×
20.02.2015
216.013.2961

Результат интеллектуальной деятельности: СПОСОБ ПИРОМЕТАЛЛУРГИЧЕСКОЙ ПЕРЕРАБОТКИ ЖЕЛЕЗОСОДЕРЖАЩИХ МАТЕРИАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к процессам получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов. Шихтовые материалы в виде железосодержащих материалов, флюсующих добавок и углеродсодержащих материалов загружают в плавильную зону двухзонной печи. Расплавляют их в железосодержащем расплаве, барботируемом кислородсодержащим дутьем, дожигают отходящие газы с последующей подачей расплава в восстановительную зону. В восстановительную зону загружают уголь, восстанавливают железо с образованием железоуглеродистого расплава и шлака, дожигают отходящие из ванны зоны восстановления горючие газы, осуществляют раздельный выпуск продуктов плавки. Причем в плавильной зоне отношение кислорода, поступающего с барботажным дутьем, к углероду, поступающему с шихтовыми материалами, поддерживают на уровне, обеспечивающем отношение CO/CO в отходящих из ванны плавильной зоны газах в пределах 0,01-0.5. Изобретение позволяет снизить удельные расходы энергоносителей, обеспечивает возможность переработки шихтовых материалов крупностью свыше 20 мм, повышенной влажности и смерзшихся шихтовых материалов. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области черной и цветной металлургии и может быть использовано в процессах получения жидкого металла из окисленного железосодержащего сырья, техногенных отходов черной и цветной металлургии, в том числе содержащего примеси цветных металлов.

В черной металлургии известен пирометаллургический способ непрерывной переработки окисленного сырья цветных, черных металлов - процесс Ромелт [«Процесс Ромелт» / Под ред. В.А. Роменец, М.: МИСИС, Изд. дом «Руда и металлы», 2005. - 400 с.].

Суть процесса Ромелт заключается в следующем. Шлаковая ванна барботируется дутьем с содержанием кислорода 50-99%. В шлаковой ванне поддерживается температура на уровне 1400-1500°C. На поверхность шлаковой ванны подаются железосодержащие материалы, энергетический уголь, флюсующие добавки.

Уголь, попадающий на шлаковую поверхность, вовлекается шлаковыми потоками в нижние зоны ванны, где за счет кислорода дутья происходит его горение до CO. Перемешивание и подогрев шлаковой ванны можно поддерживать также за счет подачи в фурмы нижнего ряда природного газа. При этом метан горит до CO и H2.

Оксиды железа и других металлов восстанавливаются в шлаковой ванне углеродом. От 20 до 40% поступающей в шлаковую ванну воды разлагается также с расходованием углерода угля.

Важным компонентом, влияющим на расход энергоносителей в процессе Ромелт, являются летучие угля. В зависимости от генезиса угли могут содержать от 6 до 50% летучих. При этом летучие углей содержат углеводороды, в основном представленные метаном. От 20 до 40% метана разлагается на водород и сажистый углерод. Выделяющийся сажистый углерод может участвовать в реакциях прямого восстановления оксидов и снижать общий расход угля.

В случае применения карбонатных руд и флюсов их разложение происходит с выделением диоксида углерода, который взаимодействует с углеродом угля. Реакция носит эндотермический характер и сопровождается существенным перерасходом угля.

Компенсация дефицита тепла в восстановительной зоне обеспечивается частичным дожиганием отходящих из ванны горючих газов кислородом дутья фурм верхнего ряда.

К недостаткам процесса следует отнести:

- восстановление высших оксидов железа и других металлов углеродом до CO;

- разложение части влаги шихты с использованием твердого углерода;

- малая степень полезного использования летучих угля;

- перерасход углерода угля на взаимодействие с CO2 карбонатов;

- ограничение по крупности шихтовых материалов;

- ограничение по степени дожигания отходящих из ванны газов.

Наиболее близким по технической сущности, приемам и достигаемому эффекту является «Способ переработки сырья, содержащего цветные металлы и железо», RU 2194781 C2, опубликованный 20.12.2002 г. В технической литературе этот процесс получил название двухзонного процесса Ванюкова.

