×
20.02.2015
216.013.29e6

СПОСОБ ПРОИЗВОДСТВА ПРЕССОВАННЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВОГО СПЛАВА СЕРИИ 6000

Вид РИД

Изобретение

№ охранного документа
0002542183
Дата охранного документа
20.02.2015
Аннотация: Изобретение относится к области технологии производства прессованных полуфабрикатов из алюминиевого сплава системы Al-Mg-Si, с улучшенными эксплуатационными и технологическими свойствами в виде длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте, монорельсовом транспорте и в других транспортных системах. Способ включает литье слитка из алюминиевого сплава серии 6000, гомогенизацию, горячее прессование при скорости истечения 3,0-30,0 м/мин из подогреваемого контейнера, термическую обработку на твердый раствор путем закалки в воду, проведение после закалки правки растяжением и искусственное старение. Техническим результатом изобретения является создание технологии производства прессованных полуфабрикатов из высоколегированного алюминиевого сплава системы Al-Mg-Si, обладающего хорошими механическими, технологическими и коррозионными свойства. 5 табл., 3 ил.
Основные результаты: Способ производства прессованных изделий из алюминиевого сплава серии 6000, включающий литье слитка из алюминиевого сплава серии 6000, имеющего химический состав, содержащий, мас.%: гомогенизацию слитка при температуре 450-480°C в течение 8-12 ч, горячее прессование при температуре 420-490°C при скорости истечения 3,0-30,0 м/мин из подогреваемого контейнера, нагретого на 10-20°C ниже температуры нагрева заготовки, термическую обработку на твердый раствор путем нагрева до температуры 480-540°C, выдержки при этой температуре в течение 15-60 мин и закалки в воду со скоростью охлаждения 10-100°C/с до температуры 20-40°C, проведение после закалки правки растяжением с величиной остаточной деформации 0,5-3,5% и с перерывом между закалкой и правкой растяжением не более 8 ч и последующее искусственное старение при температуре 140-200°C, выдержке 4-12 ч с перерывом между правкой растяжением и искусственным старением не более 48 ч.

Изобретение относится к области технологии производства прессованных полуфабрикатов из алюминиевого сплава системы Al-Mg-Si с улучшенными эксплуатационными и технологическими свойствами изделий в виде длинномерных, тонкостенных панелей и профилей, предназначенных для использования на железнодорожном транспорте, монорельсовом транспорте и в других транспортных системах.

Технология производства вагонов из крупногабаритных алюминиевых профилей и панелей является экономически выгодным решением. Крупногабаритные профили способны заменить многие сложные классические детали. Прессованные профили могут поставляться в виде готовых для монтажа интегральных деталей. Такие технологии могут быть использованы во многих областях техники. Существующие преимущества и возможности применения изделий из алюминиевых сплавов позволяют им успешно конкурировать со стальными конструкциями

Среди требований, предъявляемых к вагонам транспортных систем, важнейшим является снижение массы кузова, что позволяет добиваться существенной экономии энергетических затрат на пассажирские и грузовые перевозки. Применение прессованных полуфабрикатов из алюминиевых сплавов позволяет на 20-25% снизить массу кузова, по сравнению со стальными кузовами. При этом повышается грузоподъемность вагонов на 20-25%; возрастает долговечность вагонов за счет более высокой коррозионной стойкости алюминиевых сплавов; снижаются затраты на обслуживание вагонов; снижается трудоемкость сборки вагонов на 25-30%; расширяются дизайнерские возможности.

Рассмотрим особенности алюминиевых деформируемых сплавов с позиции требований вагоностроения. Самое главное требование заключается в том, чтобы сплавы обладали необходимым комплексом конструкционных характеристик. Это достаточная прочность, хорошее сопротивление циклическим нагрузкам и высокая коррозионная стойкость основного металла и сварных соединений.

