически нецелесообразно.

Сущность заявляемого изобретения поясняется следующими чертежами.

На фиг. 1 показаны спектры растворов U, полученных растворением осадков UO2, выделенных из аморфной суспензии уранилгидразината: в 4 моль/л HCl (1); в смеси 6 моль/л ΗΝO3 с 0,1 моль/л HF (2).

На фиг. 2 показана рентгенограмма образца гидратированного UO2.

На фиг. 3 показаны дериватограммы (кривые TG и DTA), снятые для образца UO2, полученного термической денитрацией уранилнгидразината.

На фиг. 4 показана рентгенограмма гидратированного UO2 после его нагревания до 800°С на воздухе и перехода его в U3O8.

Примеры осуществления способа

Пример 1

В водный 0,1 Μ азотнокислый раствор уранилнитрата, содержащий 200 г/л U и находящийся в реакционном сосуде, добавляют гидразингидрат Ν2Η5ΟΗ, взятый с двукратным мольным избытком относительно урана. Реакционный сосуд с образовавшейся аморфной суспензией уранилгидразината, помещенный в нагревательное устройство и соединенный с водным гидрозатвором, выдерживают при температуре 95°С до тех пор, пока общее количество урана в твердой фазе, выделяемой из суспензии (определяется радиометрически), не становится равным содержанию U(IV) в этом осадке (определяется спектрофотометрически - фиг. 1), при конвективном способе подвода тепла к реактору это происходит примерно за 30 часов.

Осадок отделяют от маточного раствора, высушивают при температуре 60±5°С и анализируют рентгенофазовым и термогравиметрическим методами. Полученные данные, приведенные на фиг. 2-4, однозначно свидетельствуют о получении порошка диоксида урана непосредственно в растворе в процессе денитрационного термолиза уранилнитрата при взаимодействии с гидразингидратом.

Пример 2

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс реагентной денитрации проходит при температуре 80°С в течение одного часа при использовании энергии микроволнового излучения.

Таким образом, применяя микроволновое излучение, можно кардинально повысить эффективность разработанного процесса термической реагентной денитрации уранилнитрата с использованием гидразингидрата, сократив время его проведения, а следовательно, и энергетических затрат на его осуществление.

Пример 3

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс реагентной денитрации ведут при 80°С в течение 48 часов при конвективном подводе тепла до образования гидратированного диоксида урана.

Пример 4

Способ получения порошка диоксида урана осуществляют, как в примере 1, процесс получения кристаллического порошка диоксида урана проводится в неокисляющей атмосфере при температуре равной 280°С, до получения кристаллического порошка диоксида урана.

Предложенный способ позволит существенно снизить температуру процесса реагентной денитрации, существенно понизить давление и упростить аппаратурное оформление схемы получения порошка диоксида урана.


СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ДИОКСИДА УРАНА
Источник поступления информации: Роспатент

Showing 521-530 of 565 items.
01.12.2019
№219.017.e95e

Трубчатый канал для удаления воды, пара и газов из бетонного наполнителя

Изобретение относится к ядерной технике и может быть использовано в конструкции металлобетонной (железобетонной) шахты реактора, например, в энергетических установках с реактором на быстрых нейтронах с теплоносителем в виде свинца или его сплавов. Трубчатый канал содержит трубчатый элемент,...
Тип: Изобретение
Номер охранного документа: 0002707561
Дата охранного документа: 28.11.2019
12.12.2019
№219.017.ec16

Способ нанесения кадмиевого покрытия прецизионным вакуумным напылением на поверхность детали

Изобретение относится к вакуумной технике, в частности к вакуумному напылению покрытия на поверхность деталей. Способ нанесения кадмиевого покрытия прецизионным вакуумным напылением на поверхность детали, симметричной относительно собственной оси, включает проведение посредством электронной...
Тип: Изобретение
Номер охранного документа: 0002708489
Дата охранного документа: 09.12.2019
24.12.2019
№219.017.f192

Способ переработки высокоактивных отходов с фракционированием радионуклидов

Изобретение относится к области ядерной энергетики. Способ экстракционной переработки высокоактивных отходов с фракционированием радионуклидов включает их нейтрализацию. Фракционирование ТПЭ и РЗЭ с выведением цезиево-стронциевой фракции, последующую экстракцию урана, плутония, нептуния,...
Тип: Изобретение
Номер охранного документа: 0002709826
Дата охранного документа: 23.12.2019
27.12.2019
№219.017.f34e

Устройство для локализации аварии в вакуумной камере термоядерного реактора

Изобретение относится к термоядерной технике, а именно к конструкции вакуумной камеры (ВК) и системы локализации аварии (СЛА) в термоядерном реакторе ТЯР или в демонстрационном термоядерном источнике нейтронов (ДЕМО-ТИН). Возможно ее использование в любых установках, где существует возможность...
Тип: Изобретение
Номер охранного документа: 0002710183
Дата охранного документа: 24.12.2019
17.01.2020
№220.017.f654