В соответствии с патентом переработка окисленных руд, содержащих цветные металлы и железо, происходит в двухзонной печи. В окислительную зону через фурмы нижнего ряда подают смесь воздуха и технического кислорода. В расплав окислительной зоны загружают руду, уголь и флюсующие добавки. При переработке окисленного сырья в окислительную зону печи подают углеродсодержащий материал и кислород в количествах, необходимых для полного сгорания углерода с максимальным выделением тепла. В окислительной зоне протекают процессы горения угля до CO2, реакции восстановления гематита руды до магнетита.

В окислительной зоне происходит также разложение карбонатов флюса, испарение влаги, нагрев и расплавление шихтовых материалов. Расплав из зоны плавления передается в восстановительную зону. В ту же зону подают уголь.

Компенсация дефицита тепла в восстановительной зоне обеспечивается частичным дожиганием отходящих из ванны горючих газов кислородом дутья фурм верхнего ряда.

К недостаткам способа относятся:

- повышенный расход углеродсодержащих материалов и кислорода;

- высокая окисленность железистого расплава зоны плавления;

- недостаточное использование химического тепла отходящих газов.

Перечисленные недостатки приводят к перерасходу энергоносителей и снижают производительность печи.

Техническим результатом изобретения является возможность комплексной переработки железосодержащего сырья и техногенных материалов в двухзонной печи из неподготовленного сырья и отходов с применением рядовых углей.

В плавильной зоне происходит горение угля в слое расплава, барботируемого кислородсодержащим дутьем, подаваемым через фурмы нижнего ряда. В отличие от двухзонного процесса Ванюкова, горение углерода ведут с α<1. Присутствие небольших количеств CO в отходящих из расплава зоны плавления газах позволяет избежать переокисления железистого расплава и поддерживать железо в расплаве в двухвалентном состоянии. Для увеличения удельной производительности целесообразно поддерживать температуру в плавильной зоне на уровне 1450-1550°C, что выше, чем в процессе Ванюкова.

Так же, как и в двухзонной печи Ванюкова, влага шихтовых материалов испаряется без разложения на H2 и CO, диоксид углерода карбонатов удаляется из ванны практически без взаимодействия с углеродом угля, восстановление высших оксидов железа до FeO идет косвенным путем.

Другим важным преимуществом предлагаемого способа по сравнению с процессом Ромелт является полное полезное использование углеводородов горючих угля по реакции полного горения.

Преимуществом предлагаемого способа является также возможность переработки железосодержащих материалов и углей крупностью свыше 20 мм, шихтовых материалов повышенной влажности, смерзшихся конгломератов шихтовых материалов. В целом, единственным требованием к шихтовым материалам, поступающим в плавильную зону, является возможность дозирования и подачи в рабочую зону печи.

Такие вредные примеси как S и As переводятся в газовую фазу и удаляются с отходящими газами.

Подготовленный в зоне плавления железосодержащий расплав через переток передается в зону восстановления.

В восстановительную зону печи загружается уголь и, при необходимости, специальные добавки. Дефицит тепла в зоне восстановления компенсируется частичным дожиганием отходящих горючих газов кислородным дутьем фурм верхнего ряда. Отходящие газы передаются дальше в зону плавления, где осуществляется их полное дожигание с возвратом части тепла в ванну зоны плавления. Это второе принципиальное отличие предлагаемого способа от двухзонного процесса Ванюкова.

Предварительные расчеты показывают, что при переработке железосодержащих материалов на чугун площадь зоны восстановления должна соответствовать площади зоны плавления (в отличие от двухзонной печи Ванюкова). В этом случае можно существенно увеличить удельную производительность агрегата и снизить удельные расходы энергоносителей.

Принципиальные отличия предлагаемого способа от двухзонного процесса Ванюкова:

- горение углерода угля и углеводородов в зоне плавления с поддержанием CO/CO2 в пределах 0,01-0,50;

- максимально полное использование химического тепла отходящих газов в пространстве печи;

- другая организация газовых потоков в пространстве печи.

