×
20.02.2015
216.013.2a2a

Результат интеллектуальной деятельности: КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области гетерогенного катализа, а именно каталитическому мультиканальному реактору для проведения гетерогенных реакций, сопровождающихся эндотермическим тепловым эффектом, например паровой конверсии углеводородов с целью получения водородсодержащего газа. Реактор содержит входной патрубок, испаритель жидкой исходной реакционной смеси, устройство, создающее вихревой газовый поток, пористую распределительную мембрану, монолитный мультиканальный блок, дополнительную пористую мембрану и выходной патрубок. При этом мультиканальный блок изготовлен из материала с высокой теплопроводностью, имеет дисковую форму и каналы, направленные перпендикулярно плоскости диска, длина которых значительно меньше диаметра диска. Изобретение обеспечивает равномерное распределение входного потока по каналам, уменьшение градиента температур вдоль направления потока, уменьшение гидродинамического сопротивления в случае неподвижного слоя катализатора и возможность быстрой смены катализатора. 12 з.п. ф-лы, 3 ил.

Изобретение относится к области гетерогенного катализа и направлено на создание каталитических мультиканальных реакторов для проведения гетерогенных реакций, сопровождающихся эндотермическим тепловым эффектом, например паровой конверсии углеводородов с целью получения водородсодержащего газа.

Основными требованиями к реактору для проведения гетерогенных каталитических реакций, сопровождающихся эндотермическим тепловым эффектом, являются:

1) большая скорость массопереноса реагентов с катализатором и отсутствие диффузионных ограничений;

2) большая скорость теплопереноса для создания изотермических условий проведения процесса.

Этим условиям может удовлетворить реактор с микроканальной структурой. Обычно каталитические микроканальные реакторы представляют собой, как правило, слоистую структуру, состоящую из набора металлических микроканальных (МК) пластин с каналами субмиллиметровых размеров, на поверхность которых нанесен катализатор. Благодаря малым размерам каналов реализуются высокие значения соотношения поверхность/объем и очень высокие скорости массо- и теплопереноса - на 1-2 порядка выше, чем в системах с массивным слоем катализатора, что существенно уменьшает температурный градиент вдоль зоны реакции [K. Schubert, J. Brandner, M. Fichtner, G. Linder, U. Schygulla, A. Wenka, Microscale Thermophys. Eng. 5 (2001) 17]. Кроме того, благодаря малым размерам каналов достигается ламинарное течение газового потока с равномерным распределением по скоростям или по времени контакта реагентов с катализатором [W. Ehrfeld, V. Hessel, H. L∗we. Microreactors - new technology for modern chemistry. Weinheim: Willey-VCH; 2000], при этом гасятся нежелательные радикальные процессы, что увеличивает выход полезных продуктов реакции [K.F. Jensen. Microreaction engineering - is small better? Chem. Eng. Sci. 56 (2001) 293].

В качестве примера использования микроканального реактора можно привести наиболее исследованный каталитический процесс паровой конверсии метанола в водородсодержащий газ, который можно характеризовать двумя эндотермическими реакциями - паровой конверсией метанола (I) и обратной реакцией сдвига водяного газа (II).

Данный процесс протекает на катализаторе в достаточно мягких условиях при температуре 240-300°C и атмосферном давлении с высокой эффективностью. Кроме того, метанол достаточно распространен и может быть получен из возобновляемых источников энергии [S.P. Asprey, B.W. Wojciechowski, B.A. Peppley, Applied Catalysis. A, General 179 (1999) p.51. J.C. Amphlett, R.F. Mann, B.A. Peppley, International Journal of Hydrogen Energy 21 (8) (1996) p.673. B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, Applied Catalysis. A, General 179 (1999) p.21. B.A. Peppley, J.C. Amphlett, L.M. Kearns, R.F. Mann, Applied Catalysis. A, General 179 (1999) p.31. R.O. Idem, N.N. Bakhshi, Chemical Engineering Science 51 (14) (1996) p.3697.].