Вторым и весьма важным требованием к алюминиевым сплавам, используемым в вагоностроении, является высокая технологичность как в машиностроительном, так и в металлургическом производстве. Высокая технологичность в машиностроительном производстве подразумевает, прежде всего, хорошую свариваемость: малую склонность к трещинообразованию при сварке, низкий коэффициент ослабления сварных соединений по сравнению с основным металлом, высокую пластичность и вязкость сварных соединений.

Технологичность в металлургическом производстве характеризуется комплексом свойств, к которым относятся:

1) Малая склонность к трещинообразованию при литье слитков;

2) Хорошая технологичность при прессовании (низкое сопротивление деформации, обеспечивающее возможность получать тонкостенные панели и профили сложной формы, с достаточно высокими скоростями истечения).

3) Высокая устойчивость пересыщенного твердого раствора, дающая возможность закаливать прессованные полуфабрикаты.

Известна мировая практика изготовления вагонов для железнодорожного транспорта на основе сплавов следующих систем:

- системы Al-Mg, серии 5000 (АМг2, АМг3, АМг5, АМг6, 5086, 5083, 5383, 5186 и др.);

- системы Al-Mg-Si, серии 6000 (АД31, АД33, АД35, 6060, 6061, 6063,6005A, 6082 и др.);

- системы Al-Zn-Mg серии 7000 (1915, 1925, 7020, 7039 и др.).

В патенте России (№2443798, МПК C22F 1/057, C22C 21/18, опубл. 27.02.2012) описывается производство продуктов из алюминиевых сплавов серии 2000, а именно деформированных продуктов с относительно большой толщиной 30-300 мм. Недостаточная пластичность не позволяет применять данный сплав при изготовлении изделий в виде длинномерных, тонкостенных панелей и профилей.

Известен сплав серии 5000 типа АМг ГОСТ4784-97. Сплавы имеют относительно недостаточные прочностные свойства и требуют более сложной технологии сварки по сравнению с большинством сплавов других серий.

Известен продукт из деформируемого алюминиевого сплава серии 7000 и способ производства упомянутого продукта (Патент РФ №2413025, МПК C22C 21/10, C22F 1/053, публ. 27.02.2011). Получается продукт, имеющий пониженную чувствительность к образованию горячих трещин, имеющий улучшенные свойства прочности и вязкости разрушения и, твердость более 180 НВ при нахождении в искусственно состаренном состоянии. Недостатком является пониженная пластичность, усложняющая прессование тонкостенных панелей и профилей, а также склонность к коррозии под напряжением.

По статистике, порядка 90% объема полуфабрикатов используемых в этой области техники, составляют алюминиевые сплавы системы Al-Mg-Si (серия 6000). Длительная эксплуатация вагонов из сплавов системы Al-Mg-Si (несколько десятков лет) свидетельствует об их надежности в штатных условиях работы

Сплавы 6000 серии в целом отвечают техническим требованиям для железнодорожного транспорта по коррозионной стойкости, технологичности в прессовом и металлургическом производстве и являются экономически конкурентоспособными.

Однако на сегодняшний день существующие сплавов Al-Mg-Si не полностью удовлетворяют предъявляемые к ним требования по следующим критериям:

- по разупрочнению при сварке сварные швы характеризуются недостаточной пластичностью и низкой ударной вязкостью;

- недостаточной прочностью, приводящей в аварийных ситуациях, которых, к сожалению, не удается избежать даже в самых развитых и благополучных странах, таких как Германия, Италия, Япония и др. к тяжелым последствиям.;

Задачей настоящего изобретения является получение на существующем промышленном оборудовании серийных прессованных изделий для железнодорожного транспорта из алюминиевого сплава серии 6000 с превосходными конструкционными и технологическими свойствами.

Техническим результатом, является получение прессованных изделий со стабильной полигонизованной макроструктурой, обеспечивающей максимальные механические свойства, превышающие на 20-35% механические свойства известных образцов прессованных полуфабрикатов для железнодорожного транспорта из алюминиевых сплавов серии 6000, при этом процесс производства характеризуется высокой технологичностью, возможностью получения сложных тонкостенных панелей, высокой стабильностью получаемых механических свойств продукции.

