×
20.02.2015
216.013.28e6

Результат интеллектуальной деятельности: МНОГОЧАСТОТНЫЙ РЕЗОНАТОР НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к СВЧ электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации. Технический результат - обеспечение высокой стабильности частоты генерации и минимального значения фазовых шумов в широком частотном диапазоне. Многочастотный резонатор на объемных акустических волнах содержит звукопровод и источник акустических колебаний, который включает в себя пьезоэлектрик, верхний и нижний металлические электроды , при этом источник акустических колебаний размещен на одной из поверхностей звукопровода, звукопровод выполнен из ориентированного монокристалла алмаза с кристаллографическими плоскостями срезов(100), или (110), или (111), соответствующих направлениям распространения чистых продольных мод. 3 з.п. ф-лы, 3 ил.

Изобретение относится к сверхвысокочастотной (СВЧ) электроакустике и является основой для создания стабилизированных генераторов сетки частот, узкополосных фильтров, СВЧ генераторов с низким уровнем фазовых шумов, высокочувствительных сенсоров и других СВЧ частотозадающих элементов для средств связи, автоматики и радиолокации.

Известен многочастотный резонатор на объемных акустических волнах (МРОАВ) (G.D. Mansfeld, S.G. Alekseev, N.I. Polzikova, «Unique Properties of HBAR Characteristics», 2008, IEEE International Ultrasonics Symposium Proceedings, p.439-442). Устройство состоит из двух металлических электродов, между которыми размещен пьезоэлектрический слой, и диэлектрической подложки, являющейся звукопроводом. Толщина звукопровода выбирается много больше толщины пьезоэлектрического слоя. При подаче на электроды СВЧ поля в такой слоистой структуре на определенных частотах возникают стоячие волны механических смещений s(z), описываемых выражением (G.D. Mansfeld, S.G. Alekseev, N.I. Polzikova, «Unique Properties of HBAR Characteristics», 2008, IEEE International Ultrasonics Symposium Proceedings, p.439-442):

ε(z)=ε0cos(kz),

где z - координата направления распространения волны, ε0 - амплитуда механических смещений, k - волновой вектор. Такое устройство позволяет формировать равномерную широкополосную сетку (спектр) высокостабильных резонансных частот с низким уровнем фазовых шумов.

Известен патент США (US 4785269, МПК H03H 9/00, дата публикации 15.11.1988, «Magnetically tuned high overtone bulk acoustic resonator», Adam J.D., McAvoy B.R.), где в качестве звукопровода использован монокристалл железоиттриевого граната, что позволило изменять частоту резонансов в небольших пределах с помощью магнитного поля. Недостатком такого резонатора является повышенная чувствительность к внешним электромагнитным помехам, что может привести к нестабильности частоты генерации.

В патенте РФ (RU 2468507 С1, МПК H03H 9/15, дата публикации 27.11.2012, «Резонатор на основе высших типов объемных акустических волн», Козырев А.Б., Михайлов А.К., Пташник С.В.) представлен многочастотный резонатор на объемных акустических волнах, в котором управление частотой резонансов осуществляется путем изменения граничных условий на противоположной плоскости звукопровода. Однако наличие импедансной акустической нагрузки на противоположной стороне звукопровода приводит к снижению добротности всего резонатора.

В заявке США (US 2011/0279187 A1, МПК Н03Н 9/15, Н03В 5/32, Н03Н 9/54, H01L 41/22, дата публикации 17.11.2011, "HBAR resonator with high temperature stability", Ballandras S., Gashon D.) в МРОАВ в качестве пьезоэлектрика использовали тонкие пластинки LiNbO3 (yxl)/36° среза, которые возбуждали сдвиговые волны в звукопроводе из монокристаллического кварца АТ-среза. Устройство предлагалось использовать как многочастотный резонатор на сдвиговых волнах в частотном диапазоне 0,05÷20 ГГц. Недостатком данного устройства является применение в качестве звукопровода кварца, имеющего значительное затухание на СВЧ и скорость звука в котором примерно в 3 раза меньше, чем в алмазе, а также использование сдвиговых волн, что в целом снижает возможности этого устройства как резонатора в СВЧ диапазоне. Например, коэффициент качества Q·f этого резонатора в указанном диапазоне не превышает 5·1012.