К настоящему времени имеется большое количество различных конструкций микроканальных реакторов для проведения каталитического процесса паровой конверсии углеводородов, основным отличием которых является способ закрепления катализатора в микроканалах. Наибольшее распространение получили микрореакторы с неподвижным слоем катализатора. Это связано с относительной простотой загрузки и замены катализатора в реакторе. Однако одной из нежелательных особенностей таких реакторов является большое гидродинамическое сопротивление неподвижного слоя катализатора потоку реагентов.

Изучение процесса паровой конверсии метанола на катализаторе состава Cu-Ce-Al-O [L.L. Makarshin, D.V. Andreev, A.G. Gribovskiy, V.N. Parmon. Influence of the microchannel plates design on the efficiency of the methanol steam reforming in microreactors. International Journal of Hydrogen Energy, 2007, Vol 32/16, pp.3864-3869.] показало, что в реакторе с неподвижным слоем катализатора эндотермический процесс приводит к появлению большого градиента температур вдоль движущего потока реагентов, что снижает эффективность работы реактора и увеличивает концентрацию нежелательного побочного продукта реакции - моноксида углерода. Очевидно, что уменьшение градиента температур можно достичь с помощью уменьшения реакционного объема реактора и увеличения теплопроводности стенок каналов, в которых находится катализатор. Таким условиям соответствует микроканальный реактор, в котором катализатор закреплен в микроканальных пластинах, изготовленных из металла [Cao C, Xia G, Holladay J, Jones E, Wang Y. Kinetic studies of methanol steam reforming over Pd/ZnO catalyst using a microchannel reactor. Appl Catal A 2004; 262(1):19-29.; Karim A, Bravo J, Gorm D, Conant T, Datye A. Comparison of wall-coated and packed-bed reactors for steam reforming of methanol. Catal Today 2005; 110(1-2):86-91].

Одним из способов уменьшения градиента температур в микроканальном реакторе является использование вместо микроканальных пластин монолитного мультиканального блока, изготовленного из металла с высокой теплопроводностью, в котором расположены каналы миллиметрового или субмиллиметрового диаметра, содержащие катализатор.

Наиболее близким прототипом изобретения является микроканальный реактор для скрининга катализаторов, описанный в работе [M.J.M. Mies, E.V. Rebrov, M.H.J.M. de Croon, J.C. Schouten. Design of a molybdenum high throughput microreactor for high temperature screening of catalytic coatings. Chemical Engineering Journal 101 (2004) 225-235]. Данный реактор состоит из восьми секций (по восемь микроканальных пластин в каждой), изготовленных из молибдена, сформированных в два набора таким образом, что образуют по 32 плоских канала со следующими размерами: ширина 10,18 мм, высота 0,13 мм и длина 40 мм (см. Fig.9 в цитируемой работе). На микроканальные пластины нанесены различные катализаторы, реактор нагревается встроенным электрическим нагревателем, контроль температуры по длине каналов и в радиальном направлении осуществляется термопарами. Для того чтобы обеспечить равномерную подачу газовой смеси в каждый канал, перед входом в каждый микроканальный блок установлен распределитель газового потока, представляющий собой металлическую решетку из восьми секций, повернутую относительно плоскости каналов на 900 (см. Fig.2 в цитируемой работе). На Fig.3, 4 показаны результаты моделирования неоднородности входного газового потока в зависимости от геометрических параметров a (расстояние между двумя стенками соседних микроканалов) и b (расстояние между стенкой верхнего канала и стенкой распределителя потока). Видно, что в узком интервале соотношений b/a наблюдается минимум неоднородности потока (меньше 1%), а при отклонении от оптимума и с увеличением скорости входного газового потока величина неоднородности резко возрастает. Следствием этого становится большой разброс по величине времени контакта в различных каналах реактора, разная степень использования катализатора, увеличение неизотермичности реактора в случае сильно эндо - или экзотермических реакций.

Предложен гаталитический реактор для паровой конверсии углеводородов в водородсодержащий газ, который содержит массивную матрицу, выполненную из материала с высокой теплопроводностью произвольного сечения (круг, квадрат и т.п.) с длиной, существенно меньшей, чем размер ее сечения. По длине матрицы расположены каналы с нанесенным катализатором.