Указанный технический результат достигается тем, что способ производства прессованных изделий из алюминиевого сплава серии 6000 включает в себя литье заготовки-слитка из алюминиевого сплава серии 6000, имеющего химический состав, содержащий, мас.%:

Si 0,65-0,80

Mg 0,45-0,60

Mn 0,20-0,40

Zn≤0,20

Cu≤0,30

Cr≤0,05

Fe≤0,25

Ti 0,04-0,1

В≤0,001

прочие примеси ≤ 0,05%,

сумма прочих примесей ≤ 0,15%,

основа Al,

соотношение Mg/Si=0,6-0,8,

слитки подвергают гомогенизации при температуре 450-480°C, в течение 8-12 часов, горячее прессование проводят при температуре 420-490°C, при скорости истечения 3,0-30,0 м/мин, из подогреваемого контейнера, нагретого на 10-20°C ниже температуры нагрева заготовки, термическую обработку на твердый раствор осуществляют до температуры 480-540°C и выдержки при этой температуре в течение 15-60 мин, а закалку в воду со скоростью охлаждения 10-100°C/с до температуры 20-40°C, после закалки проводится правка растяжением с величиной остаточной деформации 0,5-3,5%, с перерывом между закалкой и правкой растяжением не более 8 ч, искусственное старение производится при температуре 140-200°C, выдержке 4-12 ч, с перерывом между правкой растяжением и искусственным старением не более 48 ч.

Предлагаемый способ производства прессованных изделий из алюминиевого сплава серии 6000 основывается на синергетическом эффекте влияния всех легирующих элементов на свойства алюминиевого сплава, поэтому указанные соотношения компонентов легирующих элементов, а также оптимально подобранные режимы прессования и термообработки позволяют существенно повысить механические свойства изготовляемой продукции по сравнению с подобными известными изделиями, произведенными из аналогов алюминиевых сплавов серии 6000.

При выбранном соотношение присутствия основных упрочняющих легирующих элементов магния и кремния в пределах Mg/Si=0,6-0,8 обеспечивается максимальное образование фазы - упрочнителя: Mg2Si.

Структура металла шва сварного соединения зависит от содержания и соотношения Mg и Si в сплаве. Определенное соотношение Mg/Si несколько измельчает дендритную ячейку (микрозерно) и повышает количество равномерно распределенной по зерну фазы Mg2Si.

Содержание Si в сплаве ограничено 0,8%, превышение этой величины повышает чувствительность металла к образованию горячих трещин, что значительно ухудшает свариваемость материала. По этой же причине величина присутствия в сплаве Fe не должна превышать 0.25%. Содержание Si в сплаве менее 0,65% не обеспечивает сплаву необходимых прочностных свойств.

Наличие в сплаве Cu≤0,30%; Zn≤0,20%; Cr≤0,05% повышает коррозионную стойкость сплава и обеспечивает хорошую свариваемость. Наличие марганца, в заявленных пределах - Mn (0,20-0,40%), создает эффект антирекристаллизатора и способствует термической стабилизации полигонизованной структуры. Присутствие Ti (0,04-0,1%) и B (0,001%) в качестве модификаторов позволяет гарантированно получать однородную мелкозернистую структуру в сплаве.

Целевой химический состав позволяет обеспечивать максимальный уровень эксплуатационных и технологических свойств профилей из сплава серии 6000, мелкозернистую нерекристаллизованную (полигонизованную) структуру и высокое качество поверхности изделий после прессования. Таким образом, высокие механические свойства обеспечиваются не только благодаря содержанию химических элементов, но и за счет эффекта структурного упрочнения (полигонизованная структура).

