×
20.02.2015
216.013.28be

Результат интеллектуальной деятельности: АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ

Вид РИД

Изобретение

№ охранного документа
0002541887
Дата охранного документа
20.02.2015
Аннотация: Изобретение относится к компьютерным системам диагностической визуализации. Техническим результатом является повышение точности распознания анатомических особенностей на изображении за счет автоматизированного оконтуривания этих особенностей. Предложена система оконтуривания анатомических особенностей на изображениях, используемых для планирования терапии с управлением по изображениям. Система включает в себя процессор, который принимает исходное изображение анатомической структуры пациента из устройства формирования изображений. Упомянутый процессор также обнаруживает анатомические опознавательные точки в исходном изображении и сравнивает позиции обнаруженных анатомических опознавательных точек с опорными опознавательными точками в опорном контуре, соответствующем анатомической структуре. А также процессор осуществляет сопоставление обнаруженных анатомических опознавательных точек с опорными опознавательными точками. 5 н. и 15 з.п. ф-лы, 5 ил.

Настоящая заявка находит применение, в частности, в системах диагностической визуализации. Однако, следует понимать, что описанный(ые) метод(ы) может также найти применение в системах диагностической визуализации других типов, других системах планирования терапии и/или других медицинских применениях.

Оконтуривание анатомии является необходимым предварительным этапом при планировании терапии, например планировании лучевой терапии (RTP) и т.п. Методом первичного формирования изображений, обычно используемым при RTP, является компьютерная томография (КТ). В последнее время внимание привлекает использование магнитно-резонансной томографии (МРТ) для RTP, так как данный метод обеспечивает более высокий контраст мягких тканей по сравнению с КТ.

В настоящее время на рынке имеются коммерческие системы автоматизированного планирования сканирования для магнитно-резонансных (МР) исследований. Одним из примеров подобной системы является система Philips SmartExam™, в которой получают предварительное изображение низкого разрешения, выполняют автоматизированное распознавание характерных для пациента анатомических ориентиров и оценивают ориентацию слоев при диагностическом сканировании на основании выявленных ориентиров и информации об ориентирах и ориентации, записанной при выполнении предыдущих операций сбора данных.

Автоматизированное оконтуривание анатомии является сложной задачей как в КТ, так и в МРТ. КТ изображения, обычно, не обеспечивают высокого контраста мягких тканей, что затрудняет надежное выделение границ органов. МР данные обеспечивают значительно более точное различение мягких тканей по сравнению с КТ, и их использование может дать преимущества при планировании терапии для достижения более точного оконтуривания целевых и критических структур в некоторых применениях. Однако автоматизированная сегментация данных МРТ также осложняется из-за множества разных используемых контрастов, приводящих к невоспроизводимому распределению уровней серого.

В данной области техники существует потребность в системах и способах, которые облегчают оконтуривание анатомических структур при планировании терапии с управлением по изображениям, с использованием анатомических ориентиров для переноса очертаний, используемых для планирования терапии и т.п., и, тем самым, преодолевают вышеупомянутые недостатки.

В соответствии с одним аспектом, система, которая облегчает оконтуривание анатомических признаков на изображениях, используемых для планирования терапии с управлением по изображениям, содержит процессор, который получает исходное изображение анатомической структуры в пациенте из устройства формирования изображений и обнаруживает анатомические ориентиры в исходном изображении. Процессор дополнительно сравнивает координаты обнаруженных анатомических ориентиров с опорными ориентирами в опорном контуре, соответствующем анатомической структуре, сопоставляет обнаруженные анатомические ориентиры с опорными ориентирами и подгоняет опорный контур к анатомической структуре на основании сопоставленных пар ориентиров. Процессор также подгоняет контур анатомической структуры в изображении анатомической структуры с высоким разрешением с использованием подогнанного опорного контура, записывает подогнанное изображение высокого разрешения в память и представляет подогнанное изображение высокого разрешения в компонент планирования терапии.