На входе в реактор установлено устройство для распределения входного газового потока, обеспечивающее равномерный (по всей площади микроканальной матрицы) ввод исходной реакционной смеси в каналы реактора. Устройство включает в себя вход для жидкой исходной реакционной смеси, испаритель, состоящий из круглой металлической пластины с радиально расположенными каналами, на конце которых расположены отверстия, блок для создания вихревого потока газообразной исходной реакционной смеси - кольцо, которое содержит два или более тангенциальных канала, (число которых равно числу радиальных каналов и отверстий блока испарителя), которые создают циркуляцию исходной реакционной смеси, пористую мембрану для распределения газового потока, которая служит также в качестве крышки реактора для удерживания частиц катализатора внутри каналов.

Технический результат - уменьшение градиента температур вдоль направления реакционного потока, равномерное распределение входного потока по каналам, уменьшение гидродинамического сопротивления в случае неподвижного слоя катализатора и возможность быстрой смены катализатора.

Результаты математического моделирования по распределению входного газового потока реагентов по каналам монолитного мультиканального блока без использования (а) и с использованием (б) мембраны показаны на Фиг.1.

Видно, что пристеночная неоднородность потока, возникающего в результате вихревого движения реагентов на входе в мультиканальный блок существенно уменьшается при использовании пористой распределительной мембраны. Неравномерность потока уменьшается с 86% до 0,47% при величине входного потока до 1800 см3/мин, в то время как у прототипа при входной скорости потока 1000 см3/мин неравномерность потока достигает 10% (см. Fig.4 в цитируемой работе).

Общая схема работы микрореактора для паровой конверсии углеводородов иллюстрируется Фиг.2. Микрореактор нагревают до рабочей температуры. На вход 1 подают жидкую исходную реакционную смесь, состоящую из воды и углеводорода в соответствующем стехиометрическом соотношении. Поток исходной реакционной смеси поступает в центральную часть испарителя 2, распределяется по каналам испарителя 8, образовавшийся газообразная исходная реакционная смесь через отверстия 9 поступает в устройство, создающее вихревое движение потока 3 посредством каналов 10. Далее поток проходит через распределительную мембрану 4. После мембраны 4 исходная реакционная смесь с равномерным распределением потока поступает в монолитный мультиканальный блок 5, в каналах 11 которого находится катализатор. В результате каталитического процесса паровой конверсии углеводородов образующийся водородсодержащий газ проходит через мембрану 6 и поступает на выход через патрубок 7.

Детальное описание составных частей мультиканального реактора паровой конверсии углеводородов.

Реактор паровой конверсии углеводородов состоит из входного патрубка 1. испарителя жидкой исходной реакционной смеси 2, устройства, создающего вихревой газовый поток 3, пористой распределительная мембраны 4, мультиканального блока 5, дополнительной пористой мембраны 6 и выходного патрубка 7 (Фиг.3).

Число каналов 8 в испарителе 2 может составлять от двух и больше, расположение каналов радиальное, ширина канала не менее 0,1 мм, длина - 1-50 мм.

Размеры и количество тангенциальных каналов 10 в устройстве для создания вихревого потока 3 соответствует размерам и количеству каналов испарителя.

Размер пор в пористой мембране 4 составляет 50-1000 мкм, толщина мембраны - 5-1000 мкм.

Монолитный мультиканальный блок 5 изготавливается из материала с высокой теплопроводностью - кремния, меди, медьсодержащего сплава и т.п.

Диаметр каналов 11 в мультиканальном блоке составляет 0,25-5 мм.

Катализатор может быть закреплен на стенки каналов в виде тонкого слоя толщиной 0,1-100 микрометров.

Катализатор может быть помещен в каналы в виде гранулированной фракции исходного порошка с размером от 10 до 50% от диаметра каналов.

Дополнительная мембрана 6 служит крышкой для монолитного мультиканального блока и в случае неподвижного слоя катализатора удерживает его в каналах.

Все части микроканального реактора соединены между собой в единое целое и заключены в корпус.

Таким образом, предлагаемая нами конструкция мультиканального реактора для паровой конверсии углеводородов в водородсодержащий газ решает проблему обеспечения равномерной подачи исходной реакционной смеси по всем каналам реактора за счет устройства, создающего на входе вихревое движение газового потока и пористой распределительной мембраны, а также решает проблему обеспечения изотермических условий для протекания процесса паровой конверсии углеводородов за счет использования монолитного мультиканального блока, изготовленного из материала с высокой теплопроводностью. Кроме того, съемный мультиканальный блок позволяет быструю замену катализатора.


КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ
КАТАЛИТИЧЕСКИЙ РЕАКТОР ДЛЯ ПАРОВОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ
Источник поступления информации: Роспатент

Showing 51-60 of 112 items.
20.09.2015
№216.013.7ac8

Способ приготовления мембран-электродных блоков

Изобретение относится к области топливных элементов (ТЭ), в частности к мембран-электродному блоку (МЭБ) для твердополимерного топливного элемента (ТПТЭ), а также к способу его изготовления и составу. Описан способ приготовления МЭБ, характеризующийся тем, что способ состоит в распылении...
Тип: Изобретение
Номер охранного документа: 0002563029
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.90a4

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализатору получения синтез-газа каталитической паро-углекислотной конверсией углеводородов, содержащему оксид никеля и оксид магния, нанесенные на пористый никель при следующем содержании компонентов, мас.%: оксид никеля - 3,5-5,1, оксид магния - 8,6-10,4,...
Тип: Изобретение
Номер охранного документа: 0002568644
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90a5

Способ получения замещенных хинонов

Изобретение относится к способу получения замещенных хинонов путем окисления алкилароматических соединений пероксидом водорода в присутствии катализатора в среде органического растворителя. При этом в качестве катализатора используют кислые алкиламмониевые соли ванадийсодержащих...
Тип: Изобретение
Номер охранного документа: 0002568645
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.914a

Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас. %, хром в пересчете на CrO в количестве 5-35%,...
Тип: Изобретение
Номер охранного документа: 0002568810
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91f2

Способ каталитической переработки осадков сточных вод

Изобретение относится к способам переработки осадков сточных вод, содержащих органические вещества, перед их утилизацией или захоронением и может быть использовано в химической, нефтехимической и целлюлозно-бумажной промышленности, а также в коммунальном и сельском хозяйствах. Обезвоженный...
Тип: Изобретение
Номер охранного документа: 0002568978
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97ea

Катализатор (варианты), способ его приготовления (варианты) и способ очистки жидких радиоактивных отходов

Изобретение относится к способам очистки жидких радиоактивных отходов от комплексонов, представляющих собой органические соединения, содержащие атомы N, S и/или Р, способные к координации ионов металлов. В заявленном способе предусмотрена очистка жидких радиоактивных отходов от комплексонов...
Тип: Изобретение
Номер охранного документа: 0002570510
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9871

Способ получения катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами

Изобретение относится к способам газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами. Описан способ газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами в присутствии нанесенного катализатора с размером частиц ≥20 мкм, полученного путем...
Тип: Изобретение
Номер охранного документа: 0002570645
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98ad

Неподвижная фаза для газовой хроматографии

Изобретение относится к аналитической химии, конкретно к неподвижным фазам для разделения веществ методом капиллярной газовой хроматографии, и может быть использовано в анализе различных классов химических веществ. Описана неподвижная фаза для газовой хроматографии, представляющая собой...
Тип: Изобретение
Номер охранного документа: 0002570705
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.991e

Способ получения карбонильных соединений с-с

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С-С, которыенаходят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей. Способ проводят в газовой фазе...
Тип: Изобретение
Номер охранного документа: 0002570818
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c1ac

Метод пробоподготовки биоорганических образцов

Изобретение относится к методу пробоподготовки биоорганических, в том числе, медицинских образцов для определения в них изотопного соотношения C/C и C/C с помощью ускорительного масс-спектрометра. Метод пробоподготовки биоорганических, в том числе, медицинских образцов включает окисление...
Тип: Изобретение
Номер охранного документа: 0002574738
Дата охранного документа: 10.02.2016
Showing 51-60 of 138 items.
20.09.2015
№216.013.7ac8