Режимы прессования подобраны опытным путем в зависимости от площади сечения прессуемого изделия, стабильность процесса обеспечивается поддержанием стабильной температуры в контейнере, нагретом на 10-20°C ниже температуры нагрева заготовки для отвода избыточного тепла от работы деформации из пластической зоны, что приближают процесс прессования к изотермическому. В процессе прессования на межфазных границах создаются значительные поля упругих напряжений, которые являются центрами рекристаллизации. Рекристаллизация интенсивно протекает при высокотемпературной обработке на твердый раствор (480-540°C), а высокая скорость охлаждения при закалке (скорость охлаждения 30-100°C/с до температуры 20-40°C) предотвращает рост рекристаллизованных зерен в изделиях. Антирекристаллизационный эффект усиливается благодаря содержанию Мn (0,20-0,40%). Сохранение большого количества центров рекристаллизации, следовательно, и получение особенно мелкозернистой структуры обеспечивается при совмещении обработки на твердый раствор и последующей закалки. Высокая температура обработки на твердый раствор также обеспечивает большую степень его пересыщения, что приводит при искусственном старении к повышению прочностных свойств. Равномерное распределение продуктов распада пересыщенного твердого раствора приводит к повышению коррозионной стойкости полуфабриката.

Превышение временного интервала между закалкой и правкой растяжением более 8 часов нежелательно т.к. изделия набирают прочность, препятствующую деформации растяжением. Правка растяжением с величиной остаточной деформации 0,5-3,5% обеспечивает приемлемые геометрические размеры прессованных изделий по кривизне. Диапазон деформации растяжением обусловлен тем, что деформация менее 0,5% недостаточно эффективно снижает уровень термических напряжений, а деформация свыше 3,5% приводит к нагартовке изделий.

Упрочнение в процессе старения данного сплава обеспечивается обработкой на твердый раствор при относительно высокой температуре (для растворения легирующих элементов) и быстрой закалкой (для удерживания растворенных элементов в перенасыщенном твердом растворе). Впоследствии упрочнение, которое возникает в результате искусственного старения, происходит из-за того, что растворенные компоненты, удерживаемые в перенасыщенном твердом растворе, в качестве части отклика по установлению равновесия образуют выделения (вторичные фазы), которые диспергированы в зернах в виде образований малого размера и повышают способность материала противостоять деформации сдвига. Перерыв между правкой растяжением и искусственным старением более 48 часов снижает этот эффект упрочнения.

Изобретение иллюстрируется фотографиями, где показаны поперечные сечения прессовых изделий изготовленных в соответствии с этим изобретением:

Фиг.1 - профиля (габариты 420×75 мм).

Фиг.2 - панели (габариты 790×52 мм).

Фиг.3 - панели (габариты 790×50 мм).

Пример конкретного исполнения.

В электроплавильной печи сопротивления типа САН вместимостью 10 т были выполнены плавки, следующего химического состава, таблица 1:

Табл.1
Номер плавки Массовая доля элементов в %
Si Mg Mn Zn Cu Cr Fe Ti B Al
1 0,69 0,48 0,32 0,09 0,19 0,03 0,21 0,06 0,001 основа

Затем были отлиты круглые слитки ⌀ 470. Литье слитков проводилось по следующим режимам, таблица 2:

Табл.2
Размер слитка, мм Параметры литья
температура, °C скорость, мм/мин Давление воды, Па
⌀ 470 705-707 45,0 5×104

Режимы гомогенизации отлитых слитков приведены в таблице 3.

Табл.3
Размер слитка, мм Температура гомогенизации, °C Продолжительность выдержки, час
⌀ 470 515-518 8

Механические свойства прессованных полуфабрикатов приведены в таблице 4. Контроль твердости проводился по всему поперечному сечению профиля и панелей. Расстояние между точками контроля не более 50 мм.

Табл.4
σв, МПа σ02, МПа A, % твердость, НВ Разница между max и min HB
Профиль 300-320 285-300 10-14 93,1-107,0 13,9
Панель 293-329 264-293 11,0-17,6 91,0-106,0 15
Требования EN755-2* ≥255 ≥215 ≥8 - ≥20
* Европейский стандарт EN755-2 (Алюминий и алюминиевые сплавы. Экструдированные прутки, трубы и профили. Часть 2. Механические свойства).