При снижении показателя CO/CO2 в зоне плавления ниже 0,01 в расплаве накапливается трехвалентное железо и выпадает в виде тугоплавкого расплава Fe3O4. Это приводит к расстройствам работы печи, перерасходу углерода на восстановление Fe3O4 до FeO и дополнительному расходу кислорода в зоне восстановления.

Повышение показателя CO/CO2 выше 0,50 приводит к частичному выпадению металлической фазы в виде низкоуглеродистого железа, что приводит к потерям железа и расстройствам в работе печи.

Из практики работы печи Ромелт известно, что устойчивая работа зоны восстановления при степенях дожигания (CO2/(CO2+CO)) выше 0,85 приводит к переокислению расплава, повышению содержания железа в отвальном шлаке и может привести к вскипаниям ванны. При этом повышаются удельные расходы угля и кислорода. Работа при степенях дожигания в восстановительной зоне менее 0,50 сопровождается ухудшением технико-экономических показателей работы печи.

В предлагаемом способе отходящие из зоны восстановления газы содержат значительные количества горючих газов, которые дожигаются за счет подачи кислородсодержащего газа над зоной плавления. От 30 до 70% тепла, выделяемого при дожигании газов, поступает в расплав зоны плавления. Это позволяет снизить удельные расходы угля и кислорода на 1 т получаемого чугуна.

Пример.

Для сравнения показателей работы печей в качестве сырья выбрана смесь доменных и кислородно-конвертерных шламов.

Химический состав этих шламов является достаточно стабильным для условий работы крупных металлургических комбинбатов (НЛМК, ЧерМК, ММК, ЗСМК). В настоящее время эти шламы практически не перерабатываются из-за повышенного содержания цинка и свинца, а складируются в шламовых отстойниках.

Химический состав шлама:

Feобщ=51,3%; FeO=17%; Fe2O3=54,4%; SiO2=6,7%; CaO=7,9%; ZnO=0,62%; PbO=0,11%; S=0,3%; P2O5=0,11%; C=9,2%; прочие = 3,66%. Влажность шлама - 10%.

В качестве энергоносителя принят уголь энергетический, по составу близкий к Анжерским OC, CC.

Технический состав угля:

Wp=10%; Ac=10,8%; Vc=14%; Sc=0,4%; Сф=74,8%.

Элементный состав летучих:

C=3,66%; H=4,3%; O=4,00%; N=2,04%.

Химический состав золы угля:

Fe2O3=10%; SiO2=54%; Al3O3=27,0%; CaO=3,8%; MgO=1,0%; P2O5=0,7%; прочие = 3,5%.

Количество перерабатываемого шлама - 40 т/ч. Для сравнения площадь печей принята равной 20 м2. Расход дутья на фурмы нижнего ряда принят на уровне 10000 нм3/ч, содержание кислорода в дутье - 70%.

Пылеунос шихтовых материалов во всех вариантах принят на максимальном уровне - 3%. Выход чугуна по трем вариантам составил около 18,6 т/ч. Содержание FeO в шлаке во всех вариантах 3%. Показатели работы печей по трем вариантам приведены в табл.1.

Таблица 1.
Показатели Способы
Ромелт Двухзонный Ванюкова Предлагаемый
1. Расход шлама, кг/т чугуна 2090 2090 2090
2. Расход угля, кг/т чугуна 1040 (100%) 910 (87,5%) 730 (70,2%)
3. Расход кислорода (95% O2) 1310 (100%) 1050 (80,2%) 850 (64,9%)

Из табл.1 видно, что удельные расходы энергоносителей по предлагаемому способу на 30-35% ниже, чем в одностадийной печи по технологии Ромелт. Показатели работы двухзонной печи по способу Ванюкова хуже, чем у предлагаемого на 15-17%.

Следует отметить, что при повышении производительности печи по чугуну до 30 т/ч удельные расходы энергоносителей по всем вариантам могут быть снижены на 20-30%. При этом относительная разница между вариантами остается неизменной.