Способ приготовления мембран-электродных блоков

Изобретение относится к области топливных элементов (ТЭ), в частности к мембран-электродному блоку (МЭБ) для твердополимерного топливного элемента (ТПТЭ), а также к способу его изготовления и составу. Описан способ приготовления МЭБ, характеризующийся тем, что способ состоит в распылении...
Тип: Изобретение
Номер охранного документа: 0002563029
Дата охранного документа: 20.09.2015
20.11.2015
№216.013.90a4

Катализатор, способ его приготовления и способ получения синтез-газа

Изобретение относится к катализатору получения синтез-газа каталитической паро-углекислотной конверсией углеводородов, содержащему оксид никеля и оксид магния, нанесенные на пористый никель при следующем содержании компонентов, мас.%: оксид никеля - 3,5-5,1, оксид магния - 8,6-10,4,...
Тип: Изобретение
Номер охранного документа: 0002568644
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.90a5

Способ получения замещенных хинонов

Изобретение относится к способу получения замещенных хинонов путем окисления алкилароматических соединений пероксидом водорода в присутствии катализатора в среде органического растворителя. При этом в качестве катализатора используют кислые алкиламмониевые соли ванадийсодержащих...
Тип: Изобретение
Номер охранного документа: 0002568645
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.914a

Катализатор, способ его приготовления и процесс обогащения смесей углеводородных газов метаном

Изобретение относится к нефтяной и газовой промышленности, в частности к переработке попутных нефтяных газов (ПНГ). Описан катализатор для обогащения метаном смесей углеводородных газов, который содержит в основном никель в количестве 25-60 мас. %, хром в пересчете на CrO в количестве 5-35%,...
Тип: Изобретение
Номер охранного документа: 0002568810
Дата охранного документа: 20.11.2015
20.11.2015
№216.013.91f2

Способ каталитической переработки осадков сточных вод

Изобретение относится к способам переработки осадков сточных вод, содержащих органические вещества, перед их утилизацией или захоронением и может быть использовано в химической, нефтехимической и целлюлозно-бумажной промышленности, а также в коммунальном и сельском хозяйствах. Обезвоженный...
Тип: Изобретение
Номер охранного документа: 0002568978
Дата охранного документа: 20.11.2015
10.12.2015
№216.013.97ea

Катализатор (варианты), способ его приготовления (варианты) и способ очистки жидких радиоактивных отходов

Изобретение относится к способам очистки жидких радиоактивных отходов от комплексонов, представляющих собой органические соединения, содержащие атомы N, S и/или Р, способные к координации ионов металлов. В заявленном способе предусмотрена очистка жидких радиоактивных отходов от комплексонов...
Тип: Изобретение
Номер охранного документа: 0002570510
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.9871

Способ получения катализатора для полимеризации этилена и сополимеризации этилена с альфа-олефинами

Изобретение относится к способам газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами. Описан способ газофазной полимеризации этилена и сополимеризации этилена с альфа-олефинами в присутствии нанесенного катализатора с размером частиц ≥20 мкм, полученного путем...
Тип: Изобретение
Номер охранного документа: 0002570645
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.98ad

Неподвижная фаза для газовой хроматографии

Изобретение относится к аналитической химии, конкретно к неподвижным фазам для разделения веществ методом капиллярной газовой хроматографии, и может быть использовано в анализе различных классов химических веществ. Описана неподвижная фаза для газовой хроматографии, представляющая собой...
Тип: Изобретение
Номер охранного документа: 0002570705
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.991e

Способ получения карбонильных соединений с-с

Изобретение относится к способу получения карбонильных соединений, а именно кетонов и альдегидов С-С, которыенаходят разнообразное применение как ценные полупродукты тонкого и основного органического синтеза, а также широко используются в качестве растворителей. Способ проводят в газовой фазе...
Тип: Изобретение
Номер охранного документа: 0002570818
Дата охранного документа: 10.12.2015
10.02.2016
№216.014.c1ac

Метод пробоподготовки биоорганических образцов

Изобретение относится к методу пробоподготовки биоорганических, в том числе, медицинских образцов для определения в них изотопного соотношения C/C и C/C с помощью ускорительного масс-спектрометра. Метод пробоподготовки биоорганических, в том числе, медицинских образцов включает окисление...
Тип: Изобретение
Номер охранного документа: 0002574738
Дата охранного документа: 10.02.2016
+ добавить свой РИД