Как видно из таблицы 5 достигнутый уровень механических характеристик, полученных изделий по заявленному способу, превышает минимальные значения по требованиям EN755-2 в среднем на 20-35%. Стабильность механических свойств по сечению и длине изделий подтверждается протоколами измерений твердости по всему поперечному сечению с 2-х концов каждой прессовки. По EN755-2 разброс не должен превышать 20 НВ, фактический разброс значений составил не более 15 НВ. Изделия, изготовленные из профилей с указанными характеристиками, будут обладать повышенной конструкционной прочностью и надежностью.

Высокие механические и эксплуатационные свойства изделий, изготовленных по данному способу, были также подтверждены проведением испытаний основного материала и сварных соединений на усталостную прочность в специализированной лаборатории GSI SLV (Halle) в Германии, таблице 5.

Табл.5
Заключение по основному материалу
R Ts, 90%:10% DIN EN 13981-1 (Pü=97,5%, N=107 Ts, 90%:10%) Результат испытаний (Pü=97,5%, N=107, Ts, 90%:10%) Оценка
-1.0 1:1.14 65 71 соответствует
0.1 1:1.14 110 116 соответствует
0.5 1:1.21 180 191 соответствует
Заключение по сварному соединению
-1.0 1:1.16 30 31 соответствует
0.1 1:1.18 55 60 соответствует
0.5 1:1.03 80 83 соответствует

Приведенные примеры не ограничивают применяемость настоящего изобретения, которое может иметь другие варианты выполнения в пределах объема прилагаемой формулы изобретения.

Способ производства прессованных изделий из алюминиевого сплава серии 6000, включающий литье слитка из алюминиевого сплава серии 6000, имеющего химический состав, содержащий, мас.%: гомогенизацию слитка при температуре 450-480°C в течение 8-12 ч, горячее прессование при температуре 420-490°C при скорости истечения 3,0-30,0 м/мин из подогреваемого контейнера, нагретого на 10-20°C ниже температуры нагрева заготовки, термическую обработку на твердый раствор путем нагрева до температуры 480-540°C, выдержки при этой температуре в течение 15-60 мин и закалки в воду со скоростью охлаждения 10-100°C/с до температуры 20-40°C, проведение после закалки правки растяжением с величиной остаточной деформации 0,5-3,5% и с перерывом между закалкой и правкой растяжением не более 8 ч и последующее искусственное старение при температуре 140-200°C, выдержке 4-12 ч с перерывом между правкой растяжением и искусственным старением не более 48 ч.
СПОСОБ ПРОИЗВОДСТВА ПРЕССОВАННЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВОГО СПЛАВА СЕРИИ 6000
СПОСОБ ПРОИЗВОДСТВА ПРЕССОВАННЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВОГО СПЛАВА СЕРИИ 6000
СПОСОБ ПРОИЗВОДСТВА ПРЕССОВАННЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВОГО СПЛАВА СЕРИИ 6000
Источник поступления информации: Роспатент

Showing 41-50 of 74 items.
29.03.2019
№219.016.f1be

Способ переработки солевых отходов магниевого производства

Изобретение относится к цветной металлургии, в частности к переработке твердых солевых отходов, получаемых в процессе электролиза, на товарные продукты. Техническим результатом является получение хлорида калия высокого качества из солевых отходов магниевого производства, уменьшив тем самым...
Тип: Изобретение
Номер охранного документа: 0002316604
Дата охранного документа: 10.02.2008
29.03.2019
№219.016.f1c0

Способ получения магния электролизом расплавленных солей

Изобретение относится к цветной металлургии, в частности к способам получения магния электролизом расплавленных солей. Шламо-электролитную смесь периодически удаляют из электролизера, работающего на хлормагниевом сырье, и загружают ее в обогреваемую емкость, в которую также подают твердый...
Тип: Изобретение
Номер охранного документа: 0002316617
Дата охранного документа: 10.02.2008
29.03.2019
№219.016.f206

Способ очистки струйно-абразивной обработкой поверхности изделий из титановых сплавов