В патенте США (US 7508286 В2, МПК Н03Н 9/00, дата публикации 24.03.2009, «HBAR oscillator and method of manufacture», Rubi R.C., Pang W.) многочастотный резонатор на объемных акустических волнах использован в акустическом фильтре в качестве генератора сетки частот вместе с пленочным объемным акустическим резонатором, выделяющим из этой сетки заданную частоту резонанса. Недостатком такого устройства является использование в качестве звукопровода монокристаллического кварца, кремния, сапфира, что не позволило получить добротность резонатора выше 10000 на частоте 1,5 ГГц.

Недостатми рассмотренных резонаторов заключаются в том, что они работают в достаточно узком частотном диапазоне (2-4 ГГц) и в них применяются звукопроводы со сравнительно низким коэффициентом качества Q·f, не превышающим 5·1012.

Наиболее близким к предлагаемому техническим решением является устройство, описанное в патенте США (US 7609132 В2, МПК Н03Н 9/00, дата публикации 27.10.2009, «Hybrid resonant structure», Ballandras S.J., et al.) и состоящее из верхнего электрода, слоя пьезоэлектрика (нитрид алюминия AlN или оксид цинка ZnO), нижнего электрода и звукопровода. Авторы считают, что электроды должны быть сделаны из хорошо проводящих металлов ряда Al, Mo, Ni, Ag, Pt, Au, W, Cu и т.д.; звукопровод может быть сделан из различных материалов, предпочтительно обладающих такими диэлектрическими и механическими свойствами, чтобы коэффициент качества Q·f был в пределах (3÷5)·1012. В качестве звукопровода предлагается использовать в основном кристаллический кварц, а также другие возможные материалы: стекло или кремний; La3Ga5SiO14, La3Ga5,5Nb0,5O14, La3Ga5,5Ta0,5O14, GaPO4, сапфир, LiNbO3, KnbO3, LiTaO3, С, SiC и т.д. В устройстве с целью увеличения коэффициента электромеханической связи на верхнем электроде пьезоэлектрика размещен дополнительный слой диэлектрика с высокими механическими и диэлектрическими свойствами. Недостатком такого устройства является уменьшение добротности резонатора вследствие нагружения пьезоэлектрика дополнительным слоем диэлектрика, и сравнительно низкий коэффициент качества Q·f, не превышающий 5·1012.

Технической задачей, решаемой предлагаемым устройством, является исключение вышеуказанных недостатков и создание многочастотного резонатора на объемных акустических волнах с высоким коэффициентом качества в широком диапазоне частот.

Многочастотный резонатор на объемных акустических волнах был выполнен в виде слоистой компланарной структуры и состоял из источника акустических колебаний, включающего в себя верхний металлический электрод, пьезоэлектрический слой нитрида алюминия AlN и нижний металлический электрод, и звукопровода, причем источник акустических колебаний был выполнен на одной из поверхностей звукопровода. Электроды были выполнены из металла, выбранного из ряда Cr, Mo, Al, Cu, Pt, предпочтительно использовали Mo.

Поставленную задачу решали за счет того, что в предлагаемом резонаторе в качестве звукопровода использовали монокристаллы алмаза искусственного или естественного происхождения с кристаллографической ориентацией срезов (100), или (110), или (111), соответствующих направлениям распространения чистых продольных мод. Для наилучшего акустического согласования использовали нижний электрод из молибдена толщиной 100-200 нм.

Предлагаемое изобретение поясняется фиг.1, 2, 3. На фиг.1 показана структура многочастотного резонатора на объемных акустических волнах. Электроды верхний (1) и нижний (3) с целью минимизации электрических потерь были выполнены в виде одного или двух металлических слоев. Такими металлами были Cr, Mo, Al, Cu, Pt. С целью наилучшего акустического согласования между пьезоэлектриком (2) и звукопроводом (4) нижний электрод был выполнен из молибдена. В качестве пьезоэлектрика (2) использовали нитрид алюминия AlN как материал с наибольшей скоростью распространения продольных волн в группе известных пьезоактивных материалов (ZnO, AlN, LiNbO3, SiO2, LiTaO3). Пленку нитрида алюминия наносили поверх нижнего электрода (3) методом магнетронного распыления.