В соответствии с другим аспектом, способ оконтуривания анатомических признаков на изображениях, используемых для планирования терапии с управлением по изображениям, содержит этап обнаружения анатомических ориентиров в исходном изображении и этап сравнения координат обнаруженных анатомических ориентиров с опорными ориентирами в опорном контуре, соответствующем анатомической структуре. Способ дополнительно содержит этап сопоставления обнаруженных анатомических ориентиров с опорными ориентирами и этап подгонки опорного контура к анатомической структуре на основании сопоставленных пар ориентиров. Способ дополнительно содержит этап подгонки контура анатомической структуры в изображении высокого разрешения с использованием подогнанного опорного контура и этап формирования плана терапии на основании, по меньшей мере, частично подогнанного изображения высокого разрешения.

В соответствии с другим аспектом, способ формирования плана лучевой терапии для пациента содержит этап формирования изображения пациента с низким разрешением с использованием по меньшей мере одного из устройства магнитно-резонансной томографии (МРТ) и компьютерного томографического (КТ) сканера и этап обнаружения ориентиров на анатомической структуре в изображении низкого разрешения. Способ дополнительно содержит этап сопоставления обнаруженных ориентиров с опорными ориентирами в опорном контуре, хранящемся в памяти, и этап использования сплайновой интерполяции или аппроксимации, чтобы подогнать опорный контур для согласования с контуром анатомической структуры, с использованием сопоставленных ориентиров. Способ дополнительно содержит этап нанесения подогнанного опорного контура на изображение анатомической структуры с высоким разрешением для подгонки изображения высокого разрешения и этап формирования плана лучевой терапии на основании, по меньшей мере, частично подогнанного изображения высокого разрешения.

Одно из преимуществ состоит в том, что качество изображения для планирования терапии повышается.

Другое преимущество состоит в сокращении времени адаптации изображения.

Другие дополнительные преимущества настоящего изобретения будут очевидны специалистам со средним уровнем компетентности в данной области техники после прочтения и изучения нижеследующего подробного описания.

Чертежи предназначены только для иллюстрации различных аспектов и не подлежат истолкованию в ограничительном смысле.

Фиг. 1 иллюстрирует систему, которая облегчает передачу контуров или очертаний из медицинских изображений в изображения с высоким разрешением, используемые для планирования терапии.

Фиг. 2 иллюстрирует снимок экрана автоматизированного оконтуривания изображений головного мозга, сформированных с использованием устройства МРТ, который может быть отображен пользователю на устройстве отображения.

Фиг. 3 иллюстрирует другой снимок экрана автоматизированного оконтуривания изображений головного мозга, сформированных с использованием устройства МРТ, который может быть отображен пользователю на устройстве отображения.

Фиг. 4 иллюстрирует способ оконтуривания анатомических структур пациента для задания контуров в изображении пациента для терапии пациента с управлением по изображениям в соответствии с по меньшей мере одним аспектом, описанным в настоящем описании.

Фиг. 5 иллюстрирует примерную больничную систему, которая содержит множество устройств формирования изображений, например устройство МР томографии, КТ сканер, устройство радионуклидного сканирования (например, PET или SPECT) или подобное устройство, которые формируют данные формирования изображений, которые реконструируют посредством отдельных или совместно используемых реконструирующих процессоров для формирования представлений 3-мерных изображений.

В соответствии с различными признаками, представленными в настоящем описании, описаны системы и способы, которые облегчают оконтуривание анатомических структур при планировании терапии с управлением по изображениям. Описанная общая схема основана на характерном для пациента ориентире, автоматически распознаваемом программным обеспечением планирования сканирования (например, системах Philips SmartExam™ для планирования МР сканирования). Эти ориентиры используют для поддержки автоматизированного оконтуривания анатомии, а также для передачи очертаний в контексте адаптивного планирования терапии.

Аналогично, автоматизированное планирование КТ сканирования выполняют посредством обнаружения воспроизводимых ориентиров на низкодозовых предварительных сканированиях. Ориентиры, обнаруженные на предварительных изображениях, используют для управления алгоритмами автоматизированной сегментации посредством производства ближайших инициализаций, а также для передачи очертаний на последующие изображения посредством нежесткого совмещения на основе ориентиров.

Системы и способы, описанные в настоящем описании, решают проблему обеспечения воспроизводимых анатомических точечных ориентиров для планирования терапии. Например, алгоритмы автоматизированного планирования сканирования типа Philips SmartExam™, обычно, работают с 3-мерными стандартизированными предварительными изображениями низкого разрешения и способны надежно распознавать целевую анатомию в форме воспроизводимых анатомических точечных ориентиров. Таким образом, пространственная информация относительно исходной анатомии, полученная из предварительного изображения, переносится в сканирование с полным разрешением, независимо от контраста, и используется для поддержки автоматизированного оконтуривания.

На фигуре 1 иллюстрируется система 10, которая облегчает передачу контуров или очертаний из медицинских изображений в изображения с высоким разрешением, используемые для планирования терапии. Например, возможно применение системы 10 с по меньшей мере одной из рабочих станций для планирования лучевой терапии в сочетании с МР сканером, снабженным возможностью SmartExam™. Кроме того, возможно применение способа передачи контуров или планов терапии с использованием КТ изображений с соответствующими ориентирами на 3-мерных предварительных изображениях низкодозовой КТ. В соответствии с другими признаками, в системе 10 применяются мультимодальные системы, например, сочетающие КТ и МРТ, а также МРТ и/или КТ, объединенные с системами радионуклидного формирования изображений, например, сканером для позитронной эмиссионной томографии (PET), для однофотонной эмиссионной компьютерной томографии (SPECT-сканером) и т.п.

Система 10 содержит по меньшей мере одно из устройства МРТ 12 и КТ сканера 14, которые связаны с рабочей станцией 16, процессором 18 и памятью 20. Процессор может быть составной частью рабочей станции 16 или может быть ресурсом, совместно используемым посредством множества рабочих станций. Память хранит и процессор исполняет считываемые компьютером команды для выполнения различных задач и выполнения различных способов, описанных в настоящем описании.

В одном варианте осуществления, КТ сканер 14 формирует 3-мерное низкодозовое предварительное изображение 22, и процессор 18 автоматически обнаруживает воспроизводимый набор ориентиров 24 на низкодозовом предварительном изображении. Обнаруженные ориентиры экспортируются (например, с использованием протокола 26 обмена данными (DICOM) для передачи цифровых медицинских изображений или подобного протокола) в процессор для сравнения с известными ориентирами 28, хранящимися в памяти, для по меньшей мере одного контура. Процессор исполняет алгоритм 30 сравнения, чтобы сравнить обнаруженные ориентиры с известными ориентирами и извлекает по меньшей мере один контур тела из атласа 32, хранящегося в памяти. Процессор преобразует контуры с использованием обнаруженных ориентиров и, тем самым, подгоняет по меньшей мере один предварительно сформированный контур посредством сопоставления обнаруженных ориентиров с известными ориентирами для контура(ов). Например, процессор определяет преобразование, которое преобразует ориентиры 24 контрольного изображения в позиции, которые налагаются на ориентиры 28 из атласа. Контур из атласа для его преобразования в подогнанный контур 34 в пространстве пациента можно подвергнуть преобразованию, обратному этому определенному преобразованию.

В другом варианте осуществления, устройство МРТ 12 формирует предварительное изображение 22 низкого разрешения и процессор 18 автоматически обнаруживает воспроизводимый набор ориентиров 24 на предварительном изображении низкого разрешения. Обнаруженные ориентиры экспортируются (например, с использованием протокола 26 обмена данными DICOM и т.п.) в процессор для сравнения с известными ориентирами 33 мягких тканей, хранящимися в памяти, для по меньшей мере одного контура. Процессор исполняет алгоритм 30 сравнения, чтобы сравнить обнаруженные ориентиры 24 с известными ориентирами 28 и извлекает по меньшей мере один контур тела из атласа 32, хранящегося в памяти. Процессор преобразует контуры из атласа с использованием обнаруженных ориентиров 24 и, тем самым, подгоняет по меньшей мере один предварительно сформированный контур из атласа до подогнанных контуров 34 посредством сопоставления обнаруженных ориентиров с известными ориентирами для контура(ов).

В каждом сценарии (например, КТ или МРТ) атлас преобразуют в новый характерный для пациента набор данных, полученный из низкодозового предварительного изображения. То есть процессор выполняет преобразование для перемещения подогнанных контуров 34 к изображению 36 высокого разрешения, которое используют для RTP. Подогнанные контуры или очертания дополнительно используют в последующих изображениях того же пациента, чтобы контролировать продвижение терапии и облегчать адаптивное планирование терапии.

В одном варианте осуществления, процессор 18 использует по меньшей мере один тонкий плоский сплайн 38 для преобразования контуров, хотя описанные системы и способы не ограничены упомянутым подходом. Пример метода тонких плоских сплайнов описан в работе F.L. Bookstein: Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Trans. Pattern. Anal. Mach Intell. 11: 567-586, 1989.

В другом варианте осуществления, рабочая станция 16 содержит устройство 40 отображения, на котором пользователю представляется по меньшей мере одно из изображения 22 низкого разрешения, изображения 36 высокого разрешения, обнаруженных ориентиров 24, известных ориентиров 28, контуров в атласе 32 и/или подогнанных контуров 34 на разных стадиях описанных способов и процессов. Рабочая станция дополнительно содержит устройство 42 ввода (например, мышь, клавиатуру, навигационную панель, стилус и т.п.), посредством которого пользователь вводит данные и/или команды в рабочую станцию, подгоняет ориентиры и т.п.

В соответствии с изложением со ссылкой на фигуру 1, на фигурах 2 и 3 иллюстрируются, соответственно, снимки 60 и 70 экранов автоматизированного оконтуривания изображений головного мозга, которые сформированы с использованием устройства МРТ и могут быть отображены пользователю на устройстве 40 отображения. На фигуре 2 изображено множество известных или опорных ориентиров 28 и на фигуре 3 показано множество обнаруженных ориентиров 24. Система 10, представленная на фигуре 1, используется, например, для поддержки оконтуривания структур, подвергающихся повышенному риску, а также для автоматической передачи законченных очертаний из первичного набора данных в последующие изображения.

Программное обеспечение для распознавания анатомии, например, SmartExam™, существует для исследований головного мозга в МР сканерах компании Philips многих типов, как сообщалось в работе Young et al.: Automated Planning of MRI Neuro Scans. Proc. of SPIE Medical Imaging, San Diego, CA, USA (2006) 61441M-1-61441M-8. Выходными данными программного обеспечения для распознавания анатомии является идентифицированный или обнаруженный набор воспроизводимых анатомических ориентиров 24. Координаты ориентиров могут быть экспортированы с использованием стандартного протокола 26 DICOM обмена данными и использованы модулем оконтуривания анатомии (не показанным) рабочей станции 16 для планирования лучевой терапии или любым автономным программным обеспечением для автоматизированного оконтуривания.

В соответствии с одним вариантом осуществления, пользователь вручную очерчивает структуры интереса в опорном наборе данных, для которого доступны координаты ориентиров. Затем эти известные ориентиры 28 совмещаются с обнаруженными ориентирами 24 в характерном для пациента наборе данных, например, с использованием тонких плоских сплайнов или подобным образом. Полученное преобразование применяют к анатомическим структурам в опорном наборе данных для их переноса в набор данных пациента (например, в изображении пациента с высоким разрешением или подобный набор данных). Пользователь может использовать дополнительные автоматизированные способы для получения повышенной точности или ручной точной подстройки перенесенных очертаний для их согласования с изображением пациента.

В связанном варианте осуществления, очертания передаются в последующие изображения того же пациента в контексте адаптивного планирования лучевой терапии. Аналогичным образом, обнаруженные ориентиры 24 в первичном наборе данных совмещают с известными ориентирами 28 в опорном наборе данных, и полученное преобразование применяют к доступному оконтуриванию в первичном изображении пациента. Поскольку существующая в данном случае изменчивость анатомии намного меньше, то способ требует только минимальных ручных подгонок данного оптимального покрытия области интереса посредством ориентиров.

На фигуре 4 представлен способ оконтуривания анатомических структур пациента для задания контуров в изображении пациента для терапии пациента с управлением по изображениям в соответствии с по меньшей мере одним аспектом, описанным в настоящем описании. На этапе 80 формируют изображение пациента или участка пациента с низким разрешением. В одном варианте осуществления, изображение является низкодозовым КТ изображением. В другом варианте осуществления, изображение является МР изображением низкого разрешения. На этапе 82 обнаруживают ориентиры в изображении пациента. На этапе 84 обнаруженные ориентиры 24 экспортируют (например, с использованием протокола 26 DICOM для передачи данных или подобного протокола) и сравнивают с известными ориентирами 26 для контуров в предварительно сформированном атласе 32 анатомических структур. Если исходное изображение пациента является низкодозовым КТ изображением, то обнаруженные ориентиры сравнивают с известными ориентирами жестких структур (например, костью и т.п.). Если исходное изображение пациента является МР изображением с низким разрешением, то обнаруженные ориентиры сравнивают с опорными ориентирами мягких тканей.

На этапе 86 опорный контур, содержащий опорные ориентиры, извлекают из атласа опорных контуров и подгоняют (например, деформируют, трансформируют, согласуют) под изображение пациента посредством сопоставления опорных ориентиров 28 с обнаруженными ориентирами 24. Подогнанный контур может быть записан в память для вывода в последующем. На этапе 88 подогнанный контур преобразуют (например, с использованием тонких плоских сплайнов или какого-то другого подобного подходящего интерполяционного метода) для согласования с изображением пациента с высоким разрешением, которое пригодно для использования в процедуре планирования терапии, например процедуре планирования лучевой терапии. Пользователь может дополнительно точно подстраивать адаптированный контур с использованием известных методов.

Следует понимать, что изображение высокого разрешения может быть сформировано с использованием любого метода формирования изображений, например КТ, МРТ, позитронной эмиссионной томографии (PET), однофотонной эмиссионной томографии (SPECT), рентгенографии, видоизмененных вышеперечисленных методов и т.п. В упомянутых сценариях процессор обеспечивает контур с ориентирами, характерными для конкретного метода, для сопоставления с обнаруженными ориентирами. Атлас 32 содержит как ориентиры жестких структур, так и ориентиры мягких тканей, PET-ориентиры, SPECT-ориентиры, рентгенографические ориентиры и т.п., так что любые или все КТ, МР, PET-, SPECT-, рентгенографические и другие изображения и ориентиры могут быть сопоставлены с контурами атласа или совмещены с ними.

В другом варианте осуществления, кроме или вместо атласа опорных контуров, для пациента получают множество исходных ориентиров при первом сеансе формирования изображений. Затем исходные ориентиры используют для сравнения с последующими сеансами формирования изображений, чтобы оценить продвижение терапии и т.п.

Как показано на фигуре 5, примерная больничная система 150 может содержать множество устройств формирования изображений, например устройство МР 12 томографии, КТ сканер 14, устройство 151 радионуклидного (например, PET или SPECT) сканирования, комбинации вышеперечисленных устройств (например, мультимодальные системы) или что-то подобное, что формирует данные формирования изображений, которые реконструируются отдельными или совместно используемыми реконструирующими процессорами 152 для формирования представлений 3-мерных изображений. Представления изображений передаются по сети 154 в центральную память 156 или локальную память 158.

На рабочей станции 16, соединенной с сетью, оператор использует пользовательский интерфейс 170 для перемещения выбранного объекта (например, 3-мерного изображения или контура и т.п. с низким разрешением) в центральную память 156 или местную память 158 или между ними. Видеопроцессор 166 отображает выбранный объект в первой области 172 1 просмотра устройства 40 отображения. Изображение пациента (например, изображение высокого разрешения, сформированное посредством одного из МР блока 12 формирования изображений, КТ сканера 14 и сканера 151 радионуклидного сканирования) отображается во второй области 172 2 просмотра. Третья область 172 3 просмотра может отображать наложение подогнанного контура и изображение высокого разрешения. Например, пользователь может располагать возможностью совмещать ориентиры, обнаруженные на (например, КТ или МР) изображении пациента с низким разрешением, с опорными ориентирами в опорном контуре, выбранном из атласа, чтобы согласовывать опорный контур с анатомией пациента. Например, оператор посредством интерфейса 170 выбирает опорные ориентиры в опорном контуре (например, с помощью мыши, стилуса или другого подходящего пользовательского устройства ввода), которые соответствуют обнаруженным ориентирам в изображении низкого разрешения. В качестве альтернативы, опорные и обнаруженные ориентиры могут выравниваться автоматически программой, исполняемой процессорами 18 и/или 166, которая хранится в памяти 20. Затем процессор 18 (фиг.1) в пользовательском интерфейсе 170 выполняет алгоритм деформирования или трансформирования для согласования формы опорного контура с формой анатомии пациента с использованием выровненных ориентиров. Процессор 18 дополнительно выполняет преобразование (например, с использованием тонких плоских сплайнов или какого-либо подходящего интерполяционного метода) для сопоставления подогнанного или согласованного контура с изображением пациента с высоким разрешением.

Когда изображение высокого разрешения включает в себя информацию о подогнанном контуре, данное изображение подается в компонент 180 планирования терапии для использования в планировании терапии (например, планирования лучевой терапии, планирования ультразвуковой терапии, планирования физиотерапии, планирования брахитерапии, терапии высокоинтенсивным сфокусированным ультразвуком (HIFU) под управлением МРТ, планирования корпускулярной лучевой терапии, планирования абляции и т.п.). Устройство 182 терапии, по желанию, связано с устройством 180 планирования терапии для исполнения по меньшей мере одного плана терапии, сформированного вышеописанным способом.

В другом варианте осуществления, отображенное наложение в области 172 3 просмотра можно подгонять путем присвоения весовых коэффициентов изображению и/или контуру низкого разрешения относительно изображения высокого разрешения или наоборот. Например, для изменения весового коэффициента изображения в областях 172 1 и 172 2 просмотра можно подстраивать бегунок или кнопку (не показанные), которые могут быть механическими или представленными на устройстве 168 отображения и допускают манипулирование посредством устройства ввода. В одном примере, оператор может подгонять изображение в области 172 3 просмотра исходя из данных изображения исключительно высокого разрешения (представленных в области 172 2 просмотра) посредством многих сочетаний и/или непрерывного сочетания данных изображений высокого разрешения и низкого разрешения под данные изображения исключительно низкого разрешения (представленные в области 172 1 просмотра). Например, отношение данных изображения высокого разрешения к данным изображения низкого разрешения можно дискретно или непрерывно подгонять от 0:1 до 1:0. В другом возможном варианте данные изображения высокого разрешения могут отображаться в серых тонах, и данные изображения низкого разрешения могут быть расцвечены или наоборот.

После того как пользователь загрузил и/или установил атлас или библиотеку контуров в центральную память 156, атлас можно вызывать по сети, чтобы облегчать преобразование подгонки контура в изображение высокого разрешения и т.п., как описано выше. В соответствии с приведенным примером, допуск к библиотеке контуров или атласу могут получать многие рабочие станции или пользовательские интерфейсы, при необходимости для конкретных пациентов или сеансов формирования изображений для различных процедур планирования терапии.


АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ
АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ
АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ
АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ
АВТОМАТИЗИРОВАННОЕ ОКОНТУРИВАНИЕ АНАТОМИИ ДЛЯ ПЛАНИРОВАНИЯ ТЕРАПИИ С УПРАВЛЕНИЕМ ПО ИЗОБРАЖЕНИЯМ
Источник поступления информации: Роспатент

Showing 131-140 of 257 items.
10.02.2015
№216.013.25fe

Групповая запись изображений, основанная на модели движения

Изобретение относится к обработке медицинских изображений. Техническим результатом является повышение точности оценки движения интересующей ткани. Способ содержит: задание набора опорных местоположений около интересующей области субъекта или объекта, которую идентифицируют на, по меньшей мере,...
Тип: Изобретение
Номер охранного документа: 0002541179
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.26c1

Рч передающая и/или приминающая антенна для гибридной системы магнитно-резонансной томографии/ высокоинтенсивного сфокусированного ультразвука

Использование: для использования в гибридной системе магнитно-резонансной томографии (МРТ) или (МР сканере), который содержит систему МРТ и другую систему визуализации, например, в виде системы высокоинтенсивного сфокусированного ультразвука (HIFU). Сущность изобретения заключается в том, что...
Тип: Изобретение
Номер охранного документа: 0002541374
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2a88

Система окружающей телекоммуникации, способ работы такой системы и машиночитаемый носитель

Изобретение относится к области радиосвязи, в частности к системам окружающей телекоммуникации. Техническим результатом является улучшение эффекта «следуй за мной». Система (10) окружающей телекоммуникации содержит набор передатчиков (11) и соответствующий набор приемников (12) для передачи и...
Тип: Изобретение
Номер охранного документа: 0002542345
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2aa9

Ультразвуковое планирование и наведение имплантируемых медицинских устройств

Изобретение относится к медицинским ультразвуковым диагностическим системам, а именно к ультразвуковым системам для размещения медицинских устройств с наведением по трехмерным изображениям. Ультразвуковая система для планирования хирургической операции с имплантируемым устройством содержит...
Тип: Изобретение
Номер охранного документа: 0002542378
Дата охранного документа: 20.02.2015
27.02.2015
№216.013.2c8c

Инструмент для персонального ухода

Изобретение относится к инструменту для персонального ухода, содержащему корпус. Упомянутый корпус имеет продольную ось, первую концевую часть и вторую концевую часть. Первая концевая часть имеет первый конец с первым устройством, предназначенным для выполнения функции, относящейся к...
Тип: Изобретение
Номер охранного документа: 0002542872
Дата охранного документа: 27.02.2015
27.02.2015
№216.013.2ed4

Устройство для нагревания и вспенивания жидкости

Устройство (2) для нагревания и вспенивания жидкости, такой как молоко, включает средство (32) для образования пара, который используется для нагревания жидкости, и входное отверстие (27) для воздуха, который используется для вспенивания жидкости. В отличие от традиционных устройств входное...
Тип: Изобретение
Номер охранного документа: 0002543456
Дата охранного документа: 27.02.2015
10.03.2015
№216.013.2f3f

Системы и способы поддержки клинических решений

Изобретение относится к администрированию историй болезни и экспертным системам. Техническим результатом является повышение достоверности данных текущего пациента для поддержки клинических решений на основании определенных значений доказательных признаков. Система содержит: подсистему (10)...
Тип: Изобретение
Номер охранного документа: 0002543563
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.30b5

Оценка положений громкоговорителей

Изобретение относится к средствам для определения оценок положений громкоговорителей в системах объемного звука. Технический результат заключается в повышении точности определения оценки положений громкоговорителей в системах объемного звука. Система содержит датчики движения (201, 203, 205),...
Тип: Изобретение
Номер охранного документа: 0002543937
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.30ee

Формирование ахроматического фазоконтрастного изображения

Изобретение относится к области рентгенотехники. Устройство формирования фазоконтрастного изображения для исследования представляющего интерес объекта (100) содержит источник (101) для генерации пучка излучения; детектор (102) для детектирования излучения после прохождения им представляющего...
Тип: Изобретение
Номер охранного документа: 0002543994
Дата охранного документа: 10.03.2015
10.03.2015
№216.013.3196

Система варки кофе, устройство для варки кофе, картридж упаковки кофейных зерен и способ приготовления кофейного напитка

Описана система приготовления кофе, включающая в себя картридж упаковки кофейных зерен и устройство варки кофе. Картридж упаковки кофейных зерен включает в себя контейнер, удерживающий кофейные зерна, и средство транспортировки, выполненное с возможностью обеспечения транспортировки кофейных...
Тип: Изобретение
Номер охранного документа: 0002544162
Дата охранного документа: 10.03.2015
Showing 131-140 of 1,331 items.
20.09.2013
№216.012.6d26

Способ извлечения данных из набора данных медицинских изображений

Изобретение относится к области извлечения данных из набора данных медицинских изображений. Техническим результатом является сокращение объема передачи данных. Способ извлечения множества слоев данных из набора (5) данных медицинских изображений включает в себя этапы, на которых: а) отображают...
Тип: Изобретение
Номер охранного документа: 0002493593
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d2c

Медицинские системы и способы видеосвязи

Изобретение относится к области медицинских технологий. Техническим результатом является усовершенствование связи между медицинскими специалистами и пациентами. Медицинская система связи включает в себя множество устройств (40) аудио/видеозаписи и воспроизведения для конечных пользователей,...
Тип: Изобретение
Номер охранного документа: 0002493599
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d39

Сборка светоизлучающих диодов

Изобретение относится к сборке светоизлучающих диодов для создания сигнальной информации. Первый органический светоизлучающий диод (101) содержит первый светоизлучающий слой (105), расположенный на электроде первой подложки (107), и непросвечивающий первый электрод (109), расположенный на...
Тип: Изобретение
Номер охранного документа: 0002493612
Дата охранного документа: 20.09.2013
20.09.2013
№216.012.6d50

Сид с частицами в герметике для повышенного извлечения света и нежелтого цвета в выключенном состоянии

Изобретение относится к светоизлучающим диодам и, в частности, к технологии улучшения извлечения света. Технический результат заключается в повышении яркости за счет устранения желто-зеленого цвета. Устройство включает в себя полупроводниковый светоизлучающий диод (СИД), слой люминофора поверх...
Тип: Изобретение
Номер охранного документа: 0002493635
Дата охранного документа: 20.09.2013
27.09.2013
№216.012.6dd2

Устройство для нагревания текучей среды в емкости

Изобретение относится к нагревательному устройству для нагревания текучей среды в емкости, особенно, но не исключительно, к нагревательному устройству для нагревания молока в детской бутылке. Усовершенствованное устройство для нагревания текучей среды в емкости будет полезным из-за более...
Тип: Изобретение
Номер охранного документа: 0002493765
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.6f4d

Биореакторное устройство для выращивания зависящих от энергии освещения биологических видов и способ выращивания зависящих от энергии освещения биологических видов

Группа изобретений относится к области биотехнологии, в частности к биореакторному устройству (1) для выращивания биологических видов (2) и способу выращивания. Биореакторное устройство содержит, по меньшей мере, одно устройство-резервуар (3) с первой средой (4a) обитания для первого вида (2a)...
Тип: Изобретение
Номер охранного документа: 0002494144
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7033

Устройство микроэлектронного датчика

Изобретение относится к оптическому устройству для обеспечения нераспространяющегося излучения, в ответ на падающее излучение, в объеме регистрации, который содержит целевой компонент в среде, причем, по меньшей мере, один плоскостной размер (W1) объема регистрации меньше дифракционного...
Тип: Изобретение
Номер охранного документа: 0002494374
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7034

Система и способ детектирования

Изобретение относится к системам и способам детектирования, в частности, в области диагностики. Система детектирования содержит держатель для подложки (16), причем подложка имеет поверхность детектирования и выполнена с возможностью содержать объем образца так, что образец находится, по меньшей...
Тип: Изобретение
Номер охранного документа: 0002494375
Дата охранного документа: 27.09.2013
27.09.2013
№216.012.7087

Способ и устройство для поддержки принятия решения на базе случаев

Изобретение относится к системам компьютерной диагностики заболеваний. Техническим результатом является создание базисной системы вводных оценок подобия для адаптации истинного значения подобия к различным пользователям с другим опытом и/или другим мнением. Способ поддержки принятия решений на...
Тип: Изобретение
Номер охранного документа: 0002494458
Дата охранного документа: 27.09.2013
10.10.2013
№216.012.714c

Система, содержащая устройство для обработки кожи и док-станция для устройства для обработки кожи

Изобретение относится к док-станции для устройства для обработки кожи, имеющего охлаждающий элемент. Задачей изобретения является создание док-станции для устройства для обработки кожи с охлаждающим элементом без предотвращения его размораживания. Согласно изобретению док-станция содержит...
Тип: Изобретение
Номер охранного документа: 0002494661
Дата охранного документа: 10.10.2013
+ добавить свой РИД