Изобретение относится к способам обработки поверхности металлов, в частности к струйно-абразивной очистке поверхности изделий из титановых сплавов. Подают на обрабатываемую поверхность гидроабразивную суспензию. В качестве абразива гидроабразивной суспензии используют мелкодисперсные частицы с...
Тип: Изобретение
Номер охранного документа: 0002381096
Дата охранного документа: 10.02.2010
29.03.2019
№219.016.f231

Способ получения слитка металла

Изобретение относится к специальной электрометаллургии и может быть использовано при вакуумно-дуговой гарнисажной плавке металлов, например титана и его сплавов. В объеме тигля с гарнисажем создают знакопеременное магнитное поле электромагнитом, магнитопроводом которого служат ферромагнитный...
Тип: Изобретение
Номер охранного документа: 0002385957
Дата охранного документа: 10.04.2010
29.03.2019
№219.016.f367

Способ обезвоживания хлормагниевого сырья

Изобретение относится к области цветной металлургии, в частности к способам подготовки хлормагниевого сырья к получению магния электролизом расплавленных солей. Способ обезвоживания хлормагниевого сырья включает загрузку сырья в многокамерную печь кипящего слоя, последовательное передвижение...
Тип: Изобретение
Номер охранного документа: 0002309895
Дата охранного документа: 10.11.2007
29.03.2019
№219.016.f455

Устройство для подвода тока к печи с солевым расплавом для подогрева и рафинирования магния

Изобретение относится к цветной металлургии, в частности к устройствам для подвода тока к ванне печи с солевым обогревом. Устройство снабжено защитным огнеупорным блоком разной толщины, размещенным на наружной поверхности электрода на всю величину заделки электрода и кессона в футеровку печи,...
Тип: Изобретение
Номер охранного документа: 0002327823
Дата охранного документа: 27.06.2008
29.03.2019
№219.016.f482

Плавильная печь с холодным подом

Изобретение относится к металлургии, в частности к плавильному оборудованию, а именно к конструктивным элементам плазменно-дуговых и электронно-лучевых печей с холодным подом для получения слитков из высокореакционных металлов и сплавов. Плавильная печь содержит независимые источники нагрева,...
Тип: Изобретение
Номер охранного документа: 0002413017
Дата охранного документа: 27.02.2011
19.04.2019
№219.017.2dbd

Способ переработки солевых отходов, содержащих хлориды щелочных и/или щелочноземельных металлов

Изобретение относится к цветной металлургии, а именно к переработке солевых отходов, содержащих хлориды щелочных и/или щелочноземельных металлов, например отработанных электролитов, полученных при электролитическом получении магния, и хлорида магния - побочного продукта, полученного при...
Тип: Изобретение
Номер охранного документа: 0002341570
Дата охранного документа: 20.12.2008
19.04.2019
№219.017.2ea7

Способ получения порошкообразных флюсов и устройство для его осуществления

Изобретение относится к цветной металлургии, в частности к способам и устройствам для получения флюсов для плавки и литья магния и его сплавов. Технический результат заключается в получении порошкообразного флюса заданного гранулометрического состава, что позволяет получить продукт, готовый к...
Тип: Изобретение
Номер охранного документа: 0002315120
Дата охранного документа: 20.01.2008
19.04.2019
№219.017.2f08

Способ резки блока губчатого титана и устройство для его осуществления

Изобретение относится к цветной металлургии, в частности к способам и устройствам резки блока губчатого титана, который получают магниетермическим восстановлением тетрахлорида титана. Блок размещают на столе осью параллельно его опорной поверхности. Захватывают манипулятором и перемещают в...
Тип: Изобретение
Номер охранного документа: 0002385205
Дата охранного документа: 27.03.2010
Showing 31-31 of 31 items.
09.05.2019
№219.017.4b14

Инструмент для прессования изделий

Изобретение относится к обработке металлов давлением и может быть использовано при производстве прессованных изделий, в частности при полунепрерывном прессовании длинномерных изделий. Инструмент содержит матрицу, втулку контейнера, пресс-штемпель и уплотняющую прокладку, установленную с...
Тип: Изобретение
Номер охранного документа: 0002291008
Дата охранного документа: 10.01.2007
+ добавить свой РИД