В приведенном расчете в качестве железосодержащего материала принят высокозакисный железорудный материал. Не учитывалась необходимость офлюсования получаемого шлака из-за повышенной основности сталеплавильных шламов. При переработке гематитовых материалов с офлюсованием известняком разница в удельном расходе энергоносителей в предлагаемом способе по сравнению с процессом Ромелт будет достигать 40-50% по сравнению с двухзонным процессом Ванюкова - 20-30%.

Источник поступления информации: Роспатент

Showing 21-30 of 236 items.
20.06.2013
№216.012.4b9f

Способ изготовления режущих элементов из сверхтвердых материалов

Изобретение относится инструментальному производству, в частности к изготовлению поликристаллических элементов, в основном из порошков алмаза и/или кубического нитрида бора. Может использоваться для изготовления режущих инструментов и в качестве износостойких накладок в машиностроении. Смесь...
Тип: Изобретение
Номер охранного документа: 0002484941
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c97

Способ переработки окисленных золотомышьяковистых руд

Изобретение относится к цветной металлургии и может быть использовано при переработке упорных окисленных золотомышьяковистых руд. В предложенном способе переработки окисленной золотомышьяковистой руды руду смешивают с золотосодержащим пиритным концентратом в весовом отношении Аs:S, равном...
Тип: Изобретение
Номер охранного документа: 0002485189
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9d

Способ получения металломатричного композита с наноразмерными компонентами

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей и наноразмерными упрочняющими частицами. Смесь, содержащую матричный материал и упрочняющие частицы размером менее 50 нм, подвергают механическому легированию. Матричный...
Тип: Изобретение
Номер охранного документа: 0002485195
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9e

Способ получения изделий из композиционных материалов с наноразмерными упрочняющими частицами

Изобретение относится к порошковой металлургии, а именно к способу получения изделий из композиционных материалов с металлической матрицей и наноразмерными упрочняющими частицами. Гранулы композиционного материала получают механическим легированием смеси, содержащей частицы матричного материала...
Тип: Изобретение
Номер охранного документа: 0002485196
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9f

Металлический наноструктурный сплав на основе титана и способ его обработки

Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии. Заявлены сплав на основе титана с эффектом...
Тип: Изобретение
Номер охранного документа: 0002485197
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca1

Литейный алюминиевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении....
Тип: Изобретение
Номер охранного документа: 0002485199
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cac

Способ "гибридного" получения износостойкого покрытия на режущем инструменте

Изобретение относится к технологии повышения стойкости режущих инструментов за счет нанесения на их поверхность многокомпонентных износостойких покрытий. На предварительно очищенную поверхность с использованием реакционного газа наносят нижний слой покрытия электродуговым испарением катода из...
Тип: Изобретение
Номер охранного документа: 0002485210
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb2

Электролизер для производства алюминия

Изобретение относится к анодному устройству алюминиевых электролизеров. Электролизер содержит стальной кожух, теплоизоляционную кирпичную кладку, угольную футеровку, ошиновку, катодное и анодное устройства, при этом анодное устройство состоит из обожженных угольных блоков, в которых выполнены...
Тип: Изобретение
Номер охранного документа: 0002485216
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.537c

Способ прокатки металлических полос

Изобретение относится к прокатному производству и может быть использовано при холодной прокатке стальных полос на реверсивных и непрерывных станах. Способ включает обжатие полос по толщине в валках с приложением заднего и переднего натяжений, при этом прокатку ведут с выравниванием...
Тип: Изобретение
Номер охранного документа: 0002486975
Дата охранного документа: 10.07.2013
10.07.2013
№216.012.5382

Способ изготовления сварных труб большого диаметра

Изобретение относится к производству сварных труб большого диаметра. Осуществляют пошаговую подгибку продольных кромок заготовки одновременно с двух сторон, формовку основной части профиля на прессе шаговой формовки, сборку заготовки и сварку ее кромок технологическим швом на сборочно-сварочном...
Тип: Изобретение
Номер охранного документа: 0002486981
Дата охранного документа: 10.07.2013
Showing 21-30 of 243 items.
10.06.2013
№216.012.489c

Высокопрочный экономнолегированный сплав на основе алюминия

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий, работающих под действием высоких нагрузок при температурах до 150°С, деталей летательных аппаратов, автомобилей и других транспортных средств, деталей спортинвентаря и др....
Тип: Изобретение
Номер охранного документа: 0002484168
Дата охранного документа: 10.06.2013
20.06.2013
№216.012.4b9f

Способ изготовления режущих элементов из сверхтвердых материалов

Изобретение относится инструментальному производству, в частности к изготовлению поликристаллических элементов, в основном из порошков алмаза и/или кубического нитрида бора. Может использоваться для изготовления режущих инструментов и в качестве износостойких накладок в машиностроении. Смесь...
Тип: Изобретение
Номер охранного документа: 0002484941
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c97

Способ переработки окисленных золотомышьяковистых руд

Изобретение относится к цветной металлургии и может быть использовано при переработке упорных окисленных золотомышьяковистых руд. В предложенном способе переработки окисленной золотомышьяковистой руды руду смешивают с золотосодержащим пиритным концентратом в весовом отношении Аs:S, равном...
Тип: Изобретение
Номер охранного документа: 0002485189
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9d

Способ получения металломатричного композита с наноразмерными компонентами

Изобретение относится к порошковой металлургии, в частности к получению композиционных материалов с металлической матрицей и наноразмерными упрочняющими частицами. Смесь, содержащую матричный материал и упрочняющие частицы размером менее 50 нм, подвергают механическому легированию. Матричный...
Тип: Изобретение
Номер охранного документа: 0002485195
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9e

Способ получения изделий из композиционных материалов с наноразмерными упрочняющими частицами

Изобретение относится к порошковой металлургии, а именно к способу получения изделий из композиционных материалов с металлической матрицей и наноразмерными упрочняющими частицами. Гранулы композиционного материала получают механическим легированием смеси, содержащей частицы матричного материала...
Тип: Изобретение
Номер охранного документа: 0002485196
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4c9f

Металлический наноструктурный сплав на основе титана и способ его обработки

Изобретение относится к области металлургии, а именно к функциональным металлическим сплавам на основе титана и способу их обработки и может быть использовано для сверхупругих элементов конструкций, а также в хирургии и ортопедической имплантологии. Заявлены сплав на основе титана с эффектом...
Тип: Изобретение
Номер охранного документа: 0002485197
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4ca1

Литейный алюминиевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении крупногабаритных отливок сложной формы, предназначенных для изготовления деталей ответственного назначения, в частности корпусов редукторов, применяемых в авиастроении....
Тип: Изобретение
Номер охранного документа: 0002485199
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cac

Способ "гибридного" получения износостойкого покрытия на режущем инструменте

Изобретение относится к технологии повышения стойкости режущих инструментов за счет нанесения на их поверхность многокомпонентных износостойких покрытий. На предварительно очищенную поверхность с использованием реакционного газа наносят нижний слой покрытия электродуговым испарением катода из...
Тип: Изобретение
Номер охранного документа: 0002485210
Дата охранного документа: 20.06.2013
20.06.2013
№216.012.4cb2

Электролизер для производства алюминия

Изобретение относится к анодному устройству алюминиевых электролизеров. Электролизер содержит стальной кожух, теплоизоляционную кирпичную кладку, угольную футеровку, ошиновку, катодное и анодное устройства, при этом анодное устройство состоит из обожженных угольных блоков, в которых выполнены...
Тип: Изобретение
Номер охранного документа: 0002485216
Дата охранного документа: 20.06.2013
10.07.2013
№216.012.537c

Способ прокатки металлических полос

Изобретение относится к прокатному производству и может быть использовано при холодной прокатке стальных полос на реверсивных и непрерывных станах. Способ включает обжатие полос по толщине в валках с приложением заднего и переднего натяжений, при этом прокатку ведут с выравниванием...
Тип: Изобретение
Номер охранного документа: 0002486975
Дата охранного документа: 10.07.2013
+ добавить свой РИД