Устройство предохранения и коммутации взрывателя

Изобретение относится к военной технике, а именно к устройствам предохранения и коммутации взрывателя ракетных, авиационных и зенитных боеприпасов, работающих в условиях интенсивных электромагнитных полей и других экстремальных воздействий. Устройство включает в себя электрический соединитель...
Тип: Изобретение
Номер охранного документа: 0002711149
Дата охранного документа: 15.01.2020
17.01.2020
№220.017.f6c7

Устройство для отвода тепла от радиоэлементов

Изобретение относится к электронным приборам, устанавливаемым во внешние электронные устройства в качестве самостоятельных блоков. Технический результат – отвод тепла от тепловыделяющих элементов, расположенных на печатных платах внутри корпуса и не имеющих непосредственного контакта с самим...
Тип: Изобретение
Номер охранного документа: 0002711122
Дата охранного документа: 15.01.2020
06.02.2020
№220.017.ff1c

Устройство для герметизации разъемного соединения кабелей

Изобретение относится к электротехнике и может быть использовано в устройствах для герметизации разъемного соединения кабелей, работающих в агрессивной среде, например для передачи электрического сигнала или в системах контроля параметров ядерного реактора на быстрых нейтронах с тяжелым...
Тип: Изобретение
Номер охранного документа: 0002713509
Дата охранного документа: 05.02.2020
06.02.2020
№220.017.ff5e

Устройство для крепления модуля бланкета на вакуумном корпусе термоядерного реактора

Изобретение относится к устройству для крепления модуля бланкета на вакуумном корпусе термоядерного реактора. Устройство включает опору, содержащую гибкие стержневые элементы, расположенные в виде пучка между двумя фланцами в центральной части фланцев. Одним фланцем опора соединена с модулем...
Тип: Изобретение
Номер охранного документа: 0002713216
Дата охранного документа: 04.02.2020
06.02.2020
№220.017.ff84

Ядерный реактор на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем

Изобретение относится к ядерному реактору на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем. Реактор содержит активную зону, расположенную в полости центральной части корпуса ядерного реактора, и размещенные в полости периферийной части корпуса по меньшей мере один главный...
Тип: Изобретение
Номер охранного документа: 0002713222
Дата охранного документа: 04.02.2020
20.02.2020
№220.018.0449

Способ радиолокации с изменением несущей частоты от импульса к импульсу

Изобретение относится к области радиолокационной техники и может быть использовано при построении бортовых импульсных некогерентных радиовысотомеров. Технический результат - расширение диапазона измеряемых дальностей, снижение энергопотребления, снижение уровня паразитных сигналов и наводок по...
Тип: Изобретение
Номер охранного документа: 0002714510
Дата охранного документа: 18.02.2020
Showing 421-425 of 425 items.
09.05.2019
№219.017.4a6e

Способ экстракции металлов

Изобретение относится к области экстракции. Сущность изобретения: способ экстракции металлов включает выдержку матрицы, содержащей металл, в камере высокого давления в среде растворителя в присутствии воды и фторзамещенной органической кислоты с последующим сбором экстрагированного металла в...
Тип: Изобретение
Номер охранного документа: 0002274486
Дата охранного документа: 20.04.2006
10.07.2019
№219.017.a9ec

Устройство периодического действия для свч-обработки материалов

Изобретение относится к атомной энергетике, может быть использовано в радиохимической отрасли промышленности для получения порошка смешанных оксидов при переработке ядерного топлива. Устройство периодического действия для СВЧ-обработки материалов, состоящее из СВЧ-генератора, реакционной...
Тип: Изобретение
Номер охранного документа: 0002693820
Дата охранного документа: 08.07.2019
10.07.2019
№219.017.ae72

Способ переработки облученного ядерного топлива

Изобретение относится к области радиохимической технологии и может быть использовано для переработки облученного ядерного топлива. Способ переработки ОЯТ включает растворение топлива, экстракцию нитратов урана и актинидов нейтральными фосфорорганическими соединениями, растворенными в...
Тип: Изобретение
Номер охранного документа: 0002366012
Дата охранного документа: 27.08.2009
12.07.2020
№220.018.321d

Способ концентрирования жидких радиоактивных отходов

Изобретение относится к области ядерно-химических, в частности радиохимических, технологий на различных стадиях ядерного топливного цикла (ЯТЦ). Способ концентрирования жидких радиоактивных отходов от экстракционной переработки высоковыгоревшего ядерного топлива АЭС включает частичное...
Тип: Изобретение
Номер охранного документа: 0002726224
Дата охранного документа: 10.07.2020
15.05.2023
№223.018.57f9

Способ селективного извлечения скандия из редкоземельных концентратов

Изобретение относится к области металлургии редких металлов и может быть использовано в технологии селективного извлечения скандия из концентратов редкоземельных элементов (РЗЭ). Для выделения скандия из водного раствора, содержащего нитрат скандия, нитрат иттрия, нитраты редкоземельных...
Тип: Изобретение
Номер охранного документа: 0002767924
Дата охранного документа: 22.03.2022
+ добавить свой РИД