На фиг.2 и 3 приведены результаты исследований спектра собственных частот предлагаемого резонатора путем измерения коэффициента отражения S11 в диапазонах 6÷6,5 ГГц и 15,5÷16 ГГц, соответственно, с помощью СВЧ анализатора цепей марки Е5071С Agilent Technologies в режиме LinMag на микрозондовой станции марки М-150 Cascade Microtech.

Пример реализации изобретения.

В качестве звукопровода была выбрана квадратная пластинка 4×4 мм2 толщиной 430 мкм, вырезанная из искусственно выращенного алмаза типа IIа. Плоскость пластинки была ориентирована в направлении [100]. После механической полировки шероховатость граней составляла Ra≤10 нм, непараллельность - не более 1 мкм/см.

На плоскость (100) монокристалла алмаза (4) в сверхвысоком вакууме напыляли нижний электрод (3) из молибдена толщиной 150 нм. Для синтеза пьезоэлектрического слоя нитрида алюминия в потоке рабочей газовой смеси Ar/N2 использовали метод высокочастотного реактивного магнетронного распыления мишени из особо чистого алюминия. Проверка на порошковом рентгеновском дифрактометре марки ТЕТА ARL X'TRA показала, что разориентация кристаллитов AlN относительно нормали к поверхности звукопровода не превышала 0,3° (полная ширина на половине высоты дифракционного рефлекса (002)), что обеспечило высокую электромеханическую эффективность. Толщина пьезоэлектрической пленки равнялась 1100 нм, что соответствовала ее собственной резонансной частоте 5 ГГц. Верхний электрод (1) толщиной 150 нм также был из молибдена. Толщины электродов выбраны из условия наилучшего акустического согласования и наименьших электрических потерь. Измерения частотных характеристик резонатора проводили в частотном диапазоне 0,02-20 ГГц с помощью СВЧ анализатора цепей марки Е5071С Agilent Technologies на микрозондовой станции марки М-150 Cascade Microtech. Положение частоты резонанса fr определяли по максимуму адмиттанса Y11, частоты антирезонанса fa - по максимуму импеданса Z11.

На фиг.2 и 3 отчетливо наблюдаются эквидистантные резонансные пики. Частотный интервал между ними рассчитывали по формуле:

где VL - скорость продольной акустической волны в алмазе в направлении [100], d - толщина алмазной пластинки. Расчет для VL=17540 м/с и d=430 мкм дает значение f0=20,395 МГц, что достаточно близко к измеренному значению 20,330 МГц (фиг.3).

Добротность резонатора в полосе частот 0,02-20 ГГц изменялась от 25500 до 2600, что соответствовало коэффициенту качества не менее 5·1013. Например, добротность пика, обозначенного маркером (фиг.3), составила значение Q=3325 на частоте fr=15,475 ГГц. Измерение добротности проводилось по методике, описанной в работах (С.Г. Алексеев, И.М. Котелянский, Г.Д. Мансфельд, Н.И. Ползикова, Ф.О. Сергеев, А.К. Абачев. Методика измерения добротности и затухания в составных акустических сверхвысокочастотных резонаторах. Радиотехника и радиоэлектроника, №8, том 52, год 2007, стр.1013-1017; С.Г. Алексеев, Г.Д. Мансфельд. Простой способ измерения добротности и затухания в акустических резонаторах. Радиотехника и радиоэлектроника, №1, том 53, год 2008, стр.122-126).

При использовании монокристаллов алмаза с кристаллографической ориентацией срезов (110) или (111) получали аналогичные результаты.

Таким образом, описание устройства и результаты его работы доказывают достижение заявленного технического результата - создание многочастотного резонатора на объемных акустических волнах со звукопроводом из ориентированного монокристалла алмаза, имеющего высокий коэффициент качества Q·f не хуже 5·1013 в широком частотном диапазоне 0,02÷20 ГГц.


МНОГОЧАСТОТНЫЙ РЕЗОНАТОР НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ
МНОГОЧАСТОТНЫЙ РЕЗОНАТОР НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ
МНОГОЧАСТОТНЫЙ РЕЗОНАТОР НА ОБЪЕМНЫХ АКУСТИЧЕСКИХ ВОЛНАХ
Источник поступления информации: Роспатент

Showing 21-30 of 36 items.
13.01.2017
№217.015.6f44

Датчик координат очага возгорания

Изобретение относится к области измерительной техники, в частности к устройствам пожарной сигнализации, и предназначено для обнаружения очага возгорания в газодисперсных системах (сплошная фаза-газ) и определения его двумерных координат по тепловому излучению источника. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002597466
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.736c

Способ получения полых керамических волокон

Изобретение относится к керамическим материалам, в частности к получению полых керамических волокон, используемых для изготовления капилляров, мембран, фильтров, разделителей в отсеках батарей и композиционных материалов. Такие керамические волокна в связи с их химической инертностью и высокой...
Тип: Изобретение
Номер охранного документа: 0002598262
Дата охранного документа: 20.09.2016
26.08.2017
№217.015.e8b7

Керамический материал на основе корунда и способ его получения

Изобретение относится к способу синтеза керамического материала на основе корунда, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной твердости. Техническим результатом изобретения...
Тип: Изобретение
Номер охранного документа: 0002627522
Дата охранного документа: 08.08.2017
20.01.2018
№218.016.1e24

Способ получения легированного монокристалла алмаза

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники. Способ выращивания легированных азотом и фосфором монокристаллов алмаза в области высоких...
Тип: Изобретение
Номер охранного документа: 0002640788
Дата охранного документа: 11.01.2018
04.04.2018
№218.016.331c

Светопоглощающий материал

Изобретение может быть использовано в качестве абсолютно черного тела в измерительной технике, теплотехнике и теплофизике. Светопоглощающий материал, полученный без вспомогательных подложек методом CVD, содержит пучки мало- и многостенных углеродных нанотрубок с латеральными отложениями в виде...
Тип: Изобретение
Номер охранного документа: 0002645536
Дата охранного документа: 21.02.2018
18.05.2018
№218.016.50aa

Керамический наноструктурированный материал на основе нитрида кремния и способ его получения

Изобретение относится к способу получения наноструктурированного керамического материала на основе нитрида кремния SiN, модифицированного углеродом. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенную твердость и...
Тип: Изобретение
Номер охранного документа: 0002653182
Дата охранного документа: 07.05.2018
18.05.2018
№218.016.523d

Композитный материал на основе углерода и способ его получения

Изобретение относится к композитному материалу на основе углерода и способу его получения, который может быть использован в ракетно-космической и авиационной отраслях. Способ включает воздействие на смесь фуллерена С, серосодержащего соединения CS и наполнителя давлением и температурой, причем...
Тип: Изобретение
Номер охранного документа: 0002653127
Дата охранного документа: 07.05.2018
09.06.2018
№218.016.5b31

Способ получения керамического материала на основе карбида бора

Изобретение относится к способу получения низкопористого материала на основе карбида бора с пористостью 1-2% при пониженной (ниже 1000°С) температуре спекания. Материал может быть использован для изготовления пластин для бронежилетов, а также различных компонент изделий, требующих повышенной...
Тип: Изобретение
Номер охранного документа: 0002655717
Дата охранного документа: 29.05.2018
03.10.2018
№218.016.8cd6

Способ изготовления полупроводникового преобразователя энергии ионизирующего излучения в электроэнергию

Изобретение относится к способу изготовления сверхтонких полупроводниковых структур с потенциальным барьером, способных генерировать полезную электрическую энергию под действием ионизирующего излучения. Из алмаза типа IIb изготавливают подложку толщиной от 100 до 1000 мкм, на одной из сторон...
Тип: Изобретение
Номер охранного документа: 0002668229
Дата охранного документа: 27.09.2018
16.02.2019
№219.016.bb5c

Устройство для идентификации алмаза

Изобретение относится к области исследования природных и синтетических алмазов и может быть использовано для выявления и отделения природных алмазов от алмазных симуляций, для отделения природных алмазов от синтетических и для выявления спорных алмазов типа IIа, которые, возможно, были...
Тип: Изобретение
Номер охранного документа: 0002679928
Дата охранного документа: 14.02.2019
Showing 21-30 of 35 items.
04.04.2018
№218.016.331c

Светопоглощающий материал

Изобретение может быть использовано в качестве абсолютно черного тела в измерительной технике, теплотехнике и теплофизике. Светопоглощающий материал, полученный без вспомогательных подложек методом CVD, содержит пучки мало- и многостенных углеродных нанотрубок с латеральными отложениями в виде...
Тип: Изобретение
Номер охранного документа: 0002645536
Дата охранного документа: 21.02.2018
03.10.2018
№218.016.8cd6

Способ изготовления полупроводникового преобразователя энергии ионизирующего излучения в электроэнергию

Изобретение относится к способу изготовления сверхтонких полупроводниковых структур с потенциальным барьером, способных генерировать полезную электрическую энергию под действием ионизирующего излучения. Из алмаза типа IIb изготавливают подложку толщиной от 100 до 1000 мкм, на одной из сторон...
Тип: Изобретение
Номер охранного документа: 0002668229
Дата охранного документа: 27.09.2018
19.12.2018
№218.016.a82e

Способ получения графена, пленок и покрытий из графена

Изобретение относится к нанотехнологии и может быть использовано при изготовлении композитов, электрохимических и электрофизических устройств. В электролите, содержащем источник углерода, размещают электроды. В качестве анода используют электропроводные материалы, такие как железо, алюминий,...
Тип: Изобретение
Номер охранного документа: 0002675146
Дата охранного документа: 17.12.2018
16.02.2019
№219.016.bb5c

Устройство для идентификации алмаза

Изобретение относится к области исследования природных и синтетических алмазов и может быть использовано для выявления и отделения природных алмазов от алмазных симуляций, для отделения природных алмазов от синтетических и для выявления спорных алмазов типа IIа, которые, возможно, были...
Тип: Изобретение
Номер охранного документа: 0002679928
Дата охранного документа: 14.02.2019
01.03.2019
№219.016.cbcd

Пирометрический датчик координат очага возгорания

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации, и предназначено для обнаружения очага возгорания в газодисперсных средах. Техническим результатом изобретения является возможность определения двумерных координат очага...
Тип: Изобретение
Номер охранного документа: 0002318242
Дата охранного документа: 27.02.2008
15.03.2019
№219.016.e0f5

Способ диспергирования металла на частицы, лишенные оксидной пленки

Изобретение относится к способам дробления, измельчения твердых тел и может найти применение для повышения фугасного и зажигательного действия. Способ диспергирования металла на частицы, лишенные оксидной пленки, заключается в том, что металл всесторонне сжимают ударной волной и продуктами...
Тип: Изобретение
Номер охранного документа: 0002424084
Дата охранного документа: 20.07.2011
20.03.2019
№219.016.e84c

Пирометрический датчик координат очага возгорания с цилиндрическими линзами

Изобретение относится к области систем предупреждения об опасности, в частности к устройствам пожарной сигнализации, и предназначено для обнаружения очага возгорания в газодисперсных средах. Техническим результатом изобретения является увеличение быстродействия, что позволяет повысить...
Тип: Изобретение
Номер охранного документа: 0002459269
Дата охранного документа: 20.08.2012
09.06.2019
№219.017.7a12

Зондовое устройство

Изобретение относится к технике контроля материалов и изделий и может быть использовано при наноиндентировании, или в сканирующем зондовом микроскопе, для измерения электрических свойств поверхности материала с нанометровым разрешением. Зондовое устройство для измерения электрических параметров...
Тип: Изобретение
Номер охранного документа: 0002313776
Дата охранного документа: 27.12.2007
12.10.2019
№219.017.d4c5

Плазмотрон

Изобретение относится к области плазменной обработки металлов, а именно к плазмотрону для наплавки, сварки, черных и цветных металлов. Корпус состоит из двух частей, соединенных с помощью винтов. Одна из частей выполнена из изолирующего материала, а другая из токопроводящего. Часть корпуса...
Тип: Изобретение
Номер охранного документа: 0002702512
Дата охранного документа: 08.10.2019
24.12.2019
№219.017.f199

Способ получения композиционного материала бор-углерод

Изобретение относится к области порошковой металлургии, в частности к способу получения композиционного материала бор-углерод. Способ включает механическую обработку в планетарной мельнице смеси порошков аморфного бора с размерами частиц менее 2 мкм и фуллерита С с размерами частиц менее 200...
Тип: Изобретение
Номер охранного документа: 0002709885
Дата охранного документа: 23.12.2019
+ добавить свой РИД