×
20.02.2015
216.013.2a42

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ β-КАРБИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Способ получения β-карбида кремния стехиометрического состава в виде готовых пористых изделий включает нагревание заготовки изделий из полимерной композиции до 800°C в защитной от окисления среде со скоростью 400-600°C/ч при атмосферном давлении и выдержку при 800°C в течение 1 ч с последующим охлаждением. Полимерная композиция содержит порошкообразное фенольное связующее на основе новолачной фенолформальдегидной смолы и уротропина, смазку, в качестве которой используют стеарин или стеарат цинка, и носитель диоксида кремния, в качестве которого используют биокремнезем, при следующем соотношении компонентов, масс.%: биокремнезем 48-50, фенольное связующее 47-48, смазка 3-5. Синтез β-карбида кремния осуществляют в изделиях, прошедших термообработку при 800°C, путем нагревания до 1300-1500°C со скоростью 400-700°C/ч при давлении в вакуумной печи 0,02-0,06 кПа с выдержкой при максимальной температуре в течение 1-5 ч. Изобретение позволяет снизить содержание примесей в шихте полимерной композиции и карбиде, а также повысить выход готового продукта - β-карбида кремния стехиометрического состава в виде пористых изделий заданной конфигурации. 1 табл., 3 пр.
Основные результаты: Способ получения β-карбида кремния стехиометрического состава в виде готовых пористых изделий, включающий нагревание до температуры синтеза карбида кремния с заданной скоростью подъема температуры в вакууме, выдержку при максимальной температуре и охлаждение при указанном давлении заготовок изделий из полимерной композиции, содержащей порошкообразное фенольное связующее на основе новолачной фенолформальдегидной смолы и уротропина, смазку, в качестве которой используют стеарин или старат цинка, и носитель оксида кремния, отличающийся тем, что в качестве носителя оксида кремния используют биокремнезем при следующем соотношении компонентов, масс. %: при этом заготовки изделий из полимерной композиции нагревают до 800°С в защитной от окисления среде со скоростью 400-600°С/ч при атмосферном давлении, выдерживают при 800°С в течение 1 часа и охлаждают с печью, затем синтез β-карбида кремния осуществляют в изделиях, прошедших термообработку при 800°С, путем нагревания до 1300-1500°С со скоростью 400-700°С/ч при давлении в вакуумной печи 0,02-0,06 кПа с выдержкой при максимальной температуре в течение 1-5 часов.

Изобретение предназначено для химической промышленности. Тугоплавкие пористые изделия из карбида кремния используют в качестве фильтров, теплоизоляции, абсорбентов и т.д.

В настоящее время карбид кремния получают термической обработкой смесей порошков из кремнезем- и углеродсодержащего вещества в различных печах.

Известны способы получения карбида кремния путем нагревания до 1600-1800°C природной горной породы - шунгита, содержащего кремнезем и углерод. Нагревание ведут со скоростью 200-300°C/ч в вакуумной печи при остаточном давлении в ее рабочем пространстве 0,25-1,3 кПа с выдержкой при максимальной температуре 1-2 ч, охлаждают с сохранением указанного остаточного давления [Патент РФ №2163563, опубликовано 27.02.2001. Способ получения карбида кремния; Патент РФ №2169701, опубликовано 27.06.2001. Способ получения бета-карбида кремния].

Недостатком этих способов является получение карбида кремния в виде порошка, который впоследствии необходимо перерабатывать в изделия весьма трудоемкими и энергоемкими методами порошковой металлургии.

Недостатком этих способов является также низкий выход целевого продукта и высокое содержание примесей в применяемом носителе диоксида кремния - шунгите.

Наиболее близким к предлагаемому техническому решению является способ получения β-карбида кремния стехиометрического состава в виде готовых пористых изделий, включающий нагревание до температуры 1900-2100 К со скоростью 200-300 К/ч при давлении 0,3-1,1 кПа, выдержку 1-2 ч при максимальной температуре и охлаждение при указанном давлении предварительно сформованных заготовок изделий из полимерной композиции, содержащей носитель диоксида кремния, порошкообразное фенольное связующее и смазку при следующем соотношении компонентов, масс. %:

Шунгит III разновидности 64-90
Фенольное связующее 34-6
Смазка 2-4

В качестве носителя диоксида кремния в известном техническом решении используют шунгит III разновидности [Патент РФ №2472703, опубликовано 20.01.2013. Способ получения β-карбида кремния].

Недостатками указанного способа являются высокое содержание примесей в шихте и готовом продукте, а также низкий выход целевого продукта, обусловленные применением в качестве носителя диоксида кремния природного минерала - шунгита.

Недостатками указанного способа являются также высокая температура синтеза карбида и низкая скорость нагревания, что делает способ длительным и энергоемким.

Техническим результатом предлагаемого изобретения является снижение содержания примесей в шихте полимерной композиции и карбиде, а также повышение выхода готового продукта - β-карбида кремния стехиометрического состава в виде пористых изделий заданной конфигурации при значительно меньших энергетических затратах.

Данный технический результат достигается тем, что в способе получения β-карбида кремния стехиометрического состава в виде готовых пористых изделий, включающем нагревание с заданной скоростью до температуры синтеза карбида при пониженном давлении, выдержку при максимальной температуре и охлаждение при указанном давлении заготовок изделий из полимерной композиции, содержащей порошкообразное фенольное связующее, смазку и носитель диоксида кремния, в качестве носителя диоксида кремния используют биокремнезем при следующем соотношении компонентов, масс. %:

Биокремнезем 48-50
Фенольное связующее 47-48
Смазка 3-5,

при этом заготовки изделий из указанной полимерной композиции нагревают до 800°С в защитной от окисления среде со скоростью 400-600°С/ч при атмосферном давлении, выдерживают при 800°С. в течение 1 часа и охлаждают с печью, затем синтез β-карбида кремния осуществляют в изделиях, прошедших термообработку при 800°С, путем нагревания до 1300-1500°С со скоростью 400-700°C/ч при давлении в вакуумной печи 0,001-0,100 кПа с выдержкой при максимальной температуре в течение 1-5 часов.

Полимерную композицию и изделия-заготовки из нее готовят известными приемами, принятыми в производстве фенопластов и изделий из них [Кацнельсон М.Ю., Бадаев Г.А. Пластические массы: Свойства и применение: Справочник. - 3-е изд. перераб. - Л.: Химия, 1978. - 384 с.].

В предлагаемом способе используют выпускаемое промышленностью порошкообразное фенольное связующее на основе новолачной фенолоформальдегидной смолы и уротропина, которое, во-первых, позволяет получать изделия-заготовки из композиции с биокремнеземом и смазкой высокоэкономичным способом, принятым в технологии пластмасс, и во-вторых, являясь углеродоносителем, позволяет получать карбид кремния стехиометрического состава.

Биокремнезем представляет собой выпускаемый промышленностью высокодисперсный порошок с удельной поверхностью не менее 20 м2/г и средним размером частиц 800±100 нм. Благодаря высокопористой структуре биокремнезема изделия из полимерной композиции, содержащей биокремнезем, выдерживают высокие скорости нагревания вплоть до 400-600°C/ч без растрескивания на первой стадии термообработки, которая проводится для карбонизации фенольного связующего, и до 900°C/ч при нагревании до 1300-1500°C для синтеза карбида.

В качестве смазки используют стеарин или стеарат цинка в количествах, обеспечивающих необходимые технологические свойства композиций при изготовлении изделий-заготовок.

Пример 1. Изделия-заготовки из полимерной композиции, полученной в соответствии с рецептурой, приведенной в таблице, нагревают в защитной от окисления среде, например в коксовой засыпке в камерной или муфельной печи до 800°C со скоростью 600°C/ч, и выдерживают при этой температуре 1 ч, охлаждают с печью. Термообработанные изделия загружают в вакуумную печь и нагревают до 1300°C со скоростью 400°C /ч при давлении в печи 0,001 кПа, выдерживают при температуре 1300°C 5 ч и охлаждают при указанном давлении. Выход готового продукта 0,67 кг/кг биокремнезема. По способу-прототипу выход составил 0,374-0,456 кг/кг шунгита.

Примеры 2-3 выполняют, как описано выше, с тем отличием, которое указано в таблице по составу шихты и режимам термообработки.

Рентгенофазный анализ изготовленного по предлагаемому способу тугоплавкого материала в виде пористых изделий показал, что получен β-карбид кремния с кубической структурой (а=4,3573 Å), соответствующий β-модификации.

Общая пористость изделий 82-84%, открытая пористость 80-82%.

Таблица
Показатели Пример 1 Пример 2 Пример 3 Прототип
1. Наполнитель:
Состав, масс.%
Биокремнезем Биокремнезем Биокремнезем Шунгит
оксид кремния 89,2 89,2 89,2 56,5-68,3
Углерод - - - 20,1-35,0
Примеси 10,8 10,8 10,8 8,5-11,6
2. Шихта:
Состав, масс. %:
Шунгит - 64-90
Биокремнезем 50 48 48 -
Связующее 47 48 47 6-34
Смазка 3 4 5 2-4
3. Карбонизация
связующего:
Температура, °C 800 800 800 -
Скорость
Нагревания, °C/ч 600 500 400 -
Давление, Атмосферное Атмосферное Атмосферное -
Время выдержки, ч 1 1 1 -
4. Синтез карбида
Температура, °C 1300 1400 1500 1600-1800
Скорость
Нагревания, °C/ч 400 500 700 200-300
Давление, кПа 0,001 0,010 0,100 0,2-1,1
Время выдержки, ч 5 3 1 1-2
5. Содержание примесей, масс.%
в шихте, 5,4 5,2 5,2 7,4-7,7
в готовом продукте:
Всего 16 15 15 24
в том числе: Al2O3 8,3 8 8 9,9
FeSi 3,5 3,4 3,4 10,2
6. Выход готового продукта, кг/кг наполнителя 0,67 0,63 0,6 0,374-0,456
7. Общая пористость изделий из карбида кремния, % 82 83 84 76

Конгруэнтная усадка изделий при нагревании по предлагаемому способу, в результате которого происходят процессы карбонизации фенольного связующего и последующего образования карбида кремния в изделиях-заготовках из полимерных композиций, позволяет формовать изделия сложной конфигурации и исключить механическую обработку.

Таким образом, по предлагаемому способу получают β-карбид кремния стехиометрического состава в виде готовых высокопористых изделий заданной конфигурации, не требующих дополнительной обработки, при этом выход готового продукта на 1 кг наполнителя увеличивается в 1,3-1,8 раза, содержание примесей снижается в шихте в 1,4 раза, а в готовом продукте в 1,8-2 раза. Применение биокремнезема позволяет вести карбонизацию с высокими скоростями нагревания при атмосферном давлении, а синтез карбида при пониженных на 300°C температурах и с более высокими скоростями нагревания, что делает способ более экономически выгодным по сравнению с прототипом.

Способ получения β-карбида кремния стехиометрического состава в виде готовых пористых изделий, включающий нагревание до температуры синтеза карбида кремния с заданной скоростью подъема температуры в вакууме, выдержку при максимальной температуре и охлаждение при указанном давлении заготовок изделий из полимерной композиции, содержащей порошкообразное фенольное связующее на основе новолачной фенолформальдегидной смолы и уротропина, смазку, в качестве которой используют стеарин или старат цинка, и носитель оксида кремния, отличающийся тем, что в качестве носителя оксида кремния используют биокремнезем при следующем соотношении компонентов, масс. %: при этом заготовки изделий из полимерной композиции нагревают до 800°С в защитной от окисления среде со скоростью 400-600°С/ч при атмосферном давлении, выдерживают при 800°С в течение 1 часа и охлаждают с печью, затем синтез β-карбида кремния осуществляют в изделиях, прошедших термообработку при 800°С, путем нагревания до 1300-1500°С со скоростью 400-700°С/ч при давлении в вакуумной печи 0,02-0,06 кПа с выдержкой при максимальной температуре в течение 1-5 часов.
Источник поступления информации: Роспатент

Showing 51-52 of 52 items.
25.08.2017
№217.015.c5e3

Способ получения ультравысокотемпературного керамического композита mb/sic, где m = zr, hf

Изобретение относится к технологии получения окислительно-стойких ультравысокотемпературных керамических композиционных материалов состава MB/SiC, где М=Zr и/или Hf с нанокристаллическим карбидом кремния, которые могут быть использованы в качестве окислительно-, химически- и...
Тип: Изобретение
Номер охранного документа: 0002618567
Дата охранного документа: 04.05.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
Showing 51-56 of 56 items.
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
20.02.2019
№219.016.c02f

Способ получения высокодисперсного карбида кремния

Изобретение может быть использовано в химической промышленности для получения аморфного и поликристаллического карбида кремния. Высокодисперсный карбид кремния получают осаждением из газовой фазы путем термической деструкции карбосилана при температуре 600-800°С. В качестве карбосилана...
Тип: Изобретение
Номер охранного документа: 0002339574
Дата охранного документа: 27.11.2008
01.03.2019
№219.016.c9fb

Способ плавления базальтового сырья

Изобретение относится к способам плавления базальтового сырья с одновременной оптимизацией его состава для целей получения базальтовых волокон или каменного литья - петрургии. Способ плавления базальтового сырья включает дробление исходной базальтовой породы, подогрев ее, загрузку в плавильную...
Тип: Изобретение
Номер охранного документа: 0002297986
Дата охранного документа: 27.04.2007
29.03.2019
№219.016.f539

Полимерная композиция

Изобретение относится к полимерной композиции для изготовления фенопластов, используемых в качестве конструкционных материалов для изготовления тонкостенных деталей сложной конфигурации. Полимерная композиция выполнена на основе новолачной фенолоформальдегидной смолы и уротропина и включает...
Тип: Изобретение
Номер охранного документа: 0002428442
Дата охранного документа: 10.09.2011
30.03.2019
№219.016.fa1a

Мембрана ионоселективного электрода для определения уранил-иона

Изобретение относится к области аналитической химии и может быть использовано для неразрушающего контроля и автоматического регулирования содержания уранил-ионов в водных растворах. Предложена мембрана ионоселективного электрода для определения уранил-иона, содержащая поливинилхлорид в качестве...
Тип: Изобретение
Номер охранного документа: 0002683423
Дата охранного документа: 28.03.2019
03.07.2020
№220.018.2dfc

Мембрана ионоселективного электрода для определения лидокаина

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания лидокаина в водных растворах. Предложена мембрана ионоселективного электрода для определения...
Тип: Изобретение
Номер охранного документа: 0002725157
Дата охранного документа: 30.06.2020
+ добавить свой РИД