×
20.02.2015
216.013.2a4d

Результат интеллектуальной деятельности: СПОСОБ ОЧИСТКИ ТЕТРАФТОРИДА УРАНА

Вид РИД

Изобретение

№ охранного документа
0002542286
Дата охранного документа
20.02.2015
Аннотация: Изобретение относится к технологии получения соединений урана и, в частности к очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей. Способ очистки тетрафторида урана от примесей летучих фторидов заключается в термообработке тетрафторида урана при температуре от 350 до 520°С газообразным фторидом водорода, который получают терморазложением бифторида щелочного металла, в смеси с осушенным воздухом, взятых в соотношении от 1:7 до 1:2, после чего газовую смесь направляют в аппарат, в котором осуществляют термическое разложение бифторида щелочного металла. Изобретение обеспечивает повышение качества тетрафторида урана, снижение расхода фторида водорода. 1 з.п. ф-лы, 4 пр., 2 табл.

Изобретение относится к технологии получения соединений урана и, в частности, очистке тетрафторида урана от соединений углерода, фосфора, азота и других примесей.

При получении тетрафторида урана различными способами он может быть загрязнен выше допустимых норм какими-либо примесями, чаще всего углеродом, фосфором или азотом. Кроме того, для некоторых специальных целей необходим тетрафторид урана особой чистоты, в частности по содержанию углерода при переработке обедненного гексафторида урана.

Известен способ очистки тетрафторида урана на стадии обезвоживания кристаллогидрата тетрафторида урана (Гагаринский Ю.В., Хрипин Л.А. Тетрафторид урана. - М. : Атомиздат, 1966). Тетрафторид урана прокаливают при температуре не ниже 550°С в токе фторида водорода, при этом происходит очистка тетрафторида урана от некоторых примесей не более чем на 60%, но одновременно повышается содержание окисленного до оксидов урана (см. ниже). Основным недостатком этого способа является необходимость использования значительных концентраций фторида водорода (выше 50 об.%) в газовой смеси, высокой температуры, равной 550°С и выше. Кроме того, повышенная концентрация фторида водорода в этих условиях ведет к сильной коррозии аппаратуры.

Наиболее близкими по технологической сущности является способ очистки тетрафторида урана (патент №1047185, ФРГ), по которому тетрафторид урана обрабатывают газообразным фторидом водорода при давлении выше атмосферного и температуре 550°С. Недостатком этого способа является использование дорогостоящих газов-разбавителей (неон, гелий) или взрывоопасного водорода, значительная температура процесса, применение сложной аппаратуры и работа при повышенном давлении.

Нами установлено, что при прокалке тетрафторида урана в соответствии с условиями прототипа в атмосфере фторида водорода, полученного по ГОСТ 14023-78, практически не наблюдается очистка тетрафторида урана от фосфора; очистка от углерода составляет около 55%, а от азота до 96%. Кроме того, тетрафторид урана может загрязняться присутствующими в качестве примесей в технологическом фториде водороде, соединениями кремния и фосфора.

Фторид водорода, образующийся при терморазложении бифторида натрия при температуре 190-230°С (или бифторида лития при 80-100°С), не содержит примесей фосфора, углерода, азота и кремния, так как при этих температурах из бифторида натрия (соответственно, из бифторида лития) выделяется только фторид водорода. Для выжигания примесных летучих компонентов необходимы значительно более высокие температуры. Например, для выделения кремния в виде тетрафторида из фторида натрия требуется температура выше 550°С.

При прокаливании тетрафторида урана в атмосфере фторида водорода, полученного терморазложением бифторидов щелочных металлов, значительно увеличивается степень очистки тетрафторида урана от углерода, азота, фосфора и других примесей.

Технический результат предлагаемого изобретения заключается в повышении качества тетрафторида урана, снижении расхода фторирующего агента, уменьшении коррозионной активности последнего и исключении процессов улавливания и утилизации отработанного фторида водорода, а также в удешевлении процесса очистки.

Технический результат достигается путем контактирования при температуре от 350 до 520°С тетрафторида урана и фторида водорода, образующегося при терморазложении бифторидов щелочных металлов - лития, натрия, в смеси с осушенным воздухом, взятых в отношении HF: воздух от 1:7 до 1:2. Далее газовую смесь, содержащую фторид водорода, воздух и фториды примесей, направляют на очистку от примесей в аппарат, в котором осуществляют терморазложение бифторида лития или бифторида натрия.

Процесс очистки тетрафторида урана ведут при температуре от 350 до 520°С в зависимости от вида примеси. При температуре ниже 350°С существенно уменьшается очистка практически от всех примесей, за исключением азота (см. табл.1 и 2): с другой стороны, значительно увеличивается время обработки. При увеличении температуры свыше 520°С резко увеличивается массовая доля окисляемого кислородом воздуха урана.

Принятый интервал соотношения в газовой смеси воздуха и фторида водорода обуславливается тем, что при отношении менее 7:1 существенно увеличивается роль окислительных процессов на счет кислорода воздуха, а увеличение соотношения более чем 2:1 не ведет к заметному влиянию фторида водорода на процесс очистки.

При температуре 190-230°С происходит разложение бифторида натрия (соответственно, при 80-100°С для бифторида лития) на фторид натрия и фторид водорода. В аппарате терморазложения - сорбционная колонна с обогревом - газовая смесь после контактирования с тетрафторидом урана очищается от примесей, а фторид водорода, не сорбируясь фторидом натрия (фторидом лития), вновь поступает на обработку тетрафторида. Удаляемые из тетрафторида урана примеси после их гидрофторирования и превращения в летучие фториды с потоком фтороводорода направляют на поглощение сорбентом - фторидом натрия или фторидом лития.

В случае прекращения процесса термообработки тетрафторида урана аппарат терморазложения охлаждают до температуры помещения. В этом случае фторид водорода, находящийся в замкнутом контуре, полностью поглощается сорбентом, образуя бифторид натрия (или бифторид лития).

Таким образом, предлагаемый способ от прототипа отличается тем, что очистку тетрафторида урана от примесей ведут при более низкой температуре, равной от 350 до 520°С, значение которой зависит от удаляемой примеси, фторидом водорода с разбавленным воздухом до более низкой концентрации. Фторид водорода получают терморазложением бифторидов щелочных металлов - лития или натрия - при соответствующей температуре разложения, а после контакта с тетрафторидом урана его вновь пропускают через аппарат, в котором происходит терморазложение бифторида.

При последовательном пропускании смеси осушенного воздуха и фторида водорода через тетрафторид урана и бифторид натрия (лития) происходит переход примесей из тетрафторида в газовую фазу в форме фторидов, а затем из газовой фазы в твердую - бифторид натрия (бифторид лития). Проведение процесса выделения из газовой смеси на бифториде (фториде) натрия при 190-230°С или бифториде (фториде) лития при 80-100°С и циркуляции газа обеспечивает высокую степень извлечения примесей из газовой смеси на фторидах натрия или лития вследствие образования активных центров на их поверхностях в местах, из которых десорбировались молекулы HF. На активных центрах происходит эффективная физическая сорбция молекул примесей с последующей химической реакцией адсорбированных веществ. Подобного не происходит при выделении примесей из газовой смеси на обычном фториде натрия.

При этом из бифторида натрия не извлекаются такие химически связанные примеси, как гексафторосиликат натрия (температура разложения >550°С), монофторфосфат натрия (≥620°С), гексафторфосфат натрия (600°С) («Фтор и его соединеия» / Под ред. Дж. Саймонса, т.1 - М.: Иностранная литература, 1953).

Предельное наполнение примесей во фториде (бифториде) натрия, после которого сорбент не будет работать по назначению, составляет Si - 14,9; N - 15,4; Р - 21,5 масс.%.

Применение осушенного воздуха и фторида водорода позволили исключить возможность протекания следующей реакции:

UF4+H2O+1/2O2=UO2F2+2HF (реакция осуществима при температуре >400°С).

В интервалах предлагаемых температур и содержаниях кислорода образования оксидов урана по следующей реакции не происходит:

2UF4+O2=UO2F2+UF6 (реакция осуществима при температуре ≥800°С).

Положительный эффект дает совокупность всех перечисленных существенных признаков.

Пример 1

Для того чтобы подтвердить влияние фторида водорода на процесс очистки, обрабатываем тетрафторид урана в течение 60 мин при различной температуре от 300°С до 550°С при давлении воздуха 740 мм рт.ст.

В этих условиях наблюдается лишь небольшая очистка тетрафторида урана от углерода (менее 10%), титана (16,6%). Хорошо выжигаются лишь соединения азота и хрома, а очистки тетрафторида урана от фосфора не происходит вовсе. Кроме того, содержание окисленного урана увеличивается до 7,7% в пересчете на уранилфторид.

Пример 2

Тетрафторид урана, содержащий азот 6,0 10-3 масс.%, прокаливают в атмосфере фторида водорода, получаемого терморазложением бифторида лития при 80°С, и воздуха, взятых в отношении 1:7, при температуре 550°С в течение 60 мин. В результате образуется продукт с массовой долей азота 1 10-4 масс.%.

Пример 3

Тетрафторид урана, содержащий (масс. доля): углерод - 3,3 10-2%,

фосфор - 4,2 10-3 %, азот - 4,9 10-3 %, обрабатывают газовой смесью, состоящей из фторида водорода и воздуха в отношении 1:2 при различной температуре и давлении, равном 760 мм рт.ст., в течение 30 мин (см. табл.1).

Таблица 1
Очистка тетрафторида урана от примесей
Примесь Степень очистки в зависимости от температуры, %
300°С 350°С 400°С 460°С 500°С 520°С 540°С
Углерод 38,1 48,5 51,5 57,6 78,8 85,3 87,8
Фосфор 0,5 4,8 16,7 73,6 90,5 95,5 97,6
Азот 56,8 63,3 32,2 93,9 95,9 96,7 96,9

Очистка тетрафторида урана от примесей в заметной степени наблюдается по отношению к углероду при температуре выше 350-400°С, фосфора - выше 460°С, азота - при 300°С и выше.

Пример 4

Тетрафторид урана обрабатывают фторидом водорода, образовавшимся в результате терморазложения бифторида натрия при температуре 190-230°С в смеси с воздухом (отношение 1:3) в течение 60 мин при различной температуре и очищают тетрафторид от примесей углерода, азота, фосфора, титана и хрома (см. табл.2).

Таблица 2
Очистка тетрафторида урана
Примесь Степень очистки в зависимости от температуры, %
300°С 350°С 400°С 460°С 500°С 520°С 540°С
Углерод 30,5 54,6 63,6 66,7 84,8 86,9 87,9
Фосфор 0,7 9,5 33,3 76,2 95,2 97,3 97,8
Азот 60,9 69,4 92,5 94,6 96,4 96,9 97,0
Титан 0,2 4,2 62,9 96,8 95,8 96,0 96,2
Хром 52,2 54,1 54,5 54,9 59,1 81,0 90,9

Заметная очистка тетрафторида урана от соединений углерода и азота начинается уже при температуре 350°С, фосфора - при 460°С, титана - выше 400°С. Очистка тетрафторида от соединений хрома наблюдается наиболее полно при температуре 500°С и выше.

Предлагаемый способ очистки тетрафторида урана по сравнению с известными способами имеет следующие преимущества:

- увеличивается степень очистки тетрафторида от соединений углерода, фосфора и других примесей;

- получаемый продукт не загрязняется примесями, присутствующими во фториде водорода (ГОСТ 14022-78);

- в зависимости от удаляемой примеси снижается температура обработки тетрафторида урана;

- снижается расход фторида водорода на единицу продукции и предусматривается его многоразовое использование путем циркуляции смеси в замкнутом объеме;

- не требуется разрабатывать специальные методы улавливания и переработки отработавшего фторида водорода;

- не требует применения сравнительно дорогостоящих инертных газов-разбавителей;

- упрощается обслуживание процесса.

Применение предлагаемого способа позволит:

- повысить качество тетрафторида урана за счет снижения в нем количества примесей;

- уменьшить расход фторида водорода за счет уменьшения его концентрации в реакционной газовой смеси и многоразового использования путем циркуляции;

- удешевить процесс очистки за счет использования в качестве газа-разбавителя атмосферного воздуха;

- уменьшить потери от коррозии аппарата за счет снижения концентрации фторида водорода в газовой смеси и уменьшения температуры процесса.

Источник поступления информации: Роспатент

Showing 31-40 of 60 items.
20.12.2015
№216.013.9cca

Способ извлечения бериллия методом ионного обмена

Изобретение может быть использовано в химической промышленности. Для извлечения бериллия методом ионного обмена проводят измельчение бериллийсодержащей руды, ее сульфатизацию, выщелачивание, разделение пульпы. Извлечение бериллия ведут методом сорбции непосредственно из сернокислотных пульп...
Тип: Изобретение
Номер охранного документа: 0002571763
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ccb

Способ сорбционного извлечения урана из фторсодержащих сред

Изобретение относится к гидрометаллургии и может быть использовано для извлечения урана из растворов радиохимических производств. Способ сорбционного извлечения урана из фторсодержащих растворов на хелатообразующих ионитах с аминофосфоновыми группами представляет собой сорбцию урана при...
Тип: Изобретение
Номер охранного документа: 0002571764
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.c242

Способ переработки шлифотходов от производства постоянных магнитов

Изобретение относится к способу переработки отходов шлифования постоянных магнитов. Шлифотходы смешивают с концентрированной (не менее 92%) серной кислотой в количестве, необходимом для получения твердого агломерированного продукта. Затем проводят процесс твердофазной сульфатизации при...
Тип: Изобретение
Номер охранного документа: 0002574543
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4b2

Способ разложения щавелевой кислоты из азотнокислых маточных растворов

Изобретение относится к способу разложения щавелевой кислоты из азотнокислых маточных растворов на биметаллическом платино-рутениевом катализаторе. Процесс ведут в динамических условиях в сорбционной колонке, заполненной биметаллическим платино-рутениевым катализатором при соотношении платины к...
Тип: Изобретение
Номер охранного документа: 0002574396
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c55c

Способ и устройство для непрерывной цементации электроположительных металлов из кислого раствора

Изобретение относится к области гидрометаллургии при использовании для извлечения металлов в горно-металлургической и химической промышленности, а также в сельском хозяйстве и при очистке стоков. Способ реализуется в соответствующем устройстве и содержит этапы на которых: готовят реакционную...
Тип: Изобретение
Номер охранного документа: 0002574174
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.db5f

Способ очистки металлических поверхностей от отложений урана

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана. Способ очистки металлических...
Тип: Изобретение
Номер охранного документа: 0002579055
Дата охранного документа: 27.03.2016
10.06.2016
№216.015.4a34

Способ получения кальция высокой чистоты по газовым примесям

Изобретение относится к получению кальция чистого по газовым примесям. В предварительно нагретую шахтную печь устанавливают вакуумированный дистиллятор с медно-кальциевым сплавом и ведут вакуумную дистилляцию кальция из медно-кальциевого сплава. Перед вакуумной дистилляцией проводят вакуумную...
Тип: Изобретение
Номер охранного документа: 0002587008
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.52be

Способ конверсии гексафторида урана до тетрафторида урана и безводного фторида водорода

Изобретение относится к области разработки технологии конверсии обедненного гексафторида урана с получением тетрафторида урана и, далее, металлического урана для военных целей или оксидов урана для длительного хранения или использования в быстрых реакторах, а также безводного HF. Способ...
Тип: Изобретение
Номер охранного документа: 0002594012
Дата охранного документа: 10.08.2016
26.08.2017
№217.015.e281

Способ конверсии обедненного гексафторида урана водяным паром

Изобретение относится к технологии переработки обедненного гексафторида урана и может быть использовано для получения закиси-окиси урана и безводного фтористого водорода. Способ конверсии обедненного гексафторида урана водяным паром включает двухстадийное взаимодействие гексафторида урана с...
Тип: Изобретение
Номер охранного документа: 0002625979
Дата охранного документа: 20.07.2017
26.08.2017
№217.015.e869

Способ инактивации примесей в сорбенте фторид лития

Изобретение относится к процессам, применяемым для разделения фторидных газов. Для инактивации примесей фторидов щелочных и/или щелочноземельных металлов в сорбенте- фториде лития сорбент обрабатывают тетрафторидом кремния, полученным термическим разложением гексафторосиликата лития при...
Тип: Изобретение
Номер охранного документа: 0002627427
Дата охранного документа: 08.08.2017
Showing 31-40 of 46 items.
20.12.2015
№216.013.9cca

Способ извлечения бериллия методом ионного обмена

Изобретение может быть использовано в химической промышленности. Для извлечения бериллия методом ионного обмена проводят измельчение бериллийсодержащей руды, ее сульфатизацию, выщелачивание, разделение пульпы. Извлечение бериллия ведут методом сорбции непосредственно из сернокислотных пульп...
Тип: Изобретение
Номер охранного документа: 0002571763
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ccb

Способ сорбционного извлечения урана из фторсодержащих сред

Изобретение относится к гидрометаллургии и может быть использовано для извлечения урана из растворов радиохимических производств. Способ сорбционного извлечения урана из фторсодержащих растворов на хелатообразующих ионитах с аминофосфоновыми группами представляет собой сорбцию урана при...
Тип: Изобретение
Номер охранного документа: 0002571764
Дата охранного документа: 20.12.2015
10.02.2016
№216.014.c242

Способ переработки шлифотходов от производства постоянных магнитов

Изобретение относится к способу переработки отходов шлифования постоянных магнитов. Шлифотходы смешивают с концентрированной (не менее 92%) серной кислотой в количестве, необходимом для получения твердого агломерированного продукта. Затем проводят процесс твердофазной сульфатизации при...
Тип: Изобретение
Номер охранного документа: 0002574543
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c4b2

Способ разложения щавелевой кислоты из азотнокислых маточных растворов

Изобретение относится к способу разложения щавелевой кислоты из азотнокислых маточных растворов на биметаллическом платино-рутениевом катализаторе. Процесс ведут в динамических условиях в сорбционной колонке, заполненной биметаллическим платино-рутениевым катализатором при соотношении платины к...
Тип: Изобретение
Номер охранного документа: 0002574396
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c55c

Способ и устройство для непрерывной цементации электроположительных металлов из кислого раствора

Изобретение относится к области гидрометаллургии при использовании для извлечения металлов в горно-металлургической и химической промышленности, а также в сельском хозяйстве и при очистке стоков. Способ реализуется в соответствующем устройстве и содержит этапы на которых: готовят реакционную...
Тип: Изобретение
Номер охранного документа: 0002574174
Дата охранного документа: 10.02.2016
27.03.2016
№216.014.db5f

Способ очистки металлических поверхностей от отложений урана

Изобретение относится к технологии урана, применительно к эксплуатации производств по разделению изотопов урана, и может быть использовано для очистки различных металлических поверхностей, работающих в среде гексафторида урана, от нелетучих отложений урана. Способ очистки металлических...
Тип: Изобретение
Номер охранного документа: 0002579055
Дата охранного документа: 27.03.2016
10.06.2016
№216.015.4a34

Способ получения кальция высокой чистоты по газовым примесям

Изобретение относится к получению кальция чистого по газовым примесям. В предварительно нагретую шахтную печь устанавливают вакуумированный дистиллятор с медно-кальциевым сплавом и ведут вакуумную дистилляцию кальция из медно-кальциевого сплава. Перед вакуумной дистилляцией проводят вакуумную...
Тип: Изобретение
Номер охранного документа: 0002587008
Дата охранного документа: 10.06.2016
10.08.2016
№216.015.52be

Способ конверсии гексафторида урана до тетрафторида урана и безводного фторида водорода

Изобретение относится к области разработки технологии конверсии обедненного гексафторида урана с получением тетрафторида урана и, далее, металлического урана для военных целей или оксидов урана для длительного хранения или использования в быстрых реакторах, а также безводного HF. Способ...
Тип: Изобретение
Номер охранного документа: 0002594012
Дата охранного документа: 10.08.2016
26.08.2017
№217.015.e281

Способ конверсии обедненного гексафторида урана водяным паром

Изобретение относится к технологии переработки обедненного гексафторида урана и может быть использовано для получения закиси-окиси урана и безводного фтористого водорода. Способ конверсии обедненного гексафторида урана водяным паром включает двухстадийное взаимодействие гексафторида урана с...
Тип: Изобретение
Номер охранного документа: 0002625979
Дата охранного документа: 20.07.2017
26.08.2017
№217.015.e869

Способ инактивации примесей в сорбенте фторид лития

Изобретение относится к процессам, применяемым для разделения фторидных газов. Для инактивации примесей фторидов щелочных и/или щелочноземельных металлов в сорбенте- фториде лития сорбент обрабатывают тетрафторидом кремния, полученным термическим разложением гексафторосиликата лития при...
Тип: Изобретение
Номер охранного документа: 0002627427
Дата охранного документа: 08.08.2017
+ добавить